
Constness of Lambda Functions (Revision 1)
Document no: N2658=08-0168

Jaakko Järvi∗ Peter Dimov† John Freeman‡

2008-06-12

1 Introduction

Lambda expressions, as specified in the document N2550 [JFC08b], were voted into the working paper in the
Bellevue meeting in March 2008. As a result of discussions in the evolution and core working groups, N2550
introduced a change over the earlier proposal N2529 [JFC08a] in how constness of a closure object affects
the constness of the variables stored in the closure. The document N2651 [JD08] revisited that decision, and
suggested a small change to the specification of lambda expressions in this aspect. This paper revises N2651,
and reflects the decisions made in the Core Working Group in the Sophia-Antipolis meeting. The discussion
of alternatives from N2651 is not included—we only describe the design agreed upon, and necessary wording
changes against the current working paper N2606.

2 Background

The result of evaluating a lambda expression is a closure object. A closure object can store copies of variables
defined in the enclosing scope of the lambda expression as its member variables. Closure objects behave
as function objects where, according to the current specification in the working paper, the function call
operator is defined to be const. This allows invocation of a closure object regardless of whether the object
is const or not, but prevents modifying the closure members in the body of the lambda expression. This
is somewhat limiting. For example, the following example is ill-formed, as acc is effectively const in the
lambda expression.

vector<int> a;
...

int acc = 0;
transform(a.begin(), a.end(), a.begin(), [acc](int x) { return acc += x; });

The following function object is comparable to the object constructed from the above lambda expression:

class A {
int acc;

public:
// constructor
int operator()(int x) const { return acc += x; }

}

One can work around the constness by storing the state outside of the closure object:

transform(a.begin(), a.end(), a.begin(), [&acc](int x) { return acc += x; });
∗jarvi@cs.tamu.edu
†pdimov@mmltd.net
‡jfreeman@cs.tamu.edu

Doc. no: N2658=08-0168 2

This is often undesirable. For example, in above code, the change of value of acc may or may not be an
expected side effect. In particular, if closures are invoked in concurrent threads, these kind of aliasing issues
and side-effects complicate reasoning about programs.

3 Proposal

We propose that the syntax of the lambda expressions be extended to allow qualification with the mutable
keyword. The place for this qualification should be between the parameter list of the lambda expression and
the optional exception specification.

The absence or, respectively, presence of the mutable-qualification would determine whether the function
call operator of the closure object is const or, respectively, non-const. We note that the semantics of closure
objects without the mutable keyword remains unchanged from the semantics specified in the working paper.

Examples:

int x;
[x]() { ++x; } // error, x is const
[x]() mutable { ++x; } // OK

template <class F> void by copy(F f) { f(); }
template <class F> void by const reference(const F& f) { f(); }
by copy([]() mutable {}); // OK
by copy([]() {}); // OK

by const reference([]() mutable {}); // error, calling a non−const member function of a const object
by const reference([]() {}); // OK

References

[JD08] Jaakko Järvi and Peter Dimov. Constness of lambda functions. Technical Report N2651=08-0161,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++,
May 2008.

[JFC08a] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Word-
ing for monomorphic lambdas (revision 3). Technical Report N2529=08-0039, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, February 2008.

[JFC08b] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expressions and closures: Word-
ing for monomorphic lambdas (revision 4). Technical Report N2550=08-0060, ISO/IEC JTC 1,
Information technology, Subcommittee SC 22, Programming Language C++, February 2008.

1

Proposed Wording

5.1.1 Lambda Expressions [expr.prim.lambda]

lambda-parameter-declaration:
(lambda-parameter-declaration-listopt) mutableopt exception-specificationopt lambda-return-type-
clauseopt

9 F has a public const function call operator ([over.call], 13.5.4) with the following properties:

— The parameter-declaration-clause is the lambda-parameter-declaration-list.

— The return type is the type denoted by the type-id in the lambda-return-type-clause; for a lambda expression
that does not contain a lambda-return-type-clause the return type is void, unless the compound-statement is of
the form { return expression; }, in which case the return type is the type of expression.

— The cv-qualifier-seq is absent if the lambda expression is mutable, and it is const otherwise.

— The exception-specification is the lambda expression’s exception-specification, if any.

— The compound-statement is obtained from the lambda expression’s compound-statement as follows: If the
lambda expression is within a non-static member function of some class X , transform id-expressions to class
member access syntax as specified in ([class.mfct.non-static], 9.3.1), then replace all occurrences of this by t.
[Note: References to captured variables or references within the compound-statement refer to the data members
of F . — end note]

11 If every name in the effective capture set is preceded by & and the lambda expression is not mutable, F is publicly
derived from std::reference_closure<R(P)> ([func.referenceclosure], 20.5.17), where R is the return type and
P is the parameter-type-list of the lambda expression. Converting an object of type F to type std::reference_-
closure<R(P)> and invoking its function call operator shall have the same effect as invoking the function call operator
of F .

