
Storage Management Technical Specification,
Part 2 Common Profiles

Version 1.6.0, Revision 4

Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and
servers for the secure, extensible, and interoperable management of networked storage.

This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies
and technologies described in this document accurately represent the SNIA goals and are appropriate for
widespread distribution. Suggestions for revision should be directed to http://www.snia.org/feedback/.

SNIA Technical Position

10 February, 2012

Revision History

Revision 1
Date

 16 July 2010

SCRs Incorporated and other changes
Recipe Overview (CORE-SMIS-SCR-00044)
 - Changed “CIM intrinsic write methods” to “Generic Operations”
 - Changed “CIM Operations are taken directly from the CIM Operations over HTTP” to “Generic
Operations should be used, but for backward compatibility CIM Operations (from CIM Operations over
HTTP) may also be used.”

iSCSI Target Ports Subprofile (CORE-SMIS-SCR-00043)
 - Added a new property into iSCSICapabilities for ‘iSCSI Session’ feature
 - Changed iSCSISession and related classes from mandatory to conditional

FC Initiator Ports Profile (SMIS-160-Draft-SCR00001)
 - Updated with a new property that allows clients to differentiate which profile the FCPort is tied to

FCoE Initiator Ports Profile (SMIS-160-Draft-SCR00001)
 - Updated with a new property that allows clients to differentiate which profile the FCPort is tied to

Server Profile (CORE-SMIS-SCR-00044)
 - Changed “A CIM Server is anything that supports the CIM-XML protocol or other WBEM protocols.” to
“A CIM Server is anything that supports a WBEM protocol.”
 - Table 391 – The following properties are redefined: FunctionalProfileSupported=”shall be unknown”,
MultipleOperationsSupported=shall be false, FunctionalProfileDescriptions should be removed from the
table
 - Figure 52 – Put ObjectManagerCommunication in the diagram and had the
CIMXMLComunicationMechanism inherit from it

Indications Profile (SMIS-160-Draft-SCR00002)
 - Added a new profile that combines the SNIA Indications support with the DMTF Indicaitons Profile

Object Manager Adapter Subprofile (CORE-SMIS-SCR-00044)
 - Figure 64 – Changed CIMXMLCommuncationMechanism to ObjectManagerCommunicationMechanism
and removed all properties

Comments
Editorial notes and DRAFT material are displayed.

Revision 2
Date

 7 October 2010

SCRs Incorporated and other changes
FC Initiator Ports (SMIS-160-Draft-SCR00001)
 - Promoted the use of PortDiscriminator properties to Experimental

FCoE Initiator Ports (SMIS-160-Draft-SCR00001)
 - Promoted the use of PortDiscriminator properties to Experimental

Operational Power (SMIS-150-Errata-SCR00016)
 - This profile was cleaned up and edited based on a content review.
 - This update includes some new diagrams.

Indications (SMIS-160-Draft-SCR00002)
 - Updated the new profile that combines the SNIA Indications support with the DMTF Indicaitons Profile to
conform to version 1.2.0 of the DMTF profile
 - Promoted the SNIA Indications Profile to Experimental

Comments
Editorial notes and DRAFT material are displayed.

Revision 3
Date

 10 March 2011

SCRs Incorporated and other changes
iSCSITargetPort (CORE-SMIS-SCR-00043)
 - Minor edits to clarify the Experimental parts of the profile
 - Changed the version of the Profile to 1.6.0
 - Corrected the CIM Schema Version to be CIM 2.27 (rather than CIM 2.13.1)

Base Server (CORE-SMIS-SCR-00049)
 - Added HDR, Disk Partition, and SCSI Multipath Management profiles to the supported
 component profile list
 - Corrected the Launch In Context entry in the supported component profile list

Server (CORE-SMIS-SCR00054)
 - Updated to fix supported profiles for Indications and Launch In Context changes

Indication (SMIS-160-Draft-SCR00002)
 - Deprecated this profile in favor of the SNIA Indications profile

Experimental Indications (SMIS-160-Draft-SCR00002)
 - Deprecated this profile in favor of the SNIA Indications profile

Indications (SMIS-160-Draft-SCR00002)
 - Updated the new profile that combines the SNIA Indications support with the DMTF Indications Profile
 to conform to version 1.2.0b of the DMTF profile

Operational Power (CORE-SMIS-SCR00056))
 - Integrated SNIA_DeviceSet into the profile

SMI-S Information Model (TSG-SMIS-SCR00294)
 - Added this Annex

Comments
Editorial notes are displayed.
DRAFT material was hidden.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position iii

Revision 4
Date

 28 September 2011

SCRs Incorporated and other changes
Indications (SMIS-160-Draft-SCR00002)
 - Updated the new indications profile that combines the SNIA Indications support with the DMTF
 Indications Profile to conform to version 1.2.1 (standard) of the DMTF profile

Front matter
 - Paragraph added to Maturity Level explanation, as requested by ISO editor for SMI-S 1.1.1.

Comments
Editorial notes and DRAFT material are hidden.

Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management
Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/

The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration,
and,

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

Copyright © 2003-2012 Storage Networking Industry Association.
iv

1

2
3

4

5
6
7
8

9

10
11

12
13
14
15

16

17
18
19
20
21
22

23
24
25
26

27
28
29
30

31
32
33
34

35

36

37
38
39
40
41
42
43
INTENDED AUDIENCE
This document is intended for use by individuals and companies engaged in developing, deploying, and promoting
interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA) organization.

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no warranty of
any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2003-2012 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of
their respective owners.

Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task
Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the SNIA and
DMTF Technical Working Groups. However, the schema is still in development and review in the DMTF Working
Groups and Technical Committee, and subject to change.

CHANGES TO THE SPECIFICATION
Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version
number, a release number and an update number. The current identifier for this specification is version 1.2.0.
Future publications of this specification are subject to specific constraints on the scope of change that is
permissible from one publication to the next and the degree of interoperability and backward compatibility that
should be assumed between products designed to different publications of this standard. The SNIA has defined
three levels of change to a specification:

• Major Revision: A major revision of the specification represents a substantial change to the underlying scope
or architecture of the SMI-S API. A major revision results in an increase in the version number of the version
identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward
compatibility between releases with different version numbers.

• Minor Revision: A minor revision of the specification represents a technical change to existing content or an
adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the
specification’s identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve
interoperability and backward compatibility.

• Update: An update to the specification is limited to minor corrections or clarifications of existing specification
content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to
x.x.2). Updates with the same version and minor release levels preserve interoperability and backward
compatibility.

TYPOGRAPHICAL CONVENTIONS

Maturity Level
In addition to informative and normative content, this specification includes guidance about the maturity of
emerging material that has completed a rigorous design review but has limited implementation in commercial
products. This material is clearly delineated as described in the following sections. The typographical convention is
intended to provide a sense of the maturity of the affected material, without altering its normative content. By
recognizing the relative maturity of different sections of the standard, an implementer should be able to make more
informed decisions about the adoption and deployment of different portions of the standard in a commercial
product.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position v

44
45
46
47
48
49

50
51
52
53
54

55

56
57
58
59
60
61
62
63
64

65

66
67
68
69
70
71
This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API
and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the
specification will represent a mature and stable design, be verified by extensive implementation experience, assure
consistent support for backward compatibility, and rely solely on content material that has reached a similar level of
maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content
is assumed to satisfy these requirements and is referred to as “Finalized”. Since much of the evolving specification

content in any given release will not have matured to that level, this specification defines three subordinate levels
of implementation maturity that identify important aspects of the content’s increasing maturity and stability. Each
subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other
emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention
that clearly distinguishes content at one maturity model from content at another level.

Experimental Maturity Level
No material is included in this specification unless its initial architecture has been completed and reviewed. Some
content included in this specification has complete and reviewed design, but lacks implementation experience and
the maturity gained through implementation experience. This content is included in order to gain wider review and
to gain implementation experience. This material is referred to as “Experimental”. It is presented here as an aid to
implementers who are interested in likely future developments within the SMI specification. The contents of an
Experimental profile may change as implementation experience is gained. There is a high likelihood that the
changed content will be included in an upcoming revision of the specification. Experimental material can advance
to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical
convention for Experimental content.

Implemented Maturity Level
Profiles for which initial implementations have been completed are classified as “Implemented”. This indicates that
at least two different vendors have implemented the profile, including at least one provider implementation. At this
maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to
the correction of deficiencies identified through additional implementation experience. Should the material become
obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from
subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content.

EXPERIMENTAL

Experimental content appears here.

EXPERIMENTAL

Figure 1 - Experimental Maturity Level Tag

IMPLEMENTED

Implemented content appears here.

IMPLEMENTED

Figure 2 - Implemented Maturity Level Tag
vi

72

73
74
75
76
77
78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93

94

95
96
97
98
99

100
101
102
103
Stable Maturity Level
Once content at the Implemented maturity level has garnered additional implementation experience, it can be
tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors,
including both a provider and a client. Should material that has reached this maturity level become obsolete, it may
only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been
deprecated may only be removed from the specification as part of a major revision. A profile that has reached this
maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next.
As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3
is a sample of the typographical convention for Implemented content.

Finalized Maturity Level
Content that has reached the highest maturity level is referred to as “Finalized.” In addition to satisfying the
requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine
material that has also reached the Finalized level. If specification content depends upon material that is not under
the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is
evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and
implementation experience. Should material that has reached this maturity level become obsolete, it may only be
deprecated as part of a major revision to the specification. A profile that has reached this maturity level is
guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is
hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical
convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked
with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have
reached the Finalized maturity level.

Deprecated Material
Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as
“Deprecated” contain material that is obsolete and not recommended for use in new development efforts. Existing
and new implementations may still use this material, but shall move to the newer approach as soon as possible.
The maturity level of the material being deprecated determines how long it will continue to appear in the
specification. Implemented content shall be retained at least until the next revision of the specialization, while
Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall
implement the deprecated elements as long as it appears in the specification in order to achieve backward
compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives
when possible.

STABLE

Stable content appears here.

STABLE

Figure 3 - Stable Maturity Level Tag
 SMI-S 1.6.0 Revision 4 SNIA Technical Position vii

104
105
106

107

108
109
110

111

112
113
114

115
116
117

118
119
120
Deprecated sections are documented with a reference to the last published version to include the deprecated
section as normative material and to the section in the current specification with the replacement. Figure 4 contains
a sample of the typographical convention for deprecated content.

USAGE
The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations
and other business entities to use this document for internal use only (including internal copying, distribution, and
display) provided that:

1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration.

2) Any document, printed or electronic, in which material from this document (or any portion hereof) is repro-
duced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permis-
sion for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this
entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved
to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by e-mailing
tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of
the purpose, nature, and scope of the requested use.

DEPRECATED

Content that has been deprecated appears here.

DEPRECATED

Figure 4 - Deprecated Tag
viii

Contents
Revision History... iii
List of Tables.. xix
List of Figures .. xxxi
Foreword... xxxiii
1. Scope ...1
2. Normative References..3

2.1 Approved References .. 3
2.2 DMTF References (Final)... 3
2.3 IETF References (Standards or Draft Standards).. 3
2.4 References under development ... 4
2.5 Other References... 4

3. Definitions, Symbols, Abbreviations, and Conventions ...5
3.1 General .. 5
3.2 Terms... 5

4. Profile Introduction...7
4.1 Profile Overview... 7
4.2 Format for Profile Specifications .. 8

5. Recipe Overview ...11
5.1 Recipe Concepts.. 11
5.2 Recipe Pseudo Code Conventions .. 11

6. Generic Target Ports Profile ..17
6.1 Synopsis... 17
6.2 Description ... 17
6.3 Implementation... 17
6.4 Methods of the Profile .. 20
6.5 Use Cases.. 20
6.6 CIM Elements... 20

7. Parallel SCSI (SPI) Target Ports Profile ..25
7.1 Synopsis... 25
7.2 Description ... 25
7.3 Implementation... 26
7.4 Health and Fault Management... 26
7.5 Methods ... 26
7.6 CIM Elements... 27

8. FC Target Ports Profile...31
8.1 Synopsis... 31
8.2 Description ... 31
8.3 Implementation... 31
8.4 Durable Names and Correlatable IDs of the Subprofile ... 32
8.5 Health and Fault Management... 32
8.6 Supported Profiles and Packages.. 32
8.7 Extrinsic Methods of this Subprofile ... 32
8.8 Client Considerations and Recipes .. 33
8.9 CIM Elements... 33

9. iSCSI Target Ports Subprofile ...39
9.1 Synopsis... 39
9.2 Description ... 39
9.3 Implementation... 39
9.4 Health and Fault Management... 43
9.5 Supported Subprofiles and Packages.. 43
9.6 Methods of this Subprofile.. 43
9.7 Client Considerations and Recipes .. 47
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xi

9.8 CIM Elements... 57
10. Serial Attached SCSI (SAS) Target Port Subprofile ..83

10.1 Synopsis... 83
10.2 Description ... 84
10.3 Methods ... 85
10.4 Client Considerations and Recipes .. 85
10.5 CIM Elements... 85

11. Serial ATA (SATA) Target Ports Profile ..91
11.1 Synopsis... 91
11.2 Description ... 91
11.3 Methods of this Subprofile.. 92
11.4 Client Considerations and Recipes .. 92
11.5 CIM Elements... 93

12. SB Target Ports Profile ..97
12.1 Synopsis... 97
12.2 Description ... 97
12.3 Implementation... 97
12.4 Health and Fault Management Consideration.. 98
12.5 Cascading Considerations ... 99
12.6 Methods of the Profile .. 99
12.7 Client Considerations and Recipes .. 99
12.8 CIM Elements... 99

13. Direct Attach (DA) Ports Profile ..105
13.1 Description ... 105
13.2 Health and Fault Management... 105
13.3 Supported Profiles and Packages.. 106
13.4 Extrinsic Methods... 106
13.5 Client Considerations and Recipes .. 106
13.6 Registered Name and Version ... 106
13.7 CIM Elements... 106

14. Generic Initiator Ports Profile..111
14.1 Synopsis... 111
14.2 Description ... 111
14.3 Implementation... 111
14.4 Methods ... 116
14.5 Use Cases.. 117
14.6 CIM Elements... 117

15. Parallel SCSI (SPI) Initiator Ports Profile..125
15.1 Synopsis... 125
15.2 Description ... 125
15.3 Implementation... 125
15.4 Methods ... 126
15.5 Detailed Use Cases and Recipes .. 126
15.6 CIM Elements... 127

16. iSCSI Initiator Port Profile..135
16.1 Synopsis... 135
16.2 Description ... 135
16.3 Implementation... 135
16.4 Methods ... 137
16.5 Detailed Use Cases and Recipes .. 137
16.6 CIM Elements... 137

17. FC Initiator Ports Profile ..145
17.1 Synopsis... 145
17.2 Description ... 145
xii

17.3 Implementation... 145
17.4 Methods ... 147
17.5 Use Cases.. 147
17.6 CIM Elements... 148

18. SAS Initiator Ports Profile..159
18.1 Synopsis... 159
18.2 Description ... 159
18.3 Methods of the profile... 160
18.4 Client Considerations and Recipes .. 160
18.5 CIM Elements... 160

19. ATA Initiator Ports Profile..173
19.1 Synopsis... 173
19.2 Description ... 173
19.3 Implementation... 173
19.4 Methods of the Profile .. 174
19.5 Client Considerations and Recipes .. 174
19.6 CIM Elements... 175

20. FC-SB-x Initiator Ports Profile ...183
20.1 Synopsis... 183
20.2 Description ... 183
20.3 Implementation... 183
20.4 Methods ... 184
20.5 Client Considerations and Recipes .. 184
20.6 CIM Elements... 185

21. Backend Ports Subprofile..195
22. FCoE Initiator Ports Profile..197

22.1 Synopsis... 197
22.2 Description ... 197
22.3 Implementation... 198
22.4 Methods ... 200
22.5 Detailed Use Cases and Recipes .. 200
22.6 CIM Elements... 201

23. Access Points Subprofile ..215
23.1 Description ... 215
23.2 Health and Fault Management Considerations.. 216
23.3 Cascading Considerations ... 217
23.4 Supported Subprofiles and Packages.. 217
23.5 Methods of this Profile.. 217
23.6 Client Considerations and Recipes .. 217
23.7 Registered Name and Version ... 217
23.8 CIM Elements... 217

24. Cascading Subprofile...219
24.1 Description ... 219
24.2 Health and Fault Management Considerations.. 227
24.3 Cascading Considerations ... 227
24.4 Supported Subprofiles and Packages.. 227
24.5 Methods of this Subprofile.. 227
24.6 Client Considerations and Recipes .. 229
24.7 Registered Name and Version ... 230
24.8 CIM Elements... 230

25. Health Package ...249
25.1 Description ... 249
25.2 Health and Fault Management Considerations.. 253
25.3 Cascading Considerations ... 253
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xiii

25.4 Supported Subprofiles and Packages.. 253
25.5 Client Considerations and Recipes .. 253
25.6 Registered Name and Version ... 253
25.7 CIM Elements... 253

26. Job Control Subprofile...257
26.1 Description ... 257
26.2 Health and Fault Management... 260
26.3 Cascading Considerations ... 261
26.4 Support Subprofiles and Packages.. 261
26.5 Methods of the Profile .. 261
26.6 Client Considerations and Recipes .. 262
26.7 Registered Name and Version ... 263
26.8 CIM Elements... 263

27. Location Subprofile ..269
27.1 Description ... 269
27.2 Health and Fault Management Considerations.. 269
27.3 Cascading Considerations ... 269
27.4 Supported Subprofiles and Packages.. 269
27.5 Methods of the Profile .. 269
27.6 Client Considerations and Recipes .. 269
27.7 Registered Name and Version ... 270
27.8 CIM Elements... 270

28. Extra Capacity Set Subprofile ...273
29. Cluster Subprofile...275
30. Multiple Computer System Subprofile..277

30.1 Description ... 277
30.2 Health and Fault Management Considerations.. 281
30.3 Cascading Considerations ... 281
30.4 Supported Subprofiles and Packages.. 282
30.5 Methods of the Profile .. 282
30.6 Client Considerations and Recipes .. 282
30.7 Registered Name and Version ... 284
30.8 CIM Elements... 285

31. Physical Package Package ..289
31.1 Description ... 289
31.2 Health and Fault Management Considerations.. 291
31.3 Cascading Considerations ... 291
31.4 Supported Subprofiles and Packages.. 291
31.5 Methods of this Profile.. 291
31.6 Client Considerations and Recipes .. 291
31.7 Registered Name and Version ... 292
31.8 CIM Elements... 292

32. Power Supply Profile..299
32.1 Synopsis... 299
32.2 Description ... 299
32.3 Implementation... 299
32.4 Methods ... 299
32.5 Use Cases.. 299
32.6 CIM Elements... 300

33. Fan Profile ...307
33.1 Synopsis... 307
33.2 Description ... 307
33.3 Implementation... 307
33.4 Methods ... 307
xiv

33.5 Use Cases.. 307
33.6 CIM Elements... 308

34. Sensors Profile ...315
34.1 Synopsis... 315
34.2 Description ... 315
34.3 Implementation... 315
34.4 Methods ... 315
34.5 Use Cases.. 315
34.6 CIM Elements... 316

35. Base Server Profile...323
35.1 Synopsis... 323
35.2 Description ... 324
35.3 Implementation... 324
35.4 Methods ... 324
35.5 Use Cases.. 324
35.6 CIM Elements... 325

36. Media Access Device Profile ...331
36.1 Synopsis... 331
36.2 Description ... 331
36.3 Implementation... 332
36.4 Methods ... 333
36.5 Use Cases.. 333
36.6 CIM Elements... 333

37. Storage Enclosure Profile..339
37.1 Synopsis... 339
37.2 Description ... 339
37.3 Implementation... 342
37.4 Methods ... 344
37.5 Use Cases.. 345
37.6 CIM Elements... 345

38. Software Subprofile..347
38.1 Description ... 347
38.2 Health and Fault Management Considerations.. 347
38.3 Cascading Considerations ... 347
38.4 Supported Subprofiles, and Packages... 348
38.5 Methods of the Profile .. 348
38.6 Client Considerations and Recipes .. 348
38.7 Registered Name and Version ... 348
38.8 CIM Elements... 348

39. Software Inventory Profile ...351
39.1 Synopsis... 351
39.2 Description ... 351
39.3 Implementation... 352
39.4 Methods ... 352
39.5 Use Cases.. 352
39.6 CIM Elements... 353

40. Server Profile ..359
40.1 Description ... 359
40.2 Health and Fault Management... 361
40.3 Cascading Considerations ... 361
40.4 Supported Subprofiles and Packages.. 361
40.5 Methods of the Profile .. 362
40.6 Client Considerations and Recipes .. 362
40.7 Registered Name and Version ... 363
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xv

40.8 CIM Elements... 364
41. Profile Registration Profile ..371

41.1 Synopsis... 371
41.2 Description ... 371
41.3 Implementation... 371
41.4 Methods ... 375
41.5 Use Cases.. 375
41.6 CIM Elements... 382

42. Indication Profile...391
42.1 Description ... 391
42.2 Health and Fault Management Considerations.. 401
42.3 Cascading Considerations ... 401
42.4 Supported Profiles, Subprofiles and Packages.. 401
42.5 Methods of the Profile ... 401
42.6 Client Considerations and Recipes .. 405
42.7 Registered Name and Version ... 409
42.8 CIM Elements... 409

43. Experimental Indication Profile ...419
43.1 Description ... 419
43.2 Fault Management Considerations ... 430
43.3 Cascading Considerations ... 431
43.4 Supported Profiles, Subprofiles and Packages.. 431
43.5 Methods of the Profile ... 431
43.6 Client Considerations and Recipes ... 438
43.7 Registered Name and Version ... 442
43.8 CIM Elements... 442

44. Object Manager Adapter Subprofile ...459
44.1 Description ... 459
44.2 Health and Fault Management... 459
44.3 Cascading Considerations ... 459
44.4 Supported Subprofiles and Packages.. 459
44.5 Methods of the Profile .. 459
44.6 Client Considerations and Recipes .. 460
44.7 Registered Name and Version ... 460
44.8 CIM Elements... 460

45. Proxy Server System Management Subprofile ..463
45.1 Description ... 463
45.2 Health and Fault Management Consideration.. 465
45.3 Cascading Considerations ... 465
45.4 Supported Profiles, Subprofiles, and Packages... 465
45.5 Methods of the Profile .. 465
45.6 Client Considerations and Recipes .. 469
45.7 Registered Name and Version ... 470
45.8 CIM Elements... 470

46. Device Credentials Subprofile...473
46.1 Description ... 473
46.2 Health and Fault Management Considerations.. 473
46.3 Cascading Considerations ... 473
46.4 Supported Subprofiles and Packages.. 473
46.5 Extrinsic Methods of this Profile ... 474
46.6 Client Considerations and Recipes .. 474
46.7 Registered Name and Version ... 474
46.8 CIM Elements... 474

47. Miscellaneous Security Profiles..477
xvi

48. Operational Power Profile..479
48.1 Synopsis... 479
48.2 Description ... 479
48.3 Implementation... 480
48.4 Methods of the Profile .. 486
48.5 Use Cases.. 491
48.6 CIM Elements... 491

49. Cross Profile Considerations ..509
49.1 Overview .. 509
49.2 HBA model ... 509
49.3 Switch Model.. 510
49.4 Array Model.. 515
49.5 Storage Virtualization Model .. 516
49.6 Fabric Topology (HBA, Switch, Array) ... 517

50. Indications Profile...567
50.1 Synopsis... 567
50.2 Description ... 567
50.3 Implementation... 568
50.4 Methods ... 586
50.5 Use Cases.. 592
50.6 CIM Elements... 597

Annex A (informative) SMI-S Information Model..645
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xvii

xviii

List of Tables

Table 1. Profile Components ..9
Table 2. Modeling of Common Storage Devices in CIM...19
Table 3. CIM Elements for Generic Target Ports ...20
Table 4. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..21
Table 5. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...21
Table 6. SMI Referenced Properties/Methods for CIM_LogicalPort...22
Table 7. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...22
Table 8. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..23
Table 9. Related Profiles for SPI Target Ports ...25
Table 10. SPIPort OperationalStatus ...26
Table 11. CIM Elements for SPI Target Ports ..27
Table 12. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..28
Table 13. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...28
Table 14. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint ...28
Table 15. SMI Referenced Properties/Methods for CIM_SPIPort ..29
Table 16. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..30
Table 17. Related Profiles for FC Target Ports ..31
Table 18. FCPort OperationalStatus ..32
Table 19. CIM Elements for FC Target Ports ...33
Table 20. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..34
Table 21. SMI Referenced Properties/Methods for CIM_FCPort ...35
Table 22. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...36
Table 23. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort ..36
Table 24. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint ...36
Table 25. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..37
Table 26. iSCSI Terminology and SMI-S Class Names ...39
Table 27. EthernetPort OperationalStatus..43
Table 28. CIM Elements for iSCSI Target Ports...57
Table 29. SMI Referenced Properties/Methods for CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)..................61
Table 30. SMI Referenced Properties/Methods for CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)61
Table 31. SMI Referenced Properties/Methods for CIM_ConcreteDependency..61
Table 32. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint)...62
Table 33. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocol-

Endpoint) ..62
Table 34. SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System) ...62
Table 35. SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSI-

ConfigurationService) ...63
Table 36. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocol-

Endpoint) ..63
Table 37. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocol-

Endpoint) ..64
Table 38. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolCon-

troller) ...64
Table 39. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to System)64
Table 40. SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocol-

Endpoint) ..65
Table 41. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocol-

Controller) ...65
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xix

Table 42. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolCon-
troller) ...66

Table 43. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)..66
Table 44. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocol-

Endpoint) ..66
Table 45. SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)67
Table 46. SMI Referenced Properties/Methods for CIM_EthernetPort ..67
Table 47. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProtocolEndpoint)68
Table 48. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPProtocolEndpoint)...................68
Table 49. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint).................68
Table 50. SMI Referenced Properties/Methods for CIM_HostedCollection ...69
Table 51. SMI Referenced Properties/Methods for CIM_HostedService ...69
Table 52. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint ..69
Table 53. SMI Referenced Properties/Methods for CIM_MemberOfCollection..70
Table 54. SMI Referenced Properties/Methods for CIM_NetworkPipeComposition ..70
Table 55. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..71
Table 56. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...71
Table 57. SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort) ...72
Table 58. SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocolController)72
Table 59. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..72
Table 60. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint ..73
Table 61. SMI Referenced Properties/Methods for CIM_iSCSICapabilities...73
Table 62. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities ...74
Table 63. SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService ..74
Table 64. SMI Referenced Properties/Methods for CIM_iSCSIConnection ...75
Table 65. SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings ..75
Table 66. SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics ..76
Table 67. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint ..77
Table 68. SMI Referenced Properties/Methods for CIM_iSCSISession...78
Table 69. SMI Referenced Properties/Methods for CIM_iSCSISessionFailures..79
Table 70. SMI Referenced Properties/Methods for CIM_iSCSISessionSettings..80
Table 71. SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics ..80
Table 72. Related Profiles for SAS Target Ports ..83
Table 73. SASPort OperationalStatus ..84
Table 74. CIM Elements for SAS Target Ports...85
Table 75. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...86
Table 76. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..87
Table 77. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...87
Table 78. SMI Referenced Properties/Methods for CIM_SASPort ...87
Table 79. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint ...88
Table 80. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..89
Table 81. SMI Referenced Properties/Methods for CIM_SystemDevice (SAS PHY)...89
Table 82. SMI Referenced Properties/Methods for SNIA_SASPHY ..90
Table 83. Related Profiles for SATA Target Ports..91
Table 84. ATAPort OperationalStatus ..92
Table 85. CIM Elements for SATA Target Ports...93
Table 86. SMI Referenced Properties/Methods for CIM_ATAPort ...93
Table 87. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint ..94
Table 88. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..95
Table 89. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...95
xx

Table 90. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..96
Table 91. Related Profiles for SB Target Ports ..97
Table 92. FCPort OperationalStatus ..98
Table 93. CIM Elements for SB Target Ports ...99
Table 94. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..100
Table 95. SMI Referenced Properties/Methods for CIM_FCPort ...101
Table 96. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...102
Table 97. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..102
Table 98. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint...103
Table 99. CIM Elements for DA Target Ports ...106
Table 100. SMI Referenced Properties/Methods for CIM_DAPort ...107
Table 101. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..107
Table 102. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...108
Table 103. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint ...108
Table 104. SMI Referenced Properties/Methods for CIM_SystemDevice (Port)..109
Table 105. CIM Elements for Generic Initiator Ports ..117
Table 106. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...118
Table 107. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..118
Table 108. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...118
Table 109. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..119
Table 110. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..119
Table 111. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................119
Table 112. SMI Referenced Properties/Methods for CIM_LogicalPort...120
Table 113. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)120
Table 114. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Initiator) ..121
Table 115. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Target) ...121
Table 116. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...122
Table 117. SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics ..122
Table 118. SPIPort OperationalStatus ...126
Table 119. CIM Elements for SPI Initiator Ports...127
Table 120. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...128
Table 121. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..128
Table 122. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...128
Table 123. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..129
Table 124. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..129
Table 125. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................130
Table 126. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)130
Table 127. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...130
Table 128. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)..131
Table 129. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target) ...132
Table 130. SMI Referenced Properties/Methods for CIM_SPIPort ..132
Table 131. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...133
Table 132. SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics ..133
Table 133. Related Profiles for iSCSI Initiator Ports...135
Table 134. EthernetPort OperationalStatus..136
Table 135. CIM Elements for iSCSI Initiator Ports ...137
Table 136. SMI Referenced Properties/Methods for CIM_BindsTo (Host Hardware RAID Controller)138
Table 137. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort).139
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxi

Table 138. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to Ethernet-
Port) ..139

Table 139. SMI Referenced Properties/Methods for CIM_EthernetPort (Host Hardware RAID Controller)140
Table 140. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProtocolEndpoint)140
Table 141. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPProtocolEndpoint).................141
Table 142. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)...............141
Table 143. SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint (Host Hardware RAID Controller)141
Table 144. SMI Referenced Properties/Methods for CIM_LogicalDevice (Host Hardware RAID Controller)...........................142
Table 145. SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)143
Table 146. SMI Referenced Properties/Methods for CIM_SystemDevice (System to LogicalDevice)143
Table 147. SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint (Host Hardware RAID Controller)...............143
Table 148. SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint (Host Hardware RAID Controller).............144
Table 149. Related Profiles for FC Initiator Ports ...145
Table 150. FCPort OperationalStatus ..147
Table 151. CIM Elements for FC Initiator Ports..148
Table 152. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...150
Table 153. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..150
Table 154. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...151
Table 155. SMI Referenced Properties/Methods for CIM_FCPort ...151
Table 156. SMI Referenced Properties/Methods for CIM_FCPortStatistics...153
Table 157. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..154
Table 158. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..154
Table 159. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................154
Table 160. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)155
Table 161. SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort ..155
Table 162. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...156
Table 163. SMI Referenced Properties/Methods for CIM_SCSIProtocolController ...156
Table 164. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)..157
Table 165. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target) ...157
Table 166. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...158
Table 167. SASPort OperationalStatus ..160
Table 168. CIM Elements for SAS Initiator Ports ...160
Table 169. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator) ...162
Table 170. SMI Referenced Properties/Methods for CIM_BindsTo ...162
Table 171. SMI Referenced Properties/Methods for CIM_ConcreteComponent ...163
Table 172. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...163
Table 173. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..163
Table 174. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (PHY Statistics) ..164
Table 175. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...164
Table 176. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..164
Table 177. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..165
Table 178. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................165
Table 179. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)166
Table 180. SMI Referenced Properties/Methods for CIM_SASPort ...166
Table 181. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...167
Table 182. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)..167
Table 183. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target) ...168
Table 184. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator PHY) ..168
Table 185. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...169
xxii

Table 186. SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics ..169
Table 187. SMI Referenced Properties/Methods for SNIA_SASPHY ..170
Table 188. SMI Referenced Properties/Methods for SNIA_SASPhyStatistics ...170
Table 189. ATAPort OperationalStatus ..174
Table 190. CIM Elements for ATA Initiator Ports..175
Table 191. SMI Referenced Properties/Methods for CIM_ATAInitiatorTargetLogicalUnitPath ..176
Table 192. SMI Referenced Properties/Methods for CIM_ATAPort ...176
Table 193. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator) ...177
Table 194. SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target) ..177
Table 195. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...178
Table 196. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..179
Table 197. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...179
Table 198. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..179
Table 199. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..180
Table 200. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................180
Table 201. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)181
Table 202. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...181
Table 203. SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics ..181
Table 204. Related Profiles for SB Initiator Ports ...183
Table 205. FCPort OperationalStatus ..184
Table 206. CIM Elements for SB Initiator Ports..185
Table 207. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...186
Table 208. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..187
Table 209. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...187
Table 210. SMI Referenced Properties/Methods for CIM_FCPort ...187
Table 211. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..189
Table 212. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..189
Table 213. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................189
Table 214. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)190
Table 215. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...190
Table 216. SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics ..191
Table 217. SMI Referenced Properties/Methods for SNIA_SBInitiatorTargetLogicalUnitPath...191
Table 218. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Initiator) ...192
Table 219. SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Target) ...193
Table 220. FCPort OperationalStatus ..200
Table 221. CIM Elements for FCoE Initiator Ports ...201
Table 222. SMI Referenced Properties/Methods for CIM_ConnectivityCollection ...202
Table 223. SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation..203
Table 224. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics) ...203
Table 225. SMI Referenced Properties/Methods for CIM_EthernetPort ..203
Table 226. SMI Referenced Properties/Methods for CIM_FCPort ...204
Table 227. SMI Referenced Properties/Methods for CIM_FCPortStatistics...205
Table 228. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator) ..206
Table 229. SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)..207
Table 230. SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collection)....................................207
Table 231. SMI Referenced Properties/Methods for CIM_HostedCollection (FC Node)..208
Table 232. SMI Referenced Properties/Methods for CIM_HostedDependency (NetworkPort to FCPort)................................208
Table 233. SMI Referenced Properties/Methods for CIM_LogicalPortGroup...208
Table 234. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Collection)209
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxiii

Table 235. SMI Referenced Properties/Methods for CIM_MemberOfCollection (FC Node) ..209
Table 236. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Initiator) ..210
Table 237. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Target) ...210
Table 238. SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath...211
Table 239. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)..211
Table 240. SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target) ...212
Table 241. SMI Referenced Properties/Methods for CIM_SystemDevice (Ethernet Port) ...212
Table 242. SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports) ...213
Table 243. RemoteAccessPoint InfoFormat and AccessInfo Properties..216
Table 244. CIM Elements for Access Points ..217
Table 245. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...217
Table 246. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint ..218
Table 247. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..218
Table 248. Supported Profiles for Cascading...227
Table 249. Extrinsic Methods Supported by Cascading Subprofile..227
Table 250. Cascading Capabilities Patterns...229
Table 251. CIM Elements for Cascading..230
Table 252. SMI Referenced Properties/Methods for CIM_ComputerSystem (Leaf System) ...233
Table 253. SMI Referenced Properties/Methods for CIM_Dependency (Object Managers)..234
Table 254. SMI Referenced Properties/Methods for CIM_Dependency (Profile to Object Manager)234
Table 255. SMI Referenced Properties/Methods for CIM_Dependency (Systems) ...235
Table 256. SMI Referenced Properties/Methods for CIM_ElementCapabilities...235
Table 257. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf) ...235
Table 258. SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)236
Table 259. SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources) ...236
Table 260. SMI Referenced Properties/Methods for CIM_HostedService (Allocation Service) ...237
Table 261. SMI Referenced Properties/Methods for CIM_HostedService (Object Manager) ..237
Table 262. SMI Referenced Properties/Methods for CIM_LogicalDisk ..238
Table 263. SMI Referenced Properties/Methods for CIM_LogicalIdentity (General) ...239
Table 264. SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk) ..239
Table 265. SMI Referenced Properties/Methods for CIM_LogicalIdentity (StorageVolume) ...240
Table 266. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated Resources)..................................240
Table 267. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote Resources)....................................241
Table 268. SMI Referenced Properties/Methods for CIM_Namespace (Leaf) ...241
Table 269. SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf) ..242
Table 270. SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)..242
Table 271. SMI Referenced Properties/Methods for CIM_RegisteredProfile (Leaf)...243
Table 272. SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Leaf) ..243
Table 273. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..244
Table 274. SMI Referenced Properties/Methods for CIM_StorageVolume..244
Table 275. SMI Referenced Properties/Methods for CIM_SystemDevice (Leaf Devices) ...246
Table 276. SMI Referenced Properties/Methods for SNIA_AllocatedResources...246
Table 277. SMI Referenced Properties/Methods for SNIA_AllocationService ...247
Table 278. SMI Referenced Properties/Methods for SNIA_CascadingCapabilities ...247
Table 279. SMI Referenced Properties/Methods for SNIA_RemoteResources ...248
Table 280. OperationalStatus Details...251
Table 281. CIM Elements for Health ..253
Table 282. SMI Referenced Properties/Methods for CIM_ComputerSystem...254
Table 283. SMI Referenced Properties/Methods for CIM_LogicalDevice ..255
xxiv

Table 284. SMI Referenced Properties/Methods for CIM_RelatedElementCausingError ..255
Table 285. OperationalStatus to Job State Mapping..259
Table 286. Standard Message for Job Control Subprofile..260
Table 287. CIM Elements for Job Control ..263
Table 288. SMI Referenced Properties/Methods for CIM_AffectedJobElement ..265
Table 289. SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult ...266
Table 290. SMI Referenced Properties/Methods for CIM_ConcreteJob ..266
Table 291. SMI Referenced Properties/Methods for CIM_MethodResult ..268
Table 292. SMI Referenced Properties/Methods for CIM_OwningJobElement ...268
Table 293. CIM Elements for Location ...270
Table 294. SMI Referenced Properties/Methods for CIM_Location ...270
Table 295. SMI Referenced Properties/Methods for CIM_PhysicalElementLocation ..271
Table 296. Redundancy Type ..278
Table 297. Supported Profiles for Multiple Computer System..282
Table 298. CIM Elements for Multiple Computer System...285
Table 299. SMI Referenced Properties/Methods for CIM_ComponentCS ...286
Table 300. SMI Referenced Properties/Methods for CIM_ComputerSystem (Non-Top-Level System)...................................286
Table 301. SMI Referenced Properties/Methods for CIM_ConcreteIdentity ..287
Table 302. SMI Referenced Properties/Methods for CIM_IsSpare ..287
Table 303. SMI Referenced Properties/Methods for CIM_MemberOfCollection..287
Table 304. SMI Referenced Properties/Methods for CIM_RedundancySet ...288
Table 305. CIM Elements for Physical Package ..292
Table 306. SMI Referenced Properties/Methods for CIM_Container ...293
Table 307. SMI Referenced Properties/Methods for CIM_LogicalIdentity..294
Table 308. SMI Referenced Properties/Methods for CIM_PhysicalElementLocation ..294
Table 309. SMI Referenced Properties/Methods for CIM_PhysicalPackage (Component) ...294
Table 310. SMI Referenced Properties/Methods for CIM_PhysicalPackage (System)..295
Table 311. SMI Referenced Properties/Methods for CIM_Product (Component) ..296
Table 312. SMI Referenced Properties/Methods for CIM_Product (System)...296
Table 313. SMI Referenced Properties/Methods for CIM_ProductParentChild ...297
Table 314. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent (Component)297
Table 315. SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent (System)...297
Table 316. SMI Referenced Properties/Methods for CIM_SystemPackaging (Component) ..298
Table 317. SMI Referenced Properties/Methods for CIM_SystemPackaging (System) ..298
Table 318. Related Profiles for Power Supply..299
Table 319. CIM Elements for Power Supply...300
Table 320. SMI Referenced Properties/Methods for CIM_ElementCapabilities...301
Table 321. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..301
Table 322. SMI Referenced Properties/Methods for CIM_IsSpare ..302
Table 323. SMI Referenced Properties/Methods for CIM_MemberOfCollection..302
Table 324. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...302
Table 325. SMI Referenced Properties/Methods for CIM_PowerSupply ...303
Table 326. SMI Referenced Properties/Methods for CIM_RedundancySet ...304
Table 327. SMI Referenced Properties/Methods for CIM_SuppliesPower...304
Table 328. SMI Referenced Properties/Methods for CIM_SystemDevice..305
Table 329. Related Profiles for Fan..307
Table 330. CIM Elements for Fan...308
Table 331. SMI Referenced Properties/Methods for CIM_AssociatedCooling...309
Table 332. SMI Referenced Properties/Methods for CIM_AssociatedSensor..309
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxv

Table 333. SMI Referenced Properties/Methods for CIM_ElementCapabilities...309
Table 334. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..310
Table 335. SMI Referenced Properties/Methods for CIM_Fan ..310
Table 336. SMI Referenced Properties/Methods for CIM_IsSpare ..311
Table 337. SMI Referenced Properties/Methods for CIM_MemberOfCollection..312
Table 338. SMI Referenced Properties/Methods for CIM_NumericSensor..312
Table 339. SMI Referenced Properties/Methods for CIM_OwningCollectionElement ...312
Table 340. SMI Referenced Properties/Methods for CIM_RedundancySet ...313
Table 341. SMI Referenced Properties/Methods for CIM_Sensor ...313
Table 342. SMI Referenced Properties/Methods for CIM_SystemDevice..314
Table 343. CIM Elements for Sensors..316
Table 344. SMI Referenced Properties/Methods for CIM_AssociatedSensor..317
Table 345. SMI Referenced Properties/Methods for CIM_ElementCapabilities...317
Table 346. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..317
Table 347. SMI Referenced Properties/Methods for CIM_NumericSensor..318
Table 348. SMI Referenced Properties/Methods for CIM_Sensor ...320
Table 349. SMI Referenced Properties/Methods for CIM_SystemDevice..321
Table 350. Related Profiles for Base Server ..323
Table 351. CIM Elements for Base Server ...325
Table 352. SMI Referenced Properties/Methods for CIM_ComputerSystem...325
Table 353. SMI Referenced Properties/Methods for CIM_ComputerSystemPackage...326
Table 354. SMI Referenced Properties/Methods for CIM_ElementCapabilities...327
Table 355. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..327
Table 356. SMI Referenced Properties/Methods for CIM_HostedService ...327
Table 357. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...328
Table 358. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement ..329
Table 359. SMI Referenced Properties/Methods for CIM_TimeService...329
Table 360. Related Profiles for Media Access Device..331
Table 361. OperationalStatus For MediaAccessDevice ...332
Table 362. CIM Elements for Media Access Device ..333
Table 363. SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities ..334
Table 364. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...334
Table 365. SMI Referenced Properties/Methods for CIM_MediaAccessDevice ..335
Table 366. SMI Referenced Properties/Methods for CIM_PhysicalPackage ...336
Table 367. SMI Referenced Properties/Methods for CIM_ProtocolEndpoint ...336
Table 368. SMI Referenced Properties/Methods for CIM_Realizes...337
Table 369. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..337
Table 370. SMI Referenced Properties/Methods for CIM_SystemDevice..337
Table 371. Related Profiles for Storage Enclosure ..339
Table 372. CIM Elements for Storage Enclosure ...345
Table 373. SMI Referenced Properties/Methods for CIM_ConfigurationReportingService..345
Table 374. SMI Referenced Properties/Methods for CIM_HostedService ...346
Table 375. CIM Elements for Software...348
Table 376. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity ...348
Table 377. SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...349
Table 378. Related Profiles for Software Inventory ..351
Table 379. CIM Elements for Software Inventory...353
Table 380. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity..354
Table 381. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...354
xxvi

Table 382. SMI Referenced Properties/Methods for CIM_HostedCollection ...354
Table 383. SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity ...355
Table 384. SMI Referenced Properties/Methods for CIM_MemberOfCollection..355
Table 385. SMI Referenced Properties/Methods for CIM_OrderedComponent...355
Table 386. SMI Referenced Properties/Methods for CIM_OrderedDependency ...356
Table 387. SMI Referenced Properties/Methods for CIM_SAPAvailableForElement ..356
Table 388. SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...356
Table 389. SMI Referenced Properties/Methods for CIM_SoftwareIdentityResource ...357
Table 390. SMI Referenced Properties/Methods for CIM_SystemSpecificCollection ..357
Table 391. Supported Profiles for Server ...361
Table 392. CIM Elements for Server ..364
Table 393. SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism ...365
Table 394. SMI Referenced Properties/Methods for CIM_CommMechanismForManager ..366
Table 395. SMI Referenced Properties/Methods for CIM_HostedAccessPoint ...366
Table 396. SMI Referenced Properties/Methods for CIM_HostedService ...366
Table 397. SMI Referenced Properties/Methods for CIM_Namespace ...367
Table 398. SMI Referenced Properties/Methods for CIM_NamespaceInManager ..367
Table 399. SMI Referenced Properties/Methods for CIM_ObjectManager ..368
Table 400. SMI Referenced Properties/Methods for CIM_ObjectManagerCommunicationMechanism...................................369
Table 401. SMI Referenced Properties/Methods for CIM_System...369
Table 402. CIM Elements for Profile Registration ..382
Table 403. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates Domain object (e.g. System)

to RegisteredProfile)...383
Table 404. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S

and domain profiles) ...384
Table 405. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Profile and SW identity)384
Table 406. SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Subprofile and SW identity)385
Table 407. SMI Referenced Properties/Methods for CIM_Product ..385
Table 408. SMI Referenced Properties/Methods for CIM_ProductSoftwareComponent ...385
Table 409. SMI Referenced Properties/Methods for CIM_ReferencedProfile ..386
Table 410. SMI Referenced Properties/Methods for CIM_RegisteredProfile (Domain Registered Profile)..............................386
Table 411. SMI Referenced Properties/Methods for CIM_RegisteredProfile (The SMI-S Registered Profile)387
Table 412. SMI Referenced Properties/Methods for CIM_RegisteredSubProfile...388
Table 413. SMI Referenced Properties/Methods for CIM_SoftwareIdentity ...388
Table 414. SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile ...389
Table 415. Indication Profile Methods that cause Instance Creation, Deletion or Modification..402
Table 416. CIM Elements for Indication ...409
Table 417. SMI Referenced Properties/Methods for CIM_AlertIndication..410
Table 418. SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)...412
Table 419. SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)..413
Table 420. SMI Referenced Properties/Methods for CIM_IndicationSubscription ...414
Table 421. SMI Referenced Properties/Methods for CIM_InstCreation ...415
Table 422. SMI Referenced Properties/Methods for CIM_InstDeletion..416
Table 423. SMI Referenced Properties/Methods for CIM_InstModification..416
Table 424. SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication Handler)..........................417
Table 425. Test that a Listener Destination if Functioning Properly ...438
Table 426. Discovery of Predefined IndicationFilters ...438
Table 427. Create a subscription to a predefined indication filter...439
Table 428. Create an IndicationFilter and subscribe to it ...440
Table 429. Creation of a semi-fixed Indication filters..440
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxvii

Table 430. Creation of a client defined FilterCollection ..441
Table 431. CIM Elements for Experimental Indication ...442
Table 432. SMI Referenced Properties/Methods for CIM_AlertIndication..444
Table 433. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Indication Config Service to Capabilities)446
Table 434. SMI Referenced Properties/Methods for CIM_FilterCollection (Client Defined) ...446
Table 435. SMI Referenced Properties/Methods for CIM_FilterCollectionSubscription (Filter Collection Subscription)447
Table 436. SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Filter Collection)447
Table 437. SMI Referenced Properties/Methods for CIM_HostedService (Indication Config Service to System)448
Table 438. SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)...448
Table 439. SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)..449
Table 440. SMI Referenced Properties/Methods for CIM_IndicationSubscription ...450
Table 441. SMI Referenced Properties/Methods for CIM_InstCreation ...451
Table 442. SMI Referenced Properties/Methods for CIM_InstDeletion..452
Table 443. SMI Referenced Properties/Methods for CIM_InstModification..453
Table 444. SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication Handler)..........................454
Table 445. SMI Referenced Properties/Methods for CIM_ListenerDestinationWSManagement (WS-Man Indication

Handler)..455
Table 446. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Filter Collection to Filters)455
Table 447. SMI Referenced Properties/Methods for SNIA_IndicationConfigurationCapabilities ...456
Table 448. SMI Referenced Properties/Methods for SNIA_IndicationConfigurationService ..456
Table 449. SMI Referenced Properties/Methods for SNIA_IndicationFilterTemplate (semi-fixed)...457
Table 450. CIM Elements for Object Manager Adapter..460
Table 451. SMI Referenced Properties/Methods for CIM_CommMechanismForObjectManagerAdapter460
Table 452. SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter ...461
Table 453. Capabilities ...464
Table 454. AddSystem Method Parameters...466
Table 455. AddSystem Return Codes ..466
Table 456. DiscoverSystem Parameters ..467
Table 457. DiscoverSystem Return Codes ..468
Table 458. RemoveSystem Parameters...469
Table 459. CIM Elements for Proxy Server System Management ...470
Table 460. SMI Referenced Properties/Methods for CIM_HostedService ...470
Table 461. SMI Referenced Properties/Methods for SNIA_SystemRegistrationCapabilities ...471
Table 462. SMI Referenced Properties/Methods for SNIA_SystemRegistrationService..471
Table 463. CIM Elements for Device Credentials...474
Table 464. SMI Referenced Properties/Methods for CIM_HostedService ...474
Table 465. SMI Referenced Properties/Methods for CIM_SharedSecret...475
Table 466. SMI Referenced Properties/Methods for CIM_SharedSecretIsShared ..475
Table 467. SMI Referenced Properties/Methods for CIM_SharedSecretService...476
Table 468. Related Profiles for Operational Power ..479
Table 469. Creation, Deletion and Modification Methods...486
Table 470. CIM Elements for Operational Power ...491
Table 471. SMI Referenced Properties/Methods for CIM_ElementCapabilities...494
Table 472. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component System Stats)494
Table 473. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level System Stats)495
Table 474. SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)..495
Table 475. SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined) ...496
Table 476. SMI Referenced Properties/Methods for CIM_HostedCollection (Default)...496
Table 477. SMI Referenced Properties/Methods for CIM_HostedCollection (Systemto StatisticsCollection)497
xxviii

Table 478. SMI Referenced Properties/Methods for CIM_HostedService ...497
Table 479. SMI Referenced Properties/Methods for CIM_MemberOfCollection (DeviceSet) ..497
Table 480. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client defined collection)498
Table 481. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-defined collection)498
Table 482. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statistics collection)...................499
Table 483. SMI Referenced Properties/Methods for CIM_StatisticsCollection ..499
Table 484. SMI Referenced Properties/Methods for SNIA_DeviceSet (Provider Defined) ..500
Table 485. SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Client Defined).................................500
Table 486. SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Provider Support)501
Table 487. SMI Referenced Properties/Methods for SNIA_OperationalPowerManifestCollection (Client Defined).................502
Table 488. SMI Referenced Properties/Methods for SNIA_OperationalPowerManifestCollection (Provider Defined).............503
Table 489. SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticalData ...504
Table 490. SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsCapabilities504
Table 491. SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsService..505
Table 492. Test that a Listener Destination if Functioning Properly ...592
Table 493. Test that a Listener Destination if Functioning Properly ...593
Table 494. Discovery of Predefined IndicationFilters ...594
Table 495. Create a subscription to a predefined indication filter...594
Table 496. Create an IndicationFilter and subscribe to it ...595
Table 497. Creation of a semi-fixed Indication filters..596
Table 498. Creation of a client defined FilterCollection ..596
Table 499. CIM Elements for Indications..597
Table 500. SMI Referenced Properties/Methods for CIM_AbstractIndicationSubscription (AbstractSubscription)602
Table 501. SMI Referenced Properties/Methods for CIM_AlertIndication (AlertIndication)..605
Table 502. SMI Referenced Properties/Methods for CIM_ConcreteDependency (ProfileOfFilterCollection)...........................607
Table 503. SMI Referenced Properties/Methods for CIM_ElementCapabilities (CapabiliesOfIndicationService)....................608
Table 504. SMI Referenced Properties/Methods for CIM_ElementCapabilities (Indication Config Service to Capabilities)608
Table 505. SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (ElementConformsToProfile)608
Table 506. SMI Referenced Properties/Methods for CIM_ElementSettingData (InitialSettingsOfIndicationService)...............609
Table 507. SMI Referenced Properties/Methods for CIM_FilterCollection (Client Defined) ...609
Table 508. SMI Referenced Properties/Methods for CIM_FilterCollection (GlobalFilterCollection) ...610
Table 509. SMI Referenced Properties/Methods for CIM_FilterCollection (Indications Predefined FilterCollection)611
Table 510. SMI Referenced Properties/Methods for CIM_FilterCollection (Predefined) ..611
Table 511. SMI Referenced Properties/Methods for CIM_FilterCollection (ProfileSpecificFilterCollection)612
Table 512. SMI Referenced Properties/Methods for CIM_FilterCollection (StaticFilterCollection)...612
Table 513. SMI Referenced Properties/Methods for CIM_FilterCollectionSubscription (CollectionSubscription)613
Table 514. SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Client Filter Collection).........................614
Table 515. SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Global FilterCollection or a Profile

Specific FilterCollection) ...615
Table 516. SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Predefined Filter Collection).................615
Table 517. SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined FilterCollection)615
Table 518. SMI Referenced Properties/Methods for CIM_HostedService (HostedIndicationService)616
Table 519. SMI Referenced Properties/Methods for CIM_HostedService (Indication Config Service to System)616
Table 520. SMI Referenced Properties/Methods for CIM_IndicationFilter (DynamicIndicationFilter).......................................617
Table 521. SMI Referenced Properties/Methods for CIM_IndicationFilter (GlobalIndicationFilter) ..619
Table 522. SMI Referenced Properties/Methods for CIM_IndicationFilter (IndicationSpecificIndicationFilter).........................620
Table 523. SMI Referenced Properties/Methods for CIM_IndicationFilter (ListenerDestinationRemovalIndication)................621
Table 524. SMI Referenced Properties/Methods for CIM_IndicationFilter (StaticIndicationFilter)..622
Table 525. SMI Referenced Properties/Methods for CIM_IndicationFilter (SubscriptionRemovalIndication)...........................624
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxix

Table 526. SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)...625
Table 527. SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)..626
Table 528. SMI Referenced Properties/Methods for CIM_IndicationService (IndicationService) ..627
Table 529. SMI Referenced Properties/Methods for CIM_IndicationServiceCapabilities (IndicationServiceCapabilities)628
Table 530. SMI Referenced Properties/Methods for CIM_IndicationServiceSettingData (IndicationServiceInitialSettings)629
Table 531. SMI Referenced Properties/Methods for CIM_IndicationSubscription (FilterSubscription)630
Table 532. SMI Referenced Properties/Methods for CIM_InstCreation ...632
Table 533. SMI Referenced Properties/Methods for CIM_InstDeletion..633
Table 534. SMI Referenced Properties/Methods for CIM_InstIndication (LifecycleIndication)...635
Table 535. SMI Referenced Properties/Methods for CIM_InstModification..636
Table 536. SMI Referenced Properties/Methods for CIM_ListenerDestination (ListenerDestination)......................................638
Table 537. SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication Handler)..........................639
Table 538. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Client Defined Filter Collection to Filters) ...639
Table 539. SMI Referenced Properties/Methods for CIM_MemberOfCollection (FilterCollectionInFilterCollection)640
Table 540. SMI Referenced Properties/Methods for CIM_MemberOfCollection (IndicationFilterInFilterCollection)640
Table 541. SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter Collection to Indications

Filters)...641
Table 542. SMI Referenced Properties/Methods for CIM_OwningCollectionElement (IndicationServiceOfFilterCollection) ...641
Table 543. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (IndicationServiceOfIndicationFilter).........642
Table 544. SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (IndicationServiceOfListenerDestination) .642
Table 545. SMI Referenced Properties/Methods for SNIA_IndicationConfigurationCapabilities (IndicationConfiguration-

Capabilities)..642
Table 546. SMI Referenced Properties/Methods for SNIA_IndicationConfigurationService (IndicationConfigurationService)643
Table 547. SMI Referenced Properties/Methods for SNIA_IndicationFilterTemplate (semi-fixed)...644
xxx

List of Figures

Figure 1. Experimental Maturity Level Tag .. viii
Figure 2. Implemented Maturity Level Tag... viii
Figure 3. Stable Maturity Level Tag ...ix
Figure 4. Deprecated Tag .. x
Figure 5. Generic Target Port Classes... 17
Figure 6. LogicalPort Class Hierarchy.. 18
Figure 7. Generic Target with LUN Masking .. 19
Figure 8. SPI Target Port Instance Diagram.. 26
Figure 9. FC Target Port Instance Diagram... 32
Figure 10. iSCSI Target Ports Subprofile Instance Diagram.. 41
Figure 11. Serial Attached SCSI (SAS) Target Port Instance Diagram ... 84
Figure 12. SATA Target Port Instance Diagram .. 92
Figure 13. SB Target Port Instance Diagram... 98
Figure 14. DA Port Instance Diagram .. 105
Figure 15. Generic Initiator Port Model .. 111
Figure 16. Optional Connectivity Collection Model .. 112
Figure 17. Optional Full-Path Model .. 113
Figure 18. HBA and Disk Model... 114
Figure 19. HBA and Tape or Optical Devices .. 115
Figure 20. Port Statistics .. 115
Figure 21. Port Statistics Hierarchy.. 116
Figure 22. SPI Initiator Port Instance Diagram... 125
Figure 23. iSCSI Initiator Port Instance Diagram ... 136
Figure 24. Fibre Channel Initiator Instance Diagram ... 146
Figure 25. FC Node Model... 146
Figure 26. SAS Initiator Port Model.. 159
Figure 27. ATA Initiator Port Class Diagram.. 173
Figure 28. Fibre Channel Initiator Instance Diagram ... 183
Figure 29. FCoE Initiator Instance Diagram... 198
Figure 30. Optional Target Element Model .. 199
Figure 31. Logical Port Group Model ... 199
Figure 32. System-wide Remote Access Point .. 215
Figure 33. Access Point Instance Diagram.. 216
Figure 34. Instance Diagram for Logical Topology .. 220
Figure 35. Resource Allocation/Deallocation Instance Diagram.. 222
Figure 36. Cascading Server Topology.. 223
Figure 37. Instance Diagram for Cascading with Resource Ownership... 224
Figure 38. Instance Diagram for Cascading with Credential Management Subprofile... 225
Figure 39. Modeling of Cascading Capabilities.. 226
Figure 40. Job Control Subprofile Model.. 257
Figure 41. Storage Configuration ... 263
Figure 42. Location Instance.. 269
Figure 43. Two Redundant Systems Instance Diagram... 277
Figure 44. Multiple Redundancy Tier Instance Diagram.. 279
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxxi

Figure 45. System Level Numbers... 280
Figure 46. Physical Package Package Mandatory Classes... 289
Figure 47. Modeling for well defined subcomponents.. 290
Figure 48. Physical Package Package with Optional Classes ... 291
Figure 49. Media Access Device Class Diagram... 332
Figure 50. Enclosure with Two Arrays ... 341
Figure 51. Model for Disk in Enclosure .. 344
Figure 52. Software Instance Diagram... 347
Figure 53. Server Model... 359
Figure 54. Profile Registration Model... 372
Figure 55. Associations between RegisteredProfile instances .. 373
Figure 56. Model for SMI-S Registered Profile .. 374
Figure 57. Model for Provider Versions.. 374
Figure 58. Indication Profile and Namespaces .. 391
Figure 59. Indication Profile Instance Diagram .. 394
Figure 60. Indication Profile Instance Diagram .. 420
Figure 61. Anatomy of IndicationIdentifier.. 421
Figure 62. Predefined Filter Collections ... 425
Figure 63. Client Defined Filter Collections.. 427
Figure 64. Indication Configuration Service Classes ... 428
Figure 65. ObjectManagerAdapter Subprofile Model... 459
Figure 66. Proxy Server System Management Model ... 464
Figure 67. DeviceCredentials Subprofile Model... 473
Figure 68. Operational Power Profile Summary... 480
Figure 69. Model for Element Types .. 481
Figure 70. Classes related to Top-level System Power Statistics.. 482
Figure 71. System Diagram ... 509
Figure 72. Host Bus Adapter Model ... 509
Figure 73. Switch Model... 510
Figure 74. Array Instance... 515
Figure 75. Virtualization Instance... 516
Figure 76. Fabric Topology .. 517
Figure 77. Elements of the DMTF Indications Profile... 568
Figure 78. The SNIA Extensions to the DMTF Indications Profile ... 570
Figure 79. Predefined Filter Collections ... 578
Figure 80. Client Defined Filter Collections.. 580
Figure 81. Derivation Relationships among IndicationFilters ... 582
Figure 82. Indication Configuration Service Classes ... 583
xxxii

1

2
3
4
5
6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24
25
26
Foreword

The Storage Management Technical Specification is published in several parts. Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 4 defines profiles that are used by profiles in other parts of this
standard. In general, the common profiles do not fully define storage elements, but define non-storage
management aspects that are common to storage domains. For example, the Access Points Profile defines a
technique that the arrays, switches, or libraries may use to inform clients of non-CIM network interfaces that are
available.

Some of the common profiles are based on DMTF profiles. For these profiles, the DMTF profile may be
“specialized” to assure SNIA requirements are met.

Parts of this Standard
This standard is subdivided in the following parts:

• Storage Management Technical Specification, Overview, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 4 Filesystems, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 5 Fabric, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 6 Host Elements, 1.6.0 Rev 4

• Storage Management Technical Specification, Part 7 Media Libraries, 1.6.0 Rev 4

Acknowledgments
The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the
significant contributions made by the following members:

Organization Represented Name of Representative
Brocade Communications Systems..John Crandall
EMC Corporation ..Tony Fiorentino
..Mike Hadavi
Hitachi Data Systems..Steve Quinn
IBM..Jun Wei Zhang
Individual Contributor ..Mike Walker
Individual Contributor ..Paul von Behren
WBEM Solutions, Inc ..Jim Davis

SNIA Web Site
Current SNIA practice is to make updates and other information available through their web site at
http://www.snia.org

SNIA Address
Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They
should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking
Industry Association, 425 Market Street, Suite 1020, San Francisco, CA 94105, U.S.A.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position xxxiii

xxxiv

 Scope

1

2
3
4
5
6

Clause 1: Scope

Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4 defines profiles that are
supported by profiles defined in the other parts of this standard. The first few clauses provide background material
that helps explain the purpose and profiles and recipes (a subset of a profile). Common port profiles are grouped
together since they serve as transport-specific variations of a common model. The port profiles are followed by
other common profiles The last clause presents recipes that span multiple profiles.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 1

Scope
2

 Normative References

1

2
3
4

5

6

7

8

9

10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36
37
Clause 2: Normative References

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

2.1 Approved References
ISO/IEC 14776-413, SCSI Architecture Model - 3 (SAM-3) [ANSI INCITS 402-200x]

ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005]

ANSI/INCITS 374:2003, Information technology - Fibre Channel Single - Byte Command Set-3 (FC-SB-3)

2.2 DMTF References (Final)
DMTF Final documents are accepted as standards.

DMTF DSP0004, CIM Infrastructure Specification 2.3
http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf

DMTF DSP0200, CIM Operations over HTTP 1.3
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.0.pdf

DMTF DSP1001, Management Profile Specification Usage Guide
http://www.dmtf.org/standards/published_documents/DSP1001.pdf

DMTF DSP1013:2006, Fan Profile 1.0.1
http://www.dmtf.org/standards/published_documents/DSP1013_1.0.1.pdf

DMTF DSP1015:2006, Power Supply Profile 1.0.1
http://www.dmtf.org/standards/published_documents/DSP1015_1.0.1.pdf

DMTF DSP1011:2006, Physical Asset Profile 1.0.2
http://www.dmtf.org/standards/published_documents/DSP1011_1.0.2.pdf

DMTF DSP1025:2009, Software Update Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1025_1.0.0.pdf

2.3 IETF References (Standards or Draft Standards)
RFC 2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies
http://www.ietf.org/rfc/rfc2045.txt

RFC 2246 The TLS Protocol Version 1.0
http://www.ietf.org/rfc/rfc2246.txt

IETF RFC 2396 Uniform Resource Identifiers (URI)
http://www.ietf.org/rfc/rfc2396.txt

IETF RFC 2445 Internet Calendaring and Scheduling Core Object Specification (iCalendar)
http://www.ietf.org/rfc/rfc2445.txt

IETF RFC 2616 Hypertext Transfer Protocol -- HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt

IETF RFC 2617 HTTP Authentication: Basic ad Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 3

Normative References

38
39

40
41

42
43

44
45

46

47
48

49
50

51
52

53
54

55

56

57
58

59
60
IETF RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
http://www.ietf.org/rfc/rfc3280.txt

IETF RFC 3986 Definitions of Managed Objects for the DS3/E3 Interface Type
http://www.ietf.org/rfc/rfc3986.txt

IETF RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1
http://www.ietf.org/rfc/rfc4346.txt

IETF RFC 4514 Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc4514.txt

2.4 References under development
DMTF DSP0202 CIM Query Language Specification 1.0
http://www.dmtf.org/standards/published_documents/DSP0202.pdf

DMTF DSP0207 WBEM URI Mapping 1.0
http://www.dmtf.org/standards/published_documents/DSP0207.pdf

DMTF DSP1009:2006, Sensors Profile 1.0.0
http://www.dmtf.org/standards/published_documents/DSP1009.pdf

DMTF DSP1102:2009, Launch in Context Profile 1.0.0b
http://www.dmtf.org/standards/published_documents/DSP1102_1.0.0b.pdf

Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4

2.5 Other References
IETF RFC 1945 Hypertext Transfer Protocol -- HTTP/1.0
http://www.ietf.org/rfc/rfc1945.txt

SSL 3.0 Draft Specification
http://wp.netscape.com/eng/ssl3/
4

 Definitions, Symbols, Abbreviations, and Conventions

1

2

3
4

5

6

7

8

9

10

11
Clause 3: Definitions, Symbols, Abbreviations, and Conventions

3.1 General
For the purposes of this document, the definitions, symbols, abbreviations, and conventions given in Storage
Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4 and the following apply.

3.2 Terms

3.2.1 FC-SB-X

Fibre Channel Single-Byte command set used in FICON™1 devices

3.2.2 SAS
Serial Attached SCSI

3.2.3 SATA
Serial ATA

1.FICON™ is an example of a suitable product available commercially. This information is given for the convenience of
users of this standard and does not constitute an endorsement of this product by SNIA or any standards organization.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 5

Definitions, Symbols, Abbreviations, and Conventions
6

 Profile Introduction

1

2

3
4
5
6

7
8
9

10
11
12

13
14
15

16

17
18
19

20

21
22
23
24

25
26
27

28
29

30
31
32
33
34

35

36
37
38

39
40
41
Clause 4: Profile Introduction

4.1 Profile Overview
A profile is a specification that defines the CIM model and associated behavior for an autonomous and self-
contained management domain. The CIM model includes the CIM Classes, Associations, Indications, Methods and
Properties. The management domain is a set of related management tasks. A profile is uniquely identified by the
name, organization and version.

In SMI-S, a profile describes the management interfaces for a class of storage subsystem, typically realized as a
hardware of software product. For example, SMI-S includes profiles for arrays, FC-Switches, and logical volume
manager software. The boundaries chosen for SMI-S profiles are often those of storage products, but some
vendors may package things differently. For example, one vendor may choose to package an Array and an FC
Switch into a single product; this can be handled in SMI-S by implementing the Array and FC Switch Profiles for
this product.

A profile may add restrictions to usage and behavior, but cannot change CIM defined characteristics. For example,
if a property is required in the CIM model, then it is required in a profile. On the other hand, a profile may specify
that a property is required even if it is not required by the general CIM model.

In SMI-S, profiles serve several purposes:

• Specification organization - the SMI-S object model (see Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 Clause 6: Object Model General Information) is presented as a set of
profiles, each describing a type of storage element or behavior,

• Certification - SMI-S profiles form the basis for CTP certification,

• Discovery- profiles are registered with the CIM Server and advertised to clients as part of the CIM model and
using SLP (see Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4
Clause 9: Service Discovery. An SMI-S client uses SLP to determine which CIM Servers host profiles it wishes
to manage, then uses the CIM model to discover the actual configurations and capabilities.

A subprofile is a profile that specifies a subset of a management domain. A subprofiles’s CIM elements are scoped
within a containing profile. Multiple profiles may use the same subprofile. A subprofile is uniquely identified by the
name, organization and version.

A profile specification may include a list of the subprofiles it uses. The included subprofiles may be optional or
mandatory by the scoping profile. The behavior of a profile is specified in this profile and its included subprofiles.

For example, target devices such as RAID arrays and tape libraries may support Fibre Channel or parallel SCSI
connectivity. SMI-S includes an FC Target Port Subprofile and a Parallel SCSI Target Port Subprofile that may
optionally be supported by profiles representing target devices. The elements defined in the port subprofiles are
scoped to the ComputerSystem in the profile. For example, each LogicalPort subclass has a SystemDevice
association to the profile’s ComputerSystem.

In addition to sharing the purposes of profiles (as described in this section), subprofiles have these purposes:

• Optional behavior - a profile may allow, but not require, an implementation to support a subprofile. Although a
subprofile does not describe a full product, a subprofile should describe an aspect of a product that is
recognizable to an knowledgeable end-user such as a storage administrator,

• Reuse of functionality - some storage management behavior is common across different types of storage
elements. For example, block virtualization is managed similarly in RAID arrays and logical volume managers.
These common sets of functionality are specified as profiles that are shared by several other profiles.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 7

Profile Introduction

42
43
44

45

46
47
48
49
50
51

52
53
54

55
56
57
58
59
60

61

62
63

64

65
66
67
• Decomposition - certain functionality may not be reused multiple places, but is complicated enough to
document as a separate profile. For example, Disk Partition management is only used in the Host Discovered
Resources profiles, but is complicated enough that it has been documented as a separate profile.

4.1.1 Terminology

A profile collects included subprofiles and provides the filler needed to define the management interfaces of a
particular type of subsystem. Profiles are separated into two groups. Storage profiles define the management
interfaces for storage subsystems such as arrays or FC switches. Generic profiles define management interfaces
for generic systems that are related to storage management. Storage and generic profiles are specified the same
way in SMI-S, but generic profiles are not certified as free-standing entities, only as a dependency of a storage
profile.

A Package is a profile that whose implementation is mandatory to comply with the requirements of all of its
containing top-level profiles. Since a package is always mandatory, it is not registered with the CIM Server.
Packages provide decomposition in the specification.

Profiles may be related by specialization - where several profiles (or subprofiles) share many common elements,
but are specialized for specific implementations. The SMI-S Security profiles are an example; the specializations
(Authorization Profile, Security Resource Ownership Profile,...) share some classes and behavior. Profile
specialization is only an artifact of the specification. It saves the reader from reading common aspects in multiple
places and help the specification stay consistent across the specialized profiles. There is no information in the CIM
model about the relationship between generic and specialized profiles.

4.2 Format for Profile Specifications
For each profile there is a set of information that is provided to specify the characteristics and requirements of the
profile. Subprofiles are also defined using this format, but they are clearly identified as subprofiles.

Each profile or subprofile is defined in subsections that are described in Table 1.

Note: CIM schema diagrams are logically part of a profile description. However, they can be rather involved
and cannot be easily depicted in a single diagram. As a result, the reader is advised to refer to DMTF
characterizations of CIM schema diagrams.
8

 Profile Introduction
Table 1 - Profile Components (Sheet 1 of 2)

Profile Element Goal

Description This section provides a description of the profile and model including an
overview of the objectives and functionality.

Functionality is described in a bullet-form in this section that includes
functionality provided by the subprofiles referenced by the profile. If a function is
provided by a subprofile, this is indicated, including whether the subprofile is
optional or required. Functionality listed in the profile is organized by Levels, and
within each Level by FCAPS category, as defined in the SMI-S functionality
matrix section <link>.

Instance Diagrams: One or more instance diagrams to highlight common
implementations that employ this section of the Object Model. Instance diagrams
also contain classes and associations but represent a particular configuration;
multiple instances of an object may be depicted in an instance diagram.

Finally, this section may include supporting text for recipes, properties, and
methods as needed.

Health & Fault
Management
Considerations

If a profile provides optional Health & Fault Management capabilities, then this
section describes the specifics of these capabilities, including:

• A table of the classes that report health information

• Tables of possible states of the OperationalStatus and HealthState attributes
and descriptions for those elements that report state.

• Cause and Effect associations.

• Standard Errors produced (including Alert Indications, Errors, CIM Errors,
and Health Related Live Cycle Events).

Cascading
Considerations

A Profile may be a cascading profile. A cascading profile is any Profile that
supports the Cascading Subprofile as either a mandatory or recommended
subprofile. If the profile is a cascading profile, this section documents cascading
considerations in each of the following areas:

• Cascaded Resources – Defines the type of resources in the Cascading
Profile that are associated to what type of resources in the Leaf Profile and
the association.

• Ownership Privileges – Identifies the Resource Control Privileges (on leaf
resources) that are established by the Cascading Profile.

• Limitations on Cascading Subprofile – Identifies any limitations on the
Cascading Subprofile that are imposed by the Cascading in effect

Supported Profiles,
Subprofiles, and
Packages

A list of the names and versions of subprofiles and packages supported by a
profile.

Methods of the Profile This section documents the methods used in this profile. All methods used in
recipes shall be documented; optional methods (those not used in recipes) may
also be included.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 9

Profile Introduction
Client Considerations
and Recipes

This section documents a set of "recipes" that describe the CIM operations and
other steps required to accomplish particular tasks. These recipes do not define
the upper bound of what a CIM Server may support, however, they define a
lower bound. That is, a CIM Provider implementation shall support these recipes
as prescribed to be SMI-S compliant.

Note: A recipe that is defined as part of a subprofile is only required if the
subprofile is implemented.

All optional behavior in a profile shall be described in a recipe and shall have a
capabilities property a client can test to determine whether the optional behavior
is supported. The actual capabilities properties are documented in “Classes
Used in the Profile” in this table.

CIM Elements A table listing the classes, associations, subprofile, packages, and indication
filters that this profile (or subprofile) supports, and a brief description of each.
Everything listed in this section is mandatory for the profile or subprofile. This
section shall not list optional elements.

Prior to SMI-S 1.1.0, CIM did not have standard language for indication filters;
SMI-S 1.0.x used the proposed WQL query language. This version of SMI-S
uses the CQL standard query language. WQL is also supported for backwards
compatibility. The Description column for an indication filter specifies whether the
filter string is compliant to CQL or WQL. If neither is stated, then the string
complies to both CQL and WQL.

Classes Used in the
Profile

This section provides one table per class and lists each required and
recommended property. For each required or recommended property a brief
description on what information is to be encoded is identified.

The class tables include a “Flags” column. This can contain “C” (the property is a
correlatable name or a format for a name), “D” (the property is a durable name),
“M” (the property is modifiable), or “N” (null is a valid value).

Table 1 - Profile Components (Sheet 2 of 2)

Profile Element Goal
10

 Recipe Overview

1

2

3
4
5

6
7
8
9

10
11

12
13
14
15

16
17
18
19
20

21

22

23

24
25
26

27

28
29

30

31

32

33
34

35
36
37

38
39
40
Clause 5: Recipe Overview

5.1 Recipe Concepts
Recipe: A set of instructions for making something from mixing various ingredients in a particular sequence. The
set of ingredients used by a particular recipe is scoped by the particular profile, subprofile or some other well-
defined context in which that recipe is defined.

A recipe shall specify an interoperable means for accomplishing a particular task across all conformant
implementations. However, a recipe does not necessarily specify the only set of instructions for accomplishing that
task. Nor are all tasks that may be accomplished necessarily specified by the set of recipes defined for a particular
profile or subprofile.

In order to compress the document, some recipes are implied or assumed. This would include, for instance, that
the set of available, interoperable properties are those explicitly defined by a particular profile or subprofile.

For a profile, the set of all defined and implied recipes defines the range of behavior across for which
interoperability is mandatory for all conformant implementations. Unless specifically defined in a recipe, other
sequences of actions (even simple Create/Delete instance requests) are not guaranteed to have the same results
across multiple implementations.

Each recipe defines an interoperable series of interactions (between a SMI-S Client and a SMI-S Server) required
to manage storage devices or applications. Another goal is to list the operations required for the CIM Client realize
functionality. It is not a goal to comprehensively express the programming logic required to implement the recipe in
any particular language. In fact, recipes are limited to the expression of CIM or SLP operations, and may simply
reference or describe any of the implementation that may be required beyond that.

5.2 Recipe Pseudo Code Conventions

5.2.1 Overview

A recipe's instructions are written using the pseudo code language defined in this section.

All recipes are prefixed with a summary narrative of the functionality being implemented. This summary may be
included explicitly as part of the recipe or reference to the appropriate narrative that can be found elsewhere in the
specification.

Note: The use of optional features (profiles or subprofiles) in recipes shall be clearly identified.

Generic Operations should be used, but for backward compatibility CIM Operations (from CIM Operations over
HTTP) may also be used. Arrays grow in size automatically.

5.2.2 General Syntax

<condition> logical statement that evaluates to true (Boolean)

!<condition> tests for false (Boolean)

<action> unspecified list of programming logic that is not important to the understanding of
the reader for a particular recipe.

<EXIT: success message>Exits the recipe with a success status code. The condition that resulted in
the call to exit the recipe was allowable. The implementation subjected to the recipe
behaves in accordance to this specification.

<ERROR! error condition> Exits the recipe with a failure status code. The condition that resulted in
the call to the exit the recipe was not allowable. The implementation subjected to the
recipe does not behave in accordance with this specification.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 11

Recipe Overview

41
42

43

44

45

46

47

48
49

50
51

52
53
54

55

56
57

58

59

60

61
62

63

64

65

66

67

68

69

70

71
72

73
@{recipe} logic flow is contained within the specification of the recipe elsewhere in the
specification

<variable> some variable

5.2.3 CIM related variable and methods

5.2.3.1 CIM Instances and Object Names
$name represents a single instance (CIMInstance) with a given variable name

$name.property represents a property in a single instance (CIMInstance)

$name.getObjectPath()
method returns a object name, REF, to the CIM Instance

$name.getNameSpace()
method returns the namespace name for the CIM Instance or Object Name

{value1, value2 ...}
an anonymous array, comprised of selected values of a given type; an anonymous
array is an array that is not referable by a variable

EXAMPLE:
 {"Joe", "Fred", "Bob", "Celma"}

$name[] represents an array of instances (CIMInstances) with a given variable name; array
are initialized by constructing an anonymous array.

EXAMPLE:
Names = {"Joe", "Fred", "Bob", "Celma"}

$name-> represents an object path name (CIMObjectPath)

$name->[] represents an array of object names of a given name

$name->property
represents a property of object $name

$name[].size() returns the number of CIM instances in the array

$name->[].length returns the number of CIM object names in the array

#name[].length returns the number of variable elements in the array

%name[].length returns the number of method arguments elements in the array

5.2.3.2 Extrinsic method arguments
%name represents a CIM Argument that can contain any CIM or other variable.

%name[] represents an array of CIM Arguments

5.2.3.3 Other Variables
#name neither CIM Instance nor Object Name variable. The type may be a string, number

or some other special type. Types are defined in the CIM Specification 2.2.

#name[] a non-CIM variable array
12

 Recipe Overview

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
90
91

92

93

94

95

96

97

98

99

100

101

102
103

104

105
106
107
"literal” some string literal

5.2.4 Data Structure

Variables can be collected by an array. The array can be indexed by other variable (see 5.2.3.3).

Arguments are always indexed by strings. In other words, the arguments are retrieved from the array by name.

5.2.5 Operations

= assigns right value to left value

== test for equivalency

!= test for not equivalency

< true if the left argument is numerically less than the right argument.

> true if the left argument is numerically greater than the right argument.

<= true if the left argument is numerically less than or equal to the right argument.

>= true if the left argument is numerically greater than or equal to the right argument.

&& condition A AND condition B

|| condition A OR condition B

+, -, *, / addition, subtraction, multiplication and division, respectively

++, -- increment and decrement a variable, respectively; placement of the operator
relative to the variable determines whether the operation is completed before or
after evaluation

EXAMPLE:
#i = 1

#names[] = {"A", "B, "C"}

"B" == #names[++#i] is true

2 == #i is true

EXAMPLE:
#i = 2

#names[] = {"A", "B, "C"}

"B" == #names[#i++] is true

3 == #i is true

// comments

nameof returns an Object Name given a CIM Instance. This unitary operator does nothing in
other usages.

ISA tests for the name of the CIM Instance or object name

EXAMPLE: if ($SomeName-> ISA CIM_StorageVolume) {
<The Object Name is a reference to a CIM_StorageVolume >
}

 SMI-S 1.6.0 Revision 4 SNIA Technical Position 13

Recipe Overview

108

109
110

111

112
113
114

115

116
117
118
119
120
121
122
123
124

125

126
127
128

129
130
131

132

133

134

135

136

137
138
139

140
141

142
143

144

145

146
147
5.2.6 Control Operations

The pseudocode used in this specification relies on control operators common to most high-level languages. For
example:

• for

EXAMPLE:
for #x in <variable array> {
<actions>
}

• if

EXAMPLE:
if (<condition>) {
<actions>
} ;
if (<condition>) {
<actions>
} else {
<alternate actions>
}

• do/while

EXAMPLE:
do {
<actions>
} while (<condition>)

• continue
Within a for loop: initialize loop variable to next available value and restart loop body. Terminate loop if no more
loop variable values available. Within a do/while loop: transfer control immediately to while test.

EXAMPLE:
for #i in <array> {

if (<some condition>)

continue; // process next loop variable

 <alternative>

}

• break: interrupts the sequence of statement execution within a loop block and exits the loop block altogether.
The looping condition is not re-evaluated Statement execution starts at the next statement outside of the loop
block.

• exit
Terminate recipe instantly, including termination of any callers.

EXAMPLE:
if (<unexpected condition>)
 exit

5.2.7 Functions

5.2.7.1 Function Declaration
A function definition is of the form sub functionName(), followed by the body of the function enclosed in braces. If
parameters are to be passed to a function, then are expressed as a comma-separated list of arguments within the
14

 Recipe Overview

148
149

150

151

152

153

154

155
156

157

158

159
160

161

162

163

164

165

166

167

168

169
170
171

172
173
174
175
176

177

178

179

180
181

182

183

184
185
186

187
parentheses following the function name. Each argument is comprised of a data type and an accompanying
argument name.

Functions are declared at the beginning of a recipe.

 sub functionName(integer nArg1, Class &cArg2) {

 <actions>

 }

5.2.7.2 Function Invocation
A function invocation is of the form &functionName(). If parameters are to be passed to a function, then are
expressed as a comma-separated list within the parentheses following the function name.

 &functionName(5, pClass)

5.2.8 Exception Handling

All operations may produce exceptions or errors. The following construct is used to test for particular errors. Once
a particular error is caught, then special exception handling logic is processed. Only CIM Errors can be caught.

try {

<actions>

}

catch (CIM Exception $Exception) {

 <recovery actions>

 }

 The error received may also be thrown

 throw $Exception

The error response returned from the SMI-S implementation is treated as a exception, a "CIM Exception". The
catch condition is expressed in terms of the CIM status code returned (e.g., CIM_ERR_NOT_FOUND) as defined
in the CIM Operations specification.

The $Exception variable contains a Error instance. The $Exception CIM Instance may be examined like any other
CIM Instance. In this language, the $Exception is never null even if the SMI-S implementation does provide one. In
this case, the $Exception CIM Instance is empty with the exception of the CIMStatusCode and
CIMStatusCodeDescription properties. This properties are populated with the Status and Description returned in
the error response from the SMI-S implementation.

5.2.9 Built-in Functions

a) boolean = compare(<variable>, <variable>)

1) Used to determine if two variables of the same type are equivalent

2) The variables shall not be CIM instances or object names nor other complex data types or
structures

3) The variables shall be of the same type

b) $instance = newInstance("CIM Classname")

1) Creates a CIM instance, which does not exist in the CIMOM (yet), that can be later filled in
with properties and passed to CreateInstance. The namespace is assumed to be the same
that the CIM client connected to.

c) $instance - newInstance("CIM Namespace", "CIM Classname”)
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 15

Recipe Overview

188

189

190

191

192
193

194
195

196

197

198

199

200
201

202

203
204

205
206
207
208

209

210
211

212
213
214

215

216
217
218

219
220
221

222

223

224
1) Variable of the above method that has the namespace name as an argument

d) boolean = contains(<test value>, <variable array>)

1) Used to test if the variable array contains a value equivalent to the test variable

2) The array shall be of variables of the same types as the test variable.

3) If the equivalency is found with at least one value then the function returns true, else false is
returned.

4) If the array is not a simple, or non-CIM, data type, then the test value shall be a CIM property,
$SomeInstance.SomeProperty or $SomeObjectname->SomeProperty

e) %Argument = newArgument("Argument Name", <variable>)

1) Creates a CIM Argument of a given name containing a value, CIM or non-CIM

f) $objectPath-> = newObjectPath("Class name", "NameSpace name")

1) Returns a new ObjectPath, built from the supplied arguments;

2) Required to perform the EnumerateInstances and EnumerateInstanceNames
operations

g) #stringArray[] = #stringVariable.split(#stringParam or “string literal”)

1) Returns an array of strings, built by splitting the string variable around matches of the sup-
plied string parameter

2) Divides the string into substrings, using the string parameter as a delimiter, returning the sub-
strings in an array in the order in which they occurred in the string variable. If there are no
occurrences of the string parameter, then the array returned contains only one string element
equal to the original string variable.

h) #intVariable = Integer(#stringVariable)

1) Returns the integer that the supplied string represents. If the supplied string does not repre-
sent an integer, then an error is thrown.

2) The function will parse and return signed or unsigned integers up to 64-bits in size, and will
accept the hyphen ‘-‘ character in the 8-bit ASCII-range of UTF-8 as the first character in the
string to indicate a negative number.

i) #datetimeVariable = Datetime(#stringVariable)

1) Returns a variable of Datetime type, as defined by section 2.2.1 the CIM Infrastructure Spec-
ification v1.3, that the supplied string represents. If the supplied string does not represent a
DateTime object, then an error is thrown.

2) This function will accept strings of the format described in the CIM Infrastructure Specifica-
tion, including both timestamps and intervals, zero-padded to 25-characters, and will recog-
nize Datetime strings containing asterisk (“*”) characters for fields that are not significant.

5.2.10 Extrinsic method calls
<variable> = InvokeMethod ($someobjectname->, "Method Name",

 %InArguments[], %OutArguments[])
16

 Generic Target Ports Profile

1

2

3

4

5

6

7

8

9

10
11

12
13

14

15
16
17
18
19
20

21

22
23
EXPERIMENTAL

Clause 6: Generic Target Ports Profile

6.1 Synopsis
Profile Name: Generic Target Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.9.0 (specialized profiles may need later versions)

Related Profiles for Generic Target Ports: Not defined in this standard.

Central Class: CIM_LogicalPort

Scoping Class: a CIM_System in a separate autonomous profile

The Generic Target Port Profile models the generic behavior of target ports in storage systems such as disk arrays
and tape libraries.

This abstract profile specification shall not be directly implemented; implementations shall be based on a profile
specification that specializes the requirements of this profile.

6.2 Description
The Generic Target Port Profile models the generic behavior of target ports in storage systems such as disk arrays
and tape libraries. Separate profiles specialize the Generic Target Port Profile for Fibre Channel, iSCSI, and other
transports. The primary classes of the Generic Target Port Profile are LogicalPort and ProtocolEndpoint, as shown
in Figure 5. Instances of subclasses of a LogicalPort (e.g., FCPort, EthernetPort) represent the logical aspects of
ports, independent from command protocols (such as SCSI). Instances of subclasses of ProtocolEndpoint (e.g.,
SCSIProtocolEndpoint or ATA ProtocolEndpoint) represent command protocols in use on the port.

6.3 Implementation
Subclasses of ProtocolEndpoint represent command protocols supported by the port. SCSIProtocolEndpoint
represents SCSI as a protocol, independent of specific transports or device types – i.e., the behavior described in

Figure 5 - Generic Target Port Classes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 17

Generic Target Ports Profile

24
25
26
27

28
29

30
31
32
33

34
35
36

37
38
39
40

41
42
43
44
45
the SCSI Primary Commands (SPC) and SCSI Architecture Model (SAM) specifications from T10.
SCSIProtocolEndpoint.Role indicates whether this protocol endpoint instance represents a SCSI Target or target.
For target port profiles, Role shall be Target” or “Both Initiator and Target”. iSCSIProtocolEndpoint specializes
SCSIProtocolEndpoint with additional iSCSI-specific properties.

ATAProtocolEndpoint represents the ATA command protocol. SBPProtocolEndpoint represents Single Byte
protocol used with mainframes. ProtocolEndpoint is associated to a System instance with Hosted Access Point.

LogicalPort subclasses specify the type of transport. If the port is subclassed directly from LogicalPort it indicates it
is connected to a bus. If the port is further subclassed from NetworkPort it indicates the port is capable of being
used in a network. Specializations of this profile shall specify the appropriate subclass of LogicalPort. Figure 6
shows the subclasses of LogicalPort.

A property on LogicalPort called UsageRestriction is indicates whether the port is restricted to use as a “front end”
(target) or a “back end” (Target) interface or both. Note that port may not have a restriction and the actual point-in-
time role is modeled in SCISProtocolEndpoint.Role. SystemDevice associates LogicalPort to a System.

ProtocolEndpoint and LogicalPort are associated with DeviceSAPImplementation. For most transports, the
command protocol is implemented in the port hardware and there is 1-1 cardinality between the LogicalPort and
ProtocolEndpoint instances. iSCSI is an exception, many-to-many relationships are possible between EthernetPort
and iSCSIProtocolEndpoint instances

ProtocolController (in the Mapping and Masking Profile) represents the SCSI (or SB) ‘view’ of ports and logical
devices seen by target systems (e.g., arrays). In a system supporting Mapping and Masking, zero or more views
exist; defined by the customer to expose subsets of logical units to certain Targets. SAPAvailableForElement
connects ProtocolEndpoint from a target ports profile to SCSIProtocolController instances from the Mapping/
Masking Profile. iSCSI and SB have protocol-specific, secondary uses of ProtocolController.

Figure 6 - LogicalPort Class Hierarchy
18

 Generic Target Ports Profile

46
47

48

49

50
51
52
53
Figure 7 depicts a generic storage device with elements from a target ports profile, the Mapping/Masking Profile,
and a target device profile The LogicalDevice object represents logical units that are visible to external systems. It

is subclassed to StorageVolume, TapeDrive, etc. to identify the device type.

6.3.1 Modeling SCSI/SB Logical Units

The SCSI standard inquiry response includes a Device Type property with integers representing types of devices.
Most of these devices types have a CIM analog. Devices that are used primarily for management are modeled as
SCSIArbitraryLogicalUnit. SCSIArbitraryLogicalUnit.DeviceType maps to SCSI device types. Table 2 describes
how common storage devices are modeled in CIM.

Figure 7 - Generic Target with LUN Masking

Table 2 - Modeling of Common Storage Devices in CIM

SCSI Device Type Inquiry Device Type LogicalDevice subclass

DirectAccessDevice 0 DiskDrive or StorageVolume

SequentialAccessDevice 1 TapeDrive

WriteOnceDevice 4 WormDrive

CD-ROM 5 CDROMDrive

MediaChanger 8 MediaTranferDevice

ArrayController 0xc SCSIArbitraryLogicalUnit
DeviceType=”SCSI SCC
Device”

SES 0xd SCSIArbitraryLogicalUnit

DeviceType=”SCSI SES”

Other SCSIArbitraryLogicalUnit

DeviceType=”Other”
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 19

Generic Target Ports Profile

54

55

56

57

58

59
60

61

62

63

64

65

66

67

68

69

70
All devices (logical units) visible to external systems shall be modeled.

6.4 Methods of the Profile

6.4.1 Extrinsic Methods

None

6.4.2 Intrinsic Methods

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

6.5 Use Cases

6.6 CIM Elements
Table 3 describes the CIM elements for Generic Target Ports.

Unknown SCSIArbitraryLogicalUnit

DeviceType=”Uknown”

DirectAccessDevice 0 DiskDrive or StorageVolume

Table 3 - CIM Elements for Generic Target Ports

Element Name Requirement Description

6.6.1 CIM_DeviceSAPImplementation Mandatory Associates front-end LogicalPort and target
ProtocolEndpoint.

6.6.2 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
ProtocolEndpoint.

6.6.3 CIM_LogicalPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

Table 2 - Modeling of Common Storage Devices in CIM

SCSI Device Type Inquiry Device Type LogicalDevice subclass
20

 Generic Target Ports Profile

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
6.6.1 CIM_DeviceSAPImplementation

Associates front-end LogicalPort and target ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 4 describes class CIM_DeviceSAPImplementation.

6.6.2 CIM_HostedAccessPoint

Associates ComputerSystem to ProtocolEndpoint. Limit to targets.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 5 describes class CIM_HostedAccessPoint.

6.6.3 CIM_LogicalPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static

6.6.4 CIM_ProtocolEndpoint Mandatory ProtocolEndpoint representing support for
SCSI, ATA, or SB command set.

6.6.5 CIM_SystemDevice (Port) Mandatory Associates ComputerSystem to LogicalPort.

Table 4 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to SCSI, ATA, or SB ProtocolEndpoint.

Antecedent Mandatory Reference to Port.

Table 5 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in the referencing profile.

Dependent Mandatory Reference to SCSIProtocolEndpoint, ATAProtocolEndpoint
or SBProtocolEndpoint.

Table 3 - CIM Elements for Generic Target Ports

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 21

Generic Target Ports Profile

90

91

92

93
94

95

96

97

98

99

100

101
Requirement: Mandatory

Table 6 describes class CIM_LogicalPort.

6.6.4 CIM_ProtocolEndpoint

ProtocolEndpoint representing support for SCSI, ATA, or SB command set. Shall be subclassed in specialized
profiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 7 describes class CIM_ProtocolEndpoint.

6.6.5 CIM_SystemDevice (Port)

Associates ComputerSystem to LogicalPort.

Table 6 - SMI Referenced Properties/Methods for CIM_LogicalPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the
port is unrestricted.

PortType Mandatory VALUE and DESC should be set appropriately for each
specialized target port profile.

Table 7 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI','ATA', or 'SB'.
22

 Generic Target Ports Profile

102

103

104

105

106
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 8 describes class CIM_SystemDevice (Port).

EXPERIMENTAL

Table 8 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem in the referencing profile.

PartComponent Mandatory Reference to Port.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 23

Generic Target Ports Profile
24

 Parallel SCSI (SPI) Target Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12
EXPERIMENTAL

Clause 7: Parallel SCSI (SPI) Target Ports Profile

7.1 Synopsis
Profile Name: SPI Target Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.9.0

Table 9 describes the related profiles for SPI Target Ports.

Central Class: CIM_SPIPortt

Scoping Class: a CIM_System in a separate autonomous profile

Models a parallel SCSI port,

7.2 Description
This port represents a SCSI Parallel Interface (SPI).

Table 9 - Related Profiles for SPI Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 25

Parallel SCSI (SPI) Target Ports Profile

13

14
15

16
17
18

19

20

21

22

23
7.3 Implementation
Because of addressing limits, the port may use multiple SCSI IDs to extend the addressing. The LUN Mapping/
Masking common subprofile is not used with this port type. Figure 8 shows an SPI Target Port Instance.

The SCSIProtocolEndpoint.ConnectionType shall be set to “Parallel SCSI”. The SCSIProtocolEndpoint class is
connected to a SPIPort. Attributes of SPIPort define the bus width and speed. The port class inherits the
UsageRestriction attribute from LogicalPort. This attribute shall be set to “Front-end only”

7.4 Health and Fault Management
Table 10 shows SPIPort OperationalStatus.

7.5 Methods

7.5.1 Extrinsic Methods of this Subprofile

None

Figure 8 - SPI Target Port Instance Diagram

Table 10 - SPIPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
26

 Parallel SCSI (SPI) Target Ports Profile

24

25

26

27
28
29
30

31

32

33

34
7.6 CIM Elements
Table 11 describes the CIM elements for SPI Target Ports.

7.6.1 CIM_DeviceSAPImplementation

Associates front-end SPIPort and target SCSIProtocolEndpoint. Limit to target ProtocolEndpoints and front-end
ports. The class definition specializes the CIM_DeviceSAPImplementation definition in the Generic Target Ports
profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 11 - CIM Elements for SPI Target Ports

Element Name Requirement Description

7.6.1 CIM_DeviceSAPImplementation Mandatory Associates front-end SPIPort and target
SCSIProtocolEndpoint.

7.6.2 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
SCSIProtocolEndpoint.

7.6.3 CIM_SCSIProtocolEndpoint Mandatory Represents management characteristics
related to the SCSI command set.

7.6.4 CIM_SPIPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

7.6.5 CIM_SystemDevice (Port) Mandatory Associates ComputerSystem to LogicalPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SPIPort

Mandatory CQL -Create SPIPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_SPIPort
AND
SourceInstance.CIM_SPIPort::OperationalSta
tus <>
PreviousInstance.SAS_Port::OperationalStatu
s

Mandatory CQL -Modify SPIPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SPIPort

Mandatory CQL -Delete SPIPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 27

Parallel SCSI (SPI) Target Ports Profile

35

36

37
38
39

40

41

42

43

44

45

46
47
48

49

50

51

52

53
Table 12 describes class CIM_DeviceSAPImplementation.

7.6.2 CIM_HostedAccessPoint

Associates ComputerSystem to SCSIProtocolEndpoint. Limit to targets (Role = 3). The class definition specializes
the CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 13 describes class CIM_HostedAccessPoint.

7.6.3 CIM_SCSIProtocolEndpoint

Represents management characteristics related to the SCSI command set. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 14 describes class CIM_SCSIProtocolEndpoint.

Table 12 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to SPIPort.

Table 13 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in the referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Table 14 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
28

 Parallel SCSI (SPI) Target Ports Profile

54

55
56
57

58

59

60

61

62

63

64

65

66
7.6.4 CIM_SPIPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Target Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 15 describes class CIM_SPIPort.

7.6.5 CIM_SystemDevice (Port)

Associates ComputerSystem to LogicalPort.

Created By: Static
Modified By: Static

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

ConnectionType
(added)

Mandatory Shall be 3 (Parallel SCSI).

Role (added) Mandatory Shall be 3 (Target).

Table 15 - SMI Referenced Properties/Methods for CIM_SPIPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 2 (Front-end Only).

PortType
(overridden)

Mandatory Shall be 140 (SCSI Parallel).

Table 14 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 29

Parallel SCSI (SPI) Target Ports Profile

67

68

69
Deleted By: Static
Requirement: Mandatory

Table 16 describes class CIM_SystemDevice (Port).

EXPERIMENTAL

Table 16 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem in the referencing profile.

PartComponent Mandatory Reference to Port.
30

 FC Target Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17
18
19
20
21
STABLE

Clause 8: FC Target Ports Profile

8.1 Synopsis
Profile Name: FC Target Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.9.0

Table 17 describes the related profiles for FC Target Ports.

Central Class: CIM_FCPort

Scoping Class: a CIM_ComputerSystem in a referencing autonomous profile

8.2 Description
The FC Target Port Subprofile models the Fibre Channel specific aspects of a target storage system.

8.3 Implementation
For Fibre Channel ports, the concrete subclass of LogicalPort is FCPort. FCPort is always associated 1-1 with a
SCSIProtocolEndpoint instance.

8.3.1 SMI-S 1.0 backwards compatibility

SCSIProtocolEndpoint was introduced in SMI-S 1.1.0 to enable support for non-FC transports and for non-SCSI
protocols. In SMI-S 1.0, FCPort was associated directly to SCSIProtocolController. SCSIProtocolEndpoint,
DeviceSAPImplementation, and SAPAvailableForElement are required and are used consistently across all target
port subprofiles. To maintain backwards compatibility, ProtocolControllerForPort is still required in this version of
SMI-S. But this association will be removed in a future versions and clients should start using the newer model.
Figure 9 illustrates a Target Port instance.

Table 17 - Related Profiles for FC Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 31

FC Target Ports Profile

22

23

24

25

26

27

28

29
8.4 Durable Names and Correlatable IDs of the Subprofile
FCPort.PermanantAddress shall contain the port’s Port WWN.

8.5 Health and Fault Management
Table 18 describes FCPort OperationalStatus.

8.6 Supported Profiles and Packages
None

8.7 Extrinsic Methods of this Subprofile
None

Figure 9 - FC Target Port Instance Diagram

Table 18 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
32

 FC Target Ports Profile

30

31

32

33
8.8 Client Considerations and Recipes
None

8.9 CIM Elements
Table 19 describes the CIM elements for FC Target Ports.

Table 19 - CIM Elements for FC Target Ports

Element Name Requirement Description

8.9.1 CIM_DeviceSAPImplementation Mandatory Associates FCPort and
SCSIProtocolEndpoint.

8.9.2 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

8.9.3 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
SCSIProtocolEndpoint.

8.9.4 CIM_ProtocolControllerForPort Conditional Conditional requirement: Support for the
Masking and Mapping profile. Only required if
the instrumentation claims compatibility with
1.0.

8.9.5 CIM_SCSIProtocolEndpoint Mandatory Represents management characteristics
related to the SCSI command set.

8.9.6 CIM_SystemDevice (Port) Mandatory Associates controller ComputerSystem to
FCPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Mandatory Create FCPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change to FCPort
OperationalStatus.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Mandatory CQL -Change to FCPort OperationalStatus.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.Speed <>
PreviousInstance.Speed

Optional Deprecated WQL -Change to FCPort Speed.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 33

FC Target Ports Profile

34

35
36
37

38

39

40

41

42

43

44
45
46

47

48
8.9.1 CIM_DeviceSAPImplementation

Associates FCPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Target Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 20 describes class CIM_DeviceSAPImplementation.

8.9.2 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Target Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.CIM_FCPort::Speed <>
PreviousInstance.CIM_FCPort::Speed

Optional CQL -Change to FCPort Speed.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.NetworkAddresses <>
PreviousInstance.NetworkAddresses

Optional Deprecated WQL -Change to FCPort
NetworkAddresses.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::NetworkAddres
ses <>
PreviousInstance.CIM_FCPort::NetworkAddre
sses

Optional CQL -Change to FCPort NetworkAddresses.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Mandatory Delete FCPort.

Table 20 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to FCPort.

Table 19 - CIM Elements for FC Target Ports

Element Name Requirement Description
34

 FC Target Ports Profile

49

50

51

52

53
54
55

56

57

58
Deleted By: Static
Requirement: Mandatory

Table 21 describes class CIM_FCPort.

8.9.3 CIM_HostedAccessPoint

Associates ComputerSystem to SCSIProtocolEndpoint. Limit to targets. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static

Table 21 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 2 for ports restricted to Front-end only or 4 if the
port is unrestricted.

PortType
(overridden)

Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other
or N or NL or F/NL or Nx or E or F or FL or B or G).

PermanentAddress
(added)

CD Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS
(added)

Optional

ActiveCOS (added) Optional

SupportedFC4Types
(added)

Optional

ActiveFC4Types
(added)

Optional

Speed (added) Optional Speed in bits per second. Shall be 0, 1062500000 (1GFC),
2125000000 (2GFC), 4250000000 (4GFC), 8500000000
(8GFC), 10518750000 (10GFC), 14025000000 (16GFC),
21037500000 (20GFC) or 28500000000 (32GFC).

MaxSpeed (added) Optional Maximum Port Speed.

NetworkAddresses
(added)

Optional For Fibre Channel end device ports, the Fibre Channel ID.
Shall be 16 un-separated upper case hex digits.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 35

FC Target Ports Profile

59

60

61

62

63

64

65

66

67

68
69
70

71

72

73

74

75
Requirement: Mandatory

Table 22 describes class CIM_HostedAccessPoint.

8.9.4 CIM_ProtocolControllerForPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for the Masking and Mapping profile.

Table 23 describes class CIM_ProtocolControllerForPort.

8.9.5 CIM_SCSIProtocolEndpoint

Represents management characteristics related to the SCSI command set. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 24 describes class CIM_SCSIProtocolEndpoint.

Table 22 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent
(overridden)

Mandatory

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Table 23 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to SCSIProtocolController.

Dependent Mandatory Reference to FCPort.

Table 24 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
36

 FC Target Ports Profile

76

77
78
79

80

81

82

83

84
8.9.6 CIM_SystemDevice (Port)

Associates controller ComputerSystem to FCPort. The class definition specializes the CIM_SystemDevice
definition in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 25 describes class CIM_SystemDevice (Port).

STABLE

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

ConnectionType
(added)

Mandatory Shall be 2 (Fibre Channel).

Role (added) Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target).

Table 25 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent
(overridden)

Mandatory Reference to ComputerSystem in the referencing profile.

PartComponent
(overridden)

Mandatory Reference to FCPort.

Table 24 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 37

FC Target Ports Profile
38

 iSCSI Target Ports Subprofile

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16
STABLE

Clause 9: iSCSI Target Ports Subprofile

9.1 Synopsis
Profile Name: iSCSI Target Ports (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.27.0

Related Profiles for iSCSI Target Ports: Not defined in this standard.

Central Class: CIM_EthernetPort

Scoping Class: a CIM_System in a separate autonomous profile

Models an iSCSI target port

9.2 Description
The iSCSI Target Ports Subprofile describes the iSCSI specific aspects of a target device.

9.3 Implementation
iSCSI terminology is different than that used in other parts of SMI-S. Table 26 provides a map of terminology from
iSCSI standards and CIM class names used in this standard. iSCSI does have a specific naming requirement for
SCSIProtocolController that is described in Table 26.

Table 26 - iSCSI Terminology and SMI-S Class Names

iSCSI
Term

CIM Class Name Notes

Network
Entity

ComputerSystem The Network Entity represents a device or gateway that is
accessible from the IP network. A Network Entity shall have
one or more Network Portals, each of which can be used to
gain access to the IP network by some iSCSI Nodes
contained in that Network Entity.

Session iSCSISession The group of TCP connections that link a Target with a target
form a session (loosely equivalent to a SCSI I-T nexus). TCP
connections can be added and removed from a session.
Across all connections within a session, a Target sees one
and the same target.

Connectio
n

NetworkPipe A connection is a TCP connection. Communication between
the Target and target occurs over one or more TCP
connections. The TCP connections carry control messages,
SCSI commands, parameters, and data within iSCSI Protocol
Data Units (iSCSI PDUs).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 39

iSCSI Target Ports Subprofile

17
18
19
Figure 10 is a class diagram for iSCSI Target Ports and uses the UML instance naming notation
(InstanceName:ClassName) with the iSCSI-style names before the CIM names. Figure 26 explains the use of all
these objects.

SCSI Port iSCSIProtocolEndpoint A SCSI Port using an iSCSI service delivery subsystem. A
collection of Network Portals that together act as a SCSI
Target or target.

Portal
Group

SystemSpecificCollecti
on

iSCSI supports multiple connections within the same session;
some implementations will have the ability to combine
connections in a session across multiple Network Portals. A
Portal Group defines a set of Network Portals within an iSCSI
Network Entity that collectively supports the capability of
coordinating a session with connections spanning these
portals. Not all Network Portals within a Portal Group need
participate in every session connected through that Portal
Group. One or more Portal Groups may provide access to an
iSCSI Node. Each Network Portal, as utilized by a given
iSCSI Node, belongs to exactly one portal group within that
node.

Network
Portal

TCPProtocolEndpoint,
IPProtocolEndpoint,
EthernetPort

The Network Portal is a component of a Network Entity that
has a TCP/IP network address and that may be used by an
iSCSI Node within that Network Entity for the connection(s)
within one of its iSCSI sessions. A Network Portal in a Target
is identified by its IP address. A Network Portal in a target is
identified by its IP address and its listening TCP port.

Node SCSIProtocolControlle
r

The iSCSI Node represents a single iSCSI Target or iSCSI
target. There are one or more iSCSI Nodes within a Network
Entity. The iSCSI Node is accessible via one or more
Network Portals. An iSCSI Node is identified by its iSCSI
Name. The separation of the iSCSI Name from the
addresses used by and for the iSCSI Node allows multiple
iSCSI nodes to use the same address, and the same iSCSI
node to use multiple addresses.

Table 26 - iSCSI Terminology and SMI-S Class Names
40

 iSCSI Target Ports Subprofile

20
21

22

23
24
25
26

27
28
29
30
31
Note that ComputerSystem, SCSIProtocolController and StorageVolume are not actually part of this subprofile;
they would be the parts of the Array Profile that associate with the iSCSI-specific classes.

9.3.1 Mapping and Masking Considerations

The class SCSIProtocolController is used in the Mapping and Masking Subprofile to model a “view”, which is a set
of logical devices exposed to a Target. It is in a sense a virtual SCSI device, but carries no SCSI device name when
used with the other Target Ports subprofiles such as the FC Target Port Subprofile. In fact the class is even not part
of these subprofiles.

The iSCSI Target Ports Subprofile however uses SCSIProtocolController to model the iSCSI Node which is the
SCSI Device as defined in the SAM specification. It has a SCSI device name which is the iSCSI Node Name. Thus
the presence of instances of SCSIProtocolController with this subprofile has multiple meanings. Whereas there
may be no instances of SCSIProtocolController with other Target Port subprofiles until created as views by the
Mapping and Masking method ExposePaths, instances of SCSIProtocolControllers as iSCSINodes can be brought

Figure 10 - iSCSI Target Ports Subprofile Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 41

iSCSI Target Ports Subprofile

32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47

48

49

50
51

52
53

54
55

56

57
58
59

60
61

62
63

64

65
66
67

68
69
70
into existence by the iSCSI method CreateiSCSINode. The instances can then be used as inputs to ExposePaths
to grant access by Targets to logical devices through the Node. This initial SCSIProtocolController that was created
as a Node will be the first view. Additional “view” ProtocolControllers created by ExposePaths would carry the
same iSCSI Node name to convey that they represent the same underlying Node.

9.3.2 Settings

An iSCSI Session is established between a Target Port and a Target Port through the establishment of an initial
iSCSI Connection, which happens during the “Leading” Login. At this time the operational properties for the
Session are negotiated and also the operational properties for the initial Connection. Additional Connections for the
Session are established through subsequent logins. For many operational properties both the Target and Target
have settings that specify the starting position for the negotiation process. The settings for negotiating Session-
wide operational properties (found in iSCSISession) are in iSCSISessionSettings. Likewise the settings for
negotiating Connection level operational properties (found in iSCSI Connection) are in iSCSIConnectionSettings.
For example, iSCSISessionSettings contains the property MaxConnectionsPerSession, which is the value that the
local system (which in this subprofile is the Target) would like to use for Session. When the leading login is
complete the actual value agreed upon with the Target is in the property MaxConnectionsPerSession in iSCSI
Session.

Different implementations may scope the settings classes differently.

iSCSISessionSettings can be associated to any one of the following classes:

• iSCSIProtocolEndpoint: The Settings apply to Sessions created on the iSCSI Port represented by the
iSCSIProtocolEndpoint.

• SCSIProtocolController: The Settings apply to Sessions created on all iSCSIProtocolEndpoint belonging to the
iSCSI Node represented by the SCSIProtocolController.

• ComputerSystem: The Settings apply to Sessions created on all iSCSIProtocolEndpoints belonging to all
SCSIProtocolControllers belonging to the ComputerSystem.

iSCSIConnectionSettings can be associated to any one of the following classes:

• TCPProtocolEndpoint: The Settings apply to each Connection created using the Network Portal represented
by the TCPProtocolEndpoint, regardless of which iSCSIProtocolEndpoint owns the Session that the
Connection belongs to.

• iSCSIProtocolEndpoint: The Settings apply to Connections using NetworkPortals to which the
iSCSIProtocolEndpoint is bound and belonging to Sessions on that same iSCSIProtocolEndpoint.

EXPERIMENTAL

Note: The support on iSCSI Session is conditional, which means it is only supported when ‘iSCSI Session’ is
included in iSCSICapabilities.SupportedFeatures.

EXPERIMENTAL

9.3.3 Durable Names and Correlatable IDs of the Subprofile

The Name property for the iSCSI node (SCSIProtocolController) shall be a compliant iSCSI name as described in
Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4, 7.8 "iSCSI Names".
NameFormat shall be set to “iSCSI Name”.

The Name property for iSCSIProtocolEndpoint shall be a compliant iSCSI name as described in Storage
Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4, 7.8 "iSCSI
Names"ConnectionType shall be set to “iSCSI”.
42

 iSCSI Target Ports Subprofile

71

72
73

74

75

76

77
78
79
80

81

82
83
84

85

86

87

88

89

90

91

92

93

94

95

96

97
9.4 Health and Fault Management
Table 27 defines the SMI-S-defined meanings of the OperationalStatus property for EthernetPort used in the SB
Target Port Profile.

9.5 Supported Subprofiles and Packages
None

9.6 Methods of this Subprofile
The iSCSIConfigurationService provides the following methods that allow a client to manipulate
iSCSIProtocolEndpoints in an iSCSI Target Node. The class iSCSIProtocolController models the iSCSI Target Port.
The instance of the service is scoped by an instance of ComputerSystem that represents that Network Entity. The
capabilities of this service are defined in the companion class iSCSIConfigurationCapabilities.

9.6.1 CreateiSCSINode

This method creates an iSCSI Node in the form of an instance of SCSIProtocolController. As part of the creation
process a SystemDevice association is created between the new SCSIProtocolController and the scoping Network
Entity (ComputerSystem) hosting this service.

 CreateiSCSINode

 IN, string Alias,

The iSCSI Alias for the new Node.

 OUT, SCSIProtocolController REF iSCSINode,

A reference to the new SCSIProtocolController that is created.

9.6.1.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Node Creation Not Supported

Alias in use by Other Node

Table 27 - EthernetPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 43

iSCSI Target Ports Subprofile

98

99

100

101

102

103

104

105

106
107
108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131
9.6.1.2 Created Instances
SCSIProtocolController

SystemDevice

9.6.1.3 Deleted Instances
None

9.6.1.4 Modified Instances
None

9.6.2 DeleteiSCSINode

The method deletes an instance of SCSIProtocolController representing an iSCSI Node and all associations in
which this SCSIProtocolController is referenced. If Sessions are active on iSCSIProtocolEndpoints belonging to
this Node an error will be returned. If no Sessions are active the scoped iSCSIProtocolEndpoints will be deleted.

 DeleteiSCSINode

 IN, SCSIProtocolController REF iSCSINode

The SCSIProtocolController to be deleted.

9.6.2.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

SCSIProtocolController Non-existent

Sessions Active on Node Ports

9.6.2.2 Created Instances
None

9.6.2.3 Deleted Instances
SCSIProtocolController

SystemDevice

iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.2.4 Modified Instances
None
44

 iSCSI Target Ports Subprofile

132

133
134
135
136
137

138

139

140

141

142
143

144

145
146
147
148

149

150
151
152
153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168
9.6.3 CreateiSCSIProtocolEndpoint

This method creates an iSCSI Port in the form of an instance of iSCSIProtocolEndpoint. As part of the creation
process the iSCSIProtocolEndpoint is 'bound to' the underlying TCPProtocolEndpoints which are specified as
inputs by creating instances of the BindsTo association between the new instance and those instances. In addition,
an instance of SAPAvailableForElement is created between the specified SCSIProtocolController and the new
instance of iSCSIProtocolEndpoint.

 CreateiSCSIProtocolEndpoint

 IN, SCSIProtocolController REF iSCSINode,

The SCSIProtocolController instance representing the iSCSI Node that will contain the iSCSI Port.

 IN, uint16 Role,

For iSCSI, each iSCSIProtocolEndpoint acts as either a target or a Target endpoint. This property indicates which
role this iSCSIProtocolEndpoint implements.

 IN, string Identifier,

The Identifier shall contain the Target Portal Group Tag (TGPT). Each iSCSIProtocolEndpoint (iSCSI port)
associated to a common SCSIProtocolController (iSCSI node) has a unique Identifier. This field is a string that
contains 12 hexadecimal digits. If the property IdentifierSelectionSupported in class iSCSIConfigurationCapabilities
is false, this parameter shall be set to NULL.

 IN, ProtocolEndpoint REF NetworkPortals[],

An Array of References to TCPProtocolEndpoints representing Target Network Portals. The TCPProtocolEndpoints
specified each shall be associated to an instance of IPProtocolEndpoint via a BindsTo association in order to
provide the Target Network Portal functionality. The selected Portal endpoints shall be from the same
SystemSpecificCollection, which represents a Portal Group.

 OUT, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the new iSCSIProtocolEndpoint that is created.

9.6.3.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

SCSIProtocolController Non-existent

Role Not Supported By Specified SCSIProtocolController

Identifier In Use, Not Unique

Identifier Selection Not Supported

ProtocolEndpoint Non-Existent

TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

TCPProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 45

iSCSI Target Ports Subprofile

169

170

171

172

173

174

175

176

177

178

179

180
181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201
ProtocolEndpoints Not From Same Endpoint Collection

9.6.3.2 Created Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.3.3 Deleted Instances
None

9.6.3.4 Modified Instances
None

9.6.4 DeleteiSCSIProtocolEndpoint

The method deletes an instance of iSCSIProtocolEndpoint and all associations in which this
iSCSIProtocolEndpoint is referenced.

 DeleteiSCSIProtocolEndpoint

 IN, iSCSIProtocolEndpoint REF iSCSIPort

The iSCSIProtocolEndpoint to be deleted.

9.6.4.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

Endpoint Non-existent

9.6.4.2 Created Instances
None

9.6.4.3 Deleted Instances
iSCSIProtocolEndpoint

HostedAccessPoint

SAPAvailableForElement

BindsTo

9.6.4.4 Modified Instances
None
46

 iSCSI Target Ports Subprofile

202

203
204
205
206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236
9.6.5 BindiSCSIProtocolEndpoint

This method provides for modification of an existing iSCSI Port by associating a TCPProtocolEndpoint
representing a Target Network Portal to the iSCSIProtocolEndpoint. The association is persisted as an instance of
BindsTo. The selected Portal endpoint shall be from the same SystemSpecificCollection, which represents a Portal
Group, as those endpoints currently bound to the iSCSIProtocolEndpoint.

This action is intended to be reversed by the use of the intrinsic method 'DeleteInstance'.

BindiSCSIProtocolEndPoint

 IN, iSCSIProtocolEndpoint REF iSCSIPort,

A reference to the iSCSIProtocolEndpoint

 IN, ProtocolEndpoint REF NetworkPortal

An instance of TCPProtocolEndpoint representing the Network Portal to be added

9.6.5.1 Return Values
Success

Not Supported

Unspecified Error

Timeout

Failed

Invalid Parameter

ProtocolEndpoint Non-Existent

TCPProtocolEndpoint Not Bound To Underlying IPProtocolEndpoint

ProtocolEndpoint In Use By Other iSCSIProtocolEndpoint In Same Target SCSIProtocolController

ProtocolEndpoint Not From Same Endpoint Collection

9.6.5.2 Created Instances
BindsTo

9.6.5.3 Deleted Instances
None

9.6.5.4 Modified Instances
None

9.7 Client Considerations and Recipes

9.7.1 Discover the iSCSI Target Port capabilities.
// DESCRIPTION

// Discover the iSCSI Target Port capabilities.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the target system of interest has been
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 47

iSCSI Target Ports Subprofile

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278
// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instance of CIM_iSCSICapabilities associated to the

// target ComputerSystem.

$iSCSICapabilities[] = Associators($NetworkEntity->,

“CIM_ElementCapabilities”,

“CIM_iSCSICapabilities”,

“ManagedElement”,

“Capabilities”,

{“MinimumSpecificationVersionSupported”,

“MaximumSpecificationVersionSupported”,

“AuthenticationMethodsSupported”,

“SupportedFeatures”})

if ($iSCSICapabilities[] == null || $iSCSICapabilities[].length != 1) {

 <ERROR! The iSCSI capabilities could not be found>

}

$Capabilities = $iSCSICapabilities[0]

9.7.2 Identify the iSCSI Nodes in a target system.
// DESCRIPTION

//

// Identify the iSCSI Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the instances of CIM_SCSIProtocolController with a NameFormat

// property value of “iSCSI Name”.

$ProtocolControllers[] = Associators($NetworkEntity->,

“CIM_SystemDevice”,

“CIM_SCSIProtocolController”,

“GroupComponent”,

“PartComponent”,

false,

false,

{“Name”, “NameFormat”})

// Step 2. Locate the SCSIProtocolControllers that represent the iSCSI Nodes.

$iSCSINodes[]

#index = 0

for (#i in $ProtocolControllers[]) {

 if ($ProtocolControllers[#i].NameFormat == “iSCSI Name”) {

// Filter out SCSIProtocolControllers previously encountered.
48

 iSCSI Target Ports Subprofile

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318
if (!contains($ProtocolControllers[#i].Name, #NodeNames[])) {

 #NodeNames[#index] = $ProtocolControllers[#i].Name

 $iSCSINodes[#index++] = $ProtocolControllers[#i]

}

 }

}

<EXIT: $Nodes[] contains the results>

9.7.3 Identify the iSCSI Ports on an given iSCSI node.
// DESCRIPTION

// Identify the iSCSI Ports on an given iSCSI node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The SCSIProtocolController representing an iSCSI Node of interest has

// been previously identified and defined in the $iSCSINode-> variable.

// This function returns the instance(s) of iSCSI ports on the specified

// iSCSI node, or null if none are found.

sub $iSCSIPorts[] getiSCSIPortsOnNode($Node->) {

 // Step 1. Locate the iSCSI Ports, which are represented by instances of

 // iSCSIProtocolEndpoint, on the iSCSI Node of interest.

 $iSCSIPorts[] = Associators($iSCSINode->,

 “CIM_SAPAvailableForElement”,

 “CIM_iSCSIProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”,

 false,

 false,

 {“Name”, “Identifier”, “Role”})

 if ($iSCSIPorts[].length == 0) {

return (null)

 }

 return ($iSCSIPorts[])

}

// MAIN

$iSCSIPorts[] = &getiSCSIPortsOnNode($iSCSINode->)

9.7.4 Identify the iSCSI sessions existing on an iSCSI node.
// DESCRIPTION

// Identify the iSCSI sessions existing on an iSCSI node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.’iSCSI Session’ is included in iSCSICapabilities.SupportedFeatures.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 49

iSCSI Target Ports Subprofile

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361
// 2.The SCSIProtocolController representing the iSCSI Node of interest has

// been previously identified and defined in the $iSCSINode-> variable

// Step 1. Retrieve the CIM_iSCSIProtocolEndpoints for an

// CIM_SCSIProtocolController representing a node.

$iSCSIPorts[] = @getiSCSIPortsOnNode($iSCSINode->)

if ($iSCSIPorts[] == null) {

 <ERROR! No iSCSI ports located on the specified iSCSI node>

}

// Step 2. Retrieve the iSCSI session associated with each iSCSI port.

$iSCSISessions[]

#index = 0

#PropList[] = {“Directionality”, “SessionType”, “TSIH”, “EndPointName”,

“CurrentConnections”, “InitialR2T”, “ImmediateData”,

“MaxOutstandingR2T”, “MaxUnsolicitedFirstDataBurstLength”,

“MaxDataBurstLength”, “AuthenticationMethodUsed”,

“DataSequenceInOrder”, “DataPDUInOrder”, “ErrorRecoveryLevel”}

for (#i in $iSCSIPorts[]) {

 $Sessions[] = Associators($iSCSIPorts[#i].getObjectPath(),

 “CIM_EndpointOfNetworkPipe”,

 “CIM_iSCSISession”,

 “Antecedent”,

 “Dependent”,

#PropList[])

 if ($Sessions[] != null && $Sessions[].length == 1) {

$iSCSISessions[#index++] = $Sessions[0]

 }

}

<EXIT: $iSCSISessions[] contains the iSCSI Sessions>

9.7.5 Create an iSCSI Target Node on an iSCSI Network Entity
// DESCRIPTION

// Create an iSCSI Target Node on an iSCSI Network Entity

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The ComputerSystem representing the Network Entity of interest has been

// previously identified and defined in the $NetworkEntity-> variable.

// MAIN

// Step 1. Locate the CIM_iSCSIConfigurationService hosted by the System.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

if ($iSCSIConfigurationService->[] == null ||
50

 iSCSI Target Ports Subprofile

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404
$iSCSIConfigurationService->[].length == 0) {

 <ERROR! Required iSCSI Configuration Service not available>

}

// Step 2. Examine the capabilities to determine if Node creation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSINodeCreationSupported “})

if ($ConfigurationCapabilities[] == null ||

$ConfigurationCapabilities[].length == 0) {

 <ERROR! Required iSCSI Configuration Service capabilities not available>

}

// Step 3. Create the iSCSI Target Node if supported by the device.

if ($ConfigurationCapabilities[0].iSCSINodeCreationSupported == true) {

 %InArguments[“Alias”] = “Some Target Alias”

 #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

 “CreateiSCSINode”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

$NewNode-> = $OutArguments[“iSCSINode”]

<EXIT: The node was created>

 } else {

<EXIT: The method returned an error; the Node was not created>

 }

} else {

 <EXIT: Node Creation is not supported>

}

9.7.6 Create an iSCSI Target Port on an iSCSI target node.
// DESCRIPTION

// This recipe describes how to create an iSCSI Target Port on an iSCSI target

// node.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of

// interest has been previously identified and defined in the $NetworkEntity->

// variable.

// 2. The object name for the SCSIProtocolController representing the iSCSI Node
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 51

iSCSI Target Ports Subprofile

405
406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432
433

434

435

436

437

438

439

440

441

442

443

444

445

446
// within which to create the iSCSI Port has been identified and defined in the //
$Node-> variable.

// 3. The object names for one or more TCPProtocolEndpoints representing Target

// Network Portals have been previously identified and defined in the

// Portals->[] array variable.

// MAIN

// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem

// by HostedService.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})

// Step 3. Given an instance of CIM_SCSIProtocolController representing a

// Node($Node->), and one or more TCPProtocolEndpoints representing Target

// Network Portals(Portals->[]), invoke the method CreateiSCSIProtocolEndpoint

// to create the iSCSIProtocolEndpoint.

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true)
{

 %InArguments[“iSCSINode”] = $Node->

 %InArguments[“Role”] = 3// “Target”

 %InArguments[“NetworkPortals”] = Portals->[]

 #ReturnValue = InvokeMethod($iSCSIConfigurationService->[0],

 “CreateiSCSIProtocolEndpoint”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

$NewiSCSIProtocolEndpoint-> = $OutArguments[“iSCSIPort”]

<EXIT: The ProtocolEndpoint was created>

 } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not created>

 }
52

 iSCSI Target Ports Subprofile

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464
465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484
485

486

487
} else {

 <EXIT: iSCSIProtocolEndpoint creation is not supported>

}

9.7.7 Add a Network Portal to a Target Port.
// DESCRIPTION

// This recipe describes how to add a Network Portal to a Target Port.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the ComputerSystem representing the Network Entity of

// interest has been previously identified and defined in the $NetworkEntity->

// variable.

// 2. The object name for the instance of iSCSIProtocolEndpoint representing a

// Port has been previously identified and defined in the $iSCSIPort-> variable.

// 3. The object name for the instance of TCPProtocolEndpoint representing a

// Target Network Portal has been previously identified and defined in the

// $Portal-> variable.

// MAIN

// Step 1. Find a CIM_iSCSIConfigurationService associated to ComputerSystem by //
HostedService.

$iSCSIConfigurationService->[] = AssociatorNames($NetworkEntity->,

“CIM_HostedService”,

“CIM_iSCSIConfigurationService”,

“Antecedent”,

“Dependent”)

// Step 2. Examine the associated CIM_iSCSIConfigurationCapabilities to

// determine if Target Port manipulation is supported.

$ConfigurationCapabilities[] = Associators($iSCSIConfigurationService->[0],

“CIM_ElementCapabilities”,

“CIM_iSCSIConfigurationCapabilities”,

“ManagedElement”,

“Capabilities”,

false,

false,

{“iSCSIProtocolEndpointCreationSupported”})

// Step 3. Given an instance of CIM_iSCSIProtocolEndpoint representing a

// Port (iSCSIPort->), and an instance of TCPProtocolEndpoint representing a

// Target Network Portal($Portal->), invoke BindiSCSIProtocolEndpoint().

if ($ConfigurationCapabilities[0].iSCSIProtocolEndpointCreationSupported == true)
{

 %InArguments[“iSCSIPort”] = $iSCSIPort->

 %InArguments[“NetworkPortal”] = $Portal->
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 53

iSCSI Target Ports Subprofile

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528
 #ReturnValue = invokeMethod($iSCSIConfigurationService->[0],

 “BindiSCSIProtocolEndpoint”,

 %InArguments[],

 %OutArguments[])

 if (#ReturnValue == 0) {

<EXIT: The ProtocolEndpoint was modified>

 } else {

<EXIT: The method returned an error; the ProtocolEndpoint was not modified>

 }

} else {

 <EXIT: iSCSIProtocolEndpoint modification is not supported>

}

9.7.8 Determine the health of Nodes in a target system.
//

// DESCRIPTION

// Recipe ISCSI_TRGT08:

// Determine the health of Nodes in a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the SCSIProtocolController representing

// the iSCSI Node of interest has been previously identified and

// defined in the $iSCSINode-> variable

//

// Step 1.

// Given an instance of CIM_SCSIProtocolController($iSCSINode->) ,

// get the instances of CIM_iSCSISessionFailures and

// CIM_iSCSILoginStatistics associated by ElementStatisticalData.

//

$SessionFailures[] = Associators(

$iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSISessionFailures”,

“ManagedElement”,

“Stats”);

$LoginStatistics[] = Associators(

$iSCSINode->,

“CIM_ElementStatisticalData”,

“CIM_iSCSILoginStatistics”,

“ManagedElement”,

“Stats”);

<EXIT: The statistics are in $SessionFailures[0] and $LoginStatistics[0] >
54

 iSCSI Target Ports Subprofile

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569
9.7.9 Determine the health of a Session on a target system.
//

// DESCRIPTION

// Recipe ISCSI_TRGT09:

// Determine the health of a Session on a target system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.’iSCSI Session’ is included in iSCSICapabilities.SupportedFeatures.

// 2.The object name for the iSCSISession of interest has been

// previously identified and defined in the $iSCSISession-> variable.

// Step 1.

// Given an instance of CIM_iSCSISession,

// get the instance of CIM_iSCSISessionStatistics

// associated by ElementStatisticalData.

//

$SessionStatistics[] = Associators(

$iSCSISession->,

“CIM_ElementStatisticalData”,

“CIM_iSCSISessionStatistics”,

“ManagedElement”,

“Stats”);

<EXIT: The statistics are in $SessionStatistics[0]>

9.7.10 Configure the default settings for Sessions created in a target computer system.
//

// DESCRIPTION

// Recipe ISCSI_TRGT10:

// Configure the default settings for Sessions created in a target

// computer system.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.’iSCSI Session’ is included in iSCSICapabilities.SupportedFeatures.

// 2.The object name for the SCSIProtocolController representing the

// iSCSI Node of interest has been previously identified and defined

// in the $iSCSINode-> variable.

//

// Step 1.

// Find and modify an instance of CIM_iSCSISessionSettings associated

// to a ComputerSystem, CIM_SCSIProtocolController, or

// CIM_iSCSIProtocolEndpoint.

//

$SessionSettings[] = Associators(
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 55

iSCSI Target Ports Subprofile

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606
$iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSISessionSettings”,

“ManagedElement”,

“SettingData”);

#MaxConnectionsPerSession = 4;

$SessionSettings[0].MaxConnectionsPerSession = #MaxConnectionsPerSession;

$ModifyInstance(

$SessionSettings[0],

false,

{ “MaxConnectionsPerSession” });

<EXIT: Success>

9.7.11 Configure default settings for Connections on Network Portals used by an iSCSIProtocolEndpoint.
//

// DESCRIPTION

// Recipe ISCSI_TRGT11:

// Configure the default settings for iSCSI Connections created on

// Network Portals used by an iSCSIProtocolEndpoint.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1. The object name for the iSCSI Session of interest has been

// previously identified and defined in the $iSCSISession->

// variable

//

// Step 1.

// Find and modify an instance of CIM_iSCSIConnectionSettings

// associated to a iSCSIProtocolEndpoint($iSCSIProtocolEndpoint->).

//

$ConnectionSettings[] = Associators(

$iSCSIProtocolEndpoint->,

“CIM_ElementSettingData”,

“CIM_iSCSIConnectionSettings”,

“ManagedElement”,

“SettingData”);

#MaxRecvDataSegLength = 4096;

$ConnectionSettings[0].MaxReceiveDataSegmentLength = #MaxRecvDataSegLength;

$ModifyInstance(
56

 iSCSI Target Ports Subprofile

607

608

609

610

611

612

613

614

615

616
$ConnectionSettings[0],

false,

{ “MaxReceiveDataSegmentLength” });`

<EXIT: Success>

9.7.12 Get the statistics for a Session on a target system

The statistics are properties in the same class as the health information; see 9.7.9.

9.7.13 Configure Enable/disable header and data digest

See 9.7.11.

9.8 CIM Elements
Table 28 describes the CIM elements for iSCSI Target Ports.

Table 28 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description

9.8.1 CIM_BindsTo (TCPProtocolEndpoint to
IPProtocolEndpoint)

Mandatory

9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to
TCPProtocolEndpoint)

Mandatory

9.8.3 CIM_ConcreteDependency Mandatory

9.8.4 CIM_DeviceSAPImplementation
(EthernetPort to IPProtocolEndpoint)

Optional

9.8.5 CIM_DeviceSAPImplementation
(EthernetPort to iSCSIProtocolEndpoint)

Optional

9.8.6 CIM_ElementCapabilities
(iSCSIConfigurationCapabilities to System)

Mandatory

9.8.7 CIM_ElementCapabilities
(iSCSIConfigurationCapabilities to
iSCSIConfigurationService)

Conditional Conditional requirement: Active configuration
is supported.

9.8.8 CIM_ElementSettingData
(iSCSIConnectionSettings to
TCPProtocolEndpoint)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.9 CIM_ElementSettingData
(iSCSIConnectionSettings to
iSCSIProtocolEndpoint)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.10 CIM_ElementSettingData
(iSCSISessionSettings to
SCSIProtocolController)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 57

iSCSI Target Ports Subprofile
9.8.11 CIM_ElementSettingData
(iSCSISessionSettings to System)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.12 CIM_ElementSettingData
(iSCSISessionSettings to
iSCSIProtocolEndpoint)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.13 CIM_ElementStatisticalData
(iSCSILoginStatistics to
SCSIProtocolController)

Mandatory

9.8.14 CIM_ElementStatisticalData
(iSCSISessionFailures to
SCSIProtocolController)

Optional

9.8.15 CIM_ElementStatisticalData
(iSCSISessionStatistics to iSCSISession)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.16 CIM_EndpointOfNetworkPipe
(iSCSIConnection to TCPProtocolEndpoint)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.17 CIM_EndpointOfNetworkPipe
(iSCSISession to iSCSIProtocolEndpoint)

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.18 CIM_EthernetPort Optional

9.8.19 CIM_HostedAccessPoint (System to
IPProtocolEndpoint)

Mandatory

9.8.20 CIM_HostedAccessPoint (System to
TCPProtocolEndpoint)

Mandatory

9.8.21 CIM_HostedAccessPoint (System to
iSCSIProtocolEndpoint)

Mandatory

9.8.22 CIM_HostedCollection Mandatory

9.8.23 CIM_HostedService Optional

9.8.24 CIM_IPProtocolEndpoint Mandatory

9.8.25 CIM_MemberOfCollection Optional

9.8.26 CIM_NetworkPipeComposition Optional

9.8.27 CIM_SAPAvailableForElement Mandatory

9.8.28 CIM_SCSIProtocolController Mandatory

9.8.29 CIM_SystemDevice (System to
EthernetPort)

Mandatory This association links all EthernetPorts to the
scoping system.

Table 28 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
58

 iSCSI Target Ports Subprofile
9.8.30 CIM_SystemDevice (System to
SCSIProtocolController)

Mandatory This association links
SCSIProtocolControllers to the scoping
system.

9.8.31 CIM_SystemSpecificCollection Optional

9.8.32 CIM_TCPProtocolEndpoint Mandatory

9.8.33 CIM_iSCSICapabilities Mandatory

9.8.34 CIM_iSCSIConfigurationCapabilities Conditional Conditional requirement: Active configuration
is supported.

9.8.35 CIM_iSCSIConfigurationService Optional

9.8.36 CIM_iSCSIConnection Optional

9.8.37 CIM_iSCSIConnectionSettings Optional

9.8.38 CIM_iSCSILoginStatistics Optional

9.8.39 CIM_iSCSIProtocolEndpoint Mandatory

9.8.40 CIM_iSCSISession Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.41 CIM_iSCSISessionFailures Optional

9.8.42 CIM_iSCSISessionSettings Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session').

9.8.43 CIM_iSCSISessionStatistics Optional

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_EthernetPort

Optional Create EthernetPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_EthernetPort AND
SourceInstance.CIM_EthernetPort::Operation
alStatus <>
PreviousInstance.CIM_EthernetPort::Operatio
nalStatus

Optional CQL -Modify EthernetPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_EthernetPort

Optional Delete EthernetPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_iSCSIProtocolEndpoint

Mandatory Create iSCSIProtocolEndpoint.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_iSCSIProtocolEndpoint

Mandatory Delete SCSIProtocolEndpoint.

Table 28 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 59

iSCSI Target Ports Subprofile

617

618

619

620

621
9.8.1 CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_SCSIProtocolController

Mandatory Create SCSIProtocolController.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_SCSIProtocolController

Mandatory Delete iSCSIProtocolController.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_iSCSISession

Optional Create iSCSISession.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISession AND
SourceInstance.CIM_iSCSISession::CurrentC
onnections <>
PreviousInstance.CIM_iSCSISession::Current
Connections

Optional CQL -Modify iSCSISession.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISession AND
SourceInstance.CurrentConnections <>
PreviousInstance.CurrentConnections

Optional Deprecated WQL -Modify iSCSISession.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_iSCSISession

Optional Delete iSCSISession.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_iSCSIConnection

Optional Create iSCSIConnection.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_iSCSIConnection

Optional Delete iSCSIConnection.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSISessionSettings

Conditional Conditional requirement: This is required if
CIM_iSCSICapabilities.SupportedFeatures =
'3' ('iSCSI Session'). Modify
iSCSISessionSettings.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_iSCSIConnectionSettings

Optional Modify iSCSIConnectionSettings.

Table 28 - CIM Elements for iSCSI Target Ports

Element Name Requirement Description
60

 iSCSI Target Ports Subprofile

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636
Table 29 describes class CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint).

9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 30 describes class CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint).

9.8.3 CIM_ConcreteDependency

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 31 describes class CIM_ConcreteDependency.

9.8.4 CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint)

Created By: Static

Table 29 - SMI Referenced Properties/Methods for CIM_BindsTo (TCPProtocolEndpoint to IPPro-
tocolEndpoint)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 30 - SMI Referenced Properties/Methods for CIM_BindsTo (iSCSIProtocolEndpoint to TCP-
ProtocolEndpoint)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 31 - SMI Referenced Properties/Methods for CIM_ConcreteDependency

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 61

iSCSI Target Ports Subprofile

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 32 describes class CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint).

9.8.5 CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 33 describes class CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint).

9.8.6 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 34 describes class CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System).

Table 32 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort
to IPProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 33 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (EthernetPort
to iSCSIProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 34 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigura-
tionCapabilities to System)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory
62

 iSCSI Target Ports Subprofile

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669
9.8.7 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Active configuration is supported.

Table 35 describes class CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService).

9.8.8 CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 36 describes class CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint).

9.8.9 CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 35 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (iSCSIConfigura-
tionCapabilities to iSCSIConfigurationService)

Properties Flags Requirement Description & Notes

Capabilities Mandatory

ManagedElement Mandatory

Table 36 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnection-
Settings to TCPProtocolEndpoint)

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 63

iSCSI Target Ports Subprofile

670

671

672

673

674

675

676

677

678

679

680

681

682

683
Table 37 describes class CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint).

9.8.10 CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 38 describes class CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController).

9.8.11 CIM_ElementSettingData (iSCSISessionSettings to System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 39 describes class CIM_ElementSettingData (iSCSISessionSettings to System).

9.8.12 CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint)

Table 37 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSIConnection-
Settings to iSCSIProtocolEndpoint)

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 38 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to SCSIProtocolController)

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 39 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to System)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

SettingData Mandatory
64

 iSCSI Target Ports Subprofile

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 40 describes class CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint).

9.8.13 CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 41 describes class CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController).

9.8.14 CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 40 - SMI Referenced Properties/Methods for CIM_ElementSettingData (iSCSISessionSet-
tings to iSCSIProtocolEndpoint)

Properties Flags Requirement Description & Notes

SettingData Mandatory

ManagedElement Mandatory

Table 41 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSILoginStatis-
tics to SCSIProtocolController)

Properties Flags Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 65

iSCSI Target Ports Subprofile

700

701

702

703

704

705

706

707

708

709

710

711

712

713
Table 42 describes class CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController).

9.8.15 CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 43 describes class CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession).

9.8.16 CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 44 describes class CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint).

9.8.17 CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)

Table 42 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionFail-
ures to SCSIProtocolController)

Properties Flags Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory

Table 43 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (iSCSISessionSta-
tistics to iSCSISession)

Properties Flags Requirement Description & Notes

Stats Mandatory

ManagedElement Mandatory

Table 44 - SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSIConnec-
tion to TCPProtocolEndpoint)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
66

 iSCSI Target Ports Subprofile

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 45 describes class CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint).

9.8.18 CIM_EthernetPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 46 describes class CIM_EthernetPort.

9.8.19 CIM_HostedAccessPoint (System to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 45 - SMI Referenced Properties/Methods for CIM_EndpointOfNetworkPipe (iSCSISession to
iSCSIProtocolEndpoint)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 46 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

PermanentAddress CD Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 67

iSCSI Target Ports Subprofile

730

731

732

733

734

735

736

737

738

739

740

741

742

743
Table 47 describes class CIM_HostedAccessPoint (System to IPProtocolEndpoint).

9.8.20 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 48 describes class CIM_HostedAccessPoint (System to TCPProtocolEndpoint).

9.8.21 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 49 describes class CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint).

9.8.22 CIM_HostedCollection

Table 47 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProto-
colEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 48 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPPro-
tocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 49 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSIPro-
tocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
68

 iSCSI Target Ports Subprofile

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 50 describes class CIM_HostedCollection.

9.8.23 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 51 describes class CIM_HostedService.

9.8.24 CIM_IPProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 52 describes class CIM_IPProtocolEndpoint.

Table 50 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 51 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 52 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 69

iSCSI Target Ports Subprofile

761

762

763

764

765

766

767

768

769

770

771

772

773
9.8.25 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 53 describes class CIM_MemberOfCollection.

9.8.26 CIM_NetworkPipeComposition

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 54 describes class CIM_NetworkPipeComposition.

9.8.27 CIM_SAPAvailableForElement

CreationClassName Mandatory

Name Mandatory

IPv4Address CD Optional

IPv6Address CD Optional

ProtocolIFType Mandatory

Table 53 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 54 - SMI Referenced Properties/Methods for CIM_NetworkPipeComposition

Properties Flags Requirement Description & Notes

PartComponent Mandatory

GroupComponent Mandatory

Table 52 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint

Properties Flags Requirement Description & Notes
70

 iSCSI Target Ports Subprofile

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 55 describes class CIM_SAPAvailableForElement.

9.8.28 CIM_SCSIProtocolController

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 56 describes class CIM_SCSIProtocolController.

9.8.29 CIM_SystemDevice (System to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 55 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

AvailableSAP Mandatory

Table 56 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

ElementName Mandatory iSCSI Alias.

Name CD Mandatory

NameFormat Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 71

iSCSI Target Ports Subprofile

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805
Table 57 describes class CIM_SystemDevice (System to EthernetPort).

9.8.30 CIM_SystemDevice (System to SCSIProtocolController)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 58 describes class CIM_SystemDevice (System to SCSIProtocolController).

9.8.31 CIM_SystemSpecificCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 59 describes class CIM_SystemSpecificCollection.

9.8.32 CIM_TCPProtocolEndpoint

Created By: Static
Modified By: Static

Table 57 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 58 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to SCSIProtocol-
Controller)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 59 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory
72

 iSCSI Target Ports Subprofile

806

807

808

809

810

811

812

813

814

815

816
Deleted By: Static
Requirement: Mandatory

Table 60 describes class CIM_TCPProtocolEndpoint.

9.8.33 CIM_iSCSICapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 61 describes class CIM_iSCSICapabilities.

9.8.34 CIM_iSCSIConfigurationCapabilities

Created By: Static

Table 60 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PortNumber Mandatory

ProtocolIFType Mandatory

Table 61 - SMI Referenced Properties/Methods for CIM_iSCSICapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MinimumSpecificatio
nVersionSupported

Mandatory

MaximumSpecificatio
nVersionSupported

Mandatory

AuthenticationMetho
dsSupported

Mandatory

SupportedFeatures Mandatory Experimental.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 73

iSCSI Target Ports Subprofile

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831
Modified By: Static
Deleted By: Static
Requirement: Active configuration is supported.

Table 62 describes class CIM_iSCSIConfigurationCapabilities.

9.8.35 CIM_iSCSIConfigurationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 63 describes class CIM_iSCSIConfigurationService.

9.8.36 CIM_iSCSIConnection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 62 - SMI Referenced Properties/Methods for CIM_iSCSIConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

iSCSINodeCreationS
upported

Mandatory

iSCSIProtocolEndpoi
ntCreationSupported

Mandatory

IdentifierSelectionSu
pported

Mandatory

Table 63 - SMI Referenced Properties/Methods for CIM_iSCSIConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
74

 iSCSI Target Ports Subprofile

832

833

834

835

836

837

838
Table 64 describes class CIM_iSCSIConnection.

9.8.37 CIM_iSCSIConnectionSettings

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 65 describes class CIM_iSCSIConnectionSettings.

Table 64 - SMI Referenced Properties/Methods for CIM_iSCSIConnection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ConnectionID Mandatory

MaxReceiveDataSeg
mentLength

Mandatory

MaxTransmitDataSe
gmentLength

Mandatory

HeaderDigestMethod Mandatory

OtherHeaderDigestM
ethod

Optional

DataDigestMethod Mandatory

OtherDataDigestMet
hod

Optional

ReceivingMarkers Mandatory

SendingMarkers Mandatory

ActiveiSCSIVersion Mandatory

AuthenticationMetho
dUsed

Mandatory

MutualAuthentication Mandatory

Table 65 - SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MaxReceiveDataSeg
mentLength

Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 75

iSCSI Target Ports Subprofile

839

840

841

842

843

844
9.8.38 CIM_iSCSILoginStatistics

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 66 describes class CIM_iSCSILoginStatistics.

PrimaryHeaderDigest
Method

Mandatory

OtherPrimaryHeader
DigestMethod

Optional

PrimaryDataDigestM
ethod

Mandatory

OtherPrimaryDataDig
estMethod

Optional

SecondaryHeaderDig
estMethod

Mandatory

OtherSecondaryHea
derDigestMethod

Optional

SecondaryDataDiges
tMethod

Mandatory

OtherSecondaryData
DigestMethod

Optional

RequestingMarkersO
nReceive

Mandatory

PrimaryAuthenticatio
nMethod

Mandatory

SecondaryAuthentica
tionMethod

Mandatory

Table 66 - SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

LoginFailures Optional

LastLoginFailureTime Optional

Table 65 - SMI Referenced Properties/Methods for CIM_iSCSIConnectionSettings

Properties Flags Requirement Description & Notes
76

 iSCSI Target Ports Subprofile

845

846

847

848

849

850
9.8.39 CIM_iSCSIProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 67 describes class CIM_iSCSIProtocolEndpoint.

LastLoginFailureType Optional

OtherLastLoginFailur
eType

Optional

LastLoginFailureRem
oteNodeName

Optional

LastLoginFailureRem
oteAddressType

Optional

LastLoginFailureRem
oteAddress

Optional

SuccessfulLogins Optional

NegotiationLoginFail
ures

Optional

AuthenticationLoginF
ailures

Optional

AuthorizationLoginFa
ilures

Optional

LoginRedirects Optional

OtherLoginFailures Optional

NormalLogouts Optional

OtherLogouts Optional

Table 67 - SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name CD Mandatory

Table 66 - SMI Referenced Properties/Methods for CIM_iSCSILoginStatistics

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 77

iSCSI Target Ports Subprofile

851

852

853

854

855

856
9.8.40 CIM_iSCSISession

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

Table 68 describes class CIM_iSCSISession.

ConnectionType Mandatory iSCSI.

Identifier Mandatory ISID or TPGT.

ProtocolIFType Mandatory Other.

OtherTypeDescriptio
n

Mandatory

Role Mandatory Shall be 3 (Target) or 4 (Both Initiator and Target).

Table 68 - SMI Referenced Properties/Methods for CIM_iSCSISession

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Directionality Mandatory

SessionType Mandatory

TSIH Mandatory

EndPointName Mandatory

CurrentConnections Mandatory

InitialR2T Mandatory

ImmediateData Mandatory

MaxOutstandingR2T Mandatory

MaxUnsolicitedFirstD
ataBurstLength

Mandatory

MaxDataBurstLength Mandatory

DataSequenceInOrd
er

Mandatory

DataPDUInOrder Mandatory

ErrorRecoveryLevel Mandatory

Table 67 - SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint

Properties Flags Requirement Description & Notes
78

 iSCSI Target Ports Subprofile

857

858

859

860

861

862

863

864

865

866

867
9.8.41 CIM_iSCSISessionFailures

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 69 describes class CIM_iSCSISessionFailures.

9.8.42 CIM_iSCSISessionSettings

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_iSCSICapabilities.SupportedFeatures = '3' ('iSCSI Session').

MaxConnectionsPer
Session

Mandatory

DefaultTimeToWait Mandatory

DefaultTimeToRetain Mandatory

Table 69 - SMI Referenced Properties/Methods for CIM_iSCSISessionFailures

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SessionFailures Optional

LastSessionFailureTy
pe

Optional

OtherLastSessionFail
ureType

Optional

LastSessionFailureR
emoteNodeName

Optional

SessionDigestFailure
s

Optional

SessionConnectionTi
meoutFailures

Optional

SessionFormatErrors Optional

Table 68 - SMI Referenced Properties/Methods for CIM_iSCSISession

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 79

iSCSI Target Ports Subprofile

868

869

870

871

872

873

874
Table 70 describes class CIM_iSCSISessionSettings.

9.8.43 CIM_iSCSISessionStatistics

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 71 describes class CIM_iSCSISessionStatistics.

Table 70 - SMI Referenced Properties/Methods for CIM_iSCSISessionSettings

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

MaxConnectionsPer
Session

Mandatory

InitialR2TPreference Mandatory

ImmediateDataPrefer
ence

Mandatory

MaxOutstandingR2T Mandatory

MaxUnsolicitedFirstD
ataBurstLength

Mandatory

MaxDataBurstLength Mandatory

DataSequenceInOrd
erPreference

Mandatory

DataPDUInOrderPref
erence

Mandatory

DefaultTimeToWaitPr
eference

Mandatory

DefaultTimeToRetain
Preference

Mandatory

ErrorRecoveryLevelP
reference

Mandatory

Table 71 - SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory
80

 iSCSI Target Ports Subprofile
STABLE

CommandPDUsTran
sferred

Optional

ResponsePDUsTran
sferred

Optional

BytesTransmitted Optional

BytesReceived Optional

DigestErrors Optional

ConnectionTimeoutE
rrors

Optional

Table 71 - SMI Referenced Properties/Methods for CIM_iSCSISessionStatistics

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 81

iSCSI Target Ports Subprofile
82

 Serial Attached SCSI (SAS) Target Port Subprofile

1

2

3

4

5

6

7

8

9

EXPERIMENTAL

Clause 10: Serial Attached SCSI (SAS) Target Port Subprofile

10.1 Synopsis
Profile Name: SAS Target Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.13.1

Table 72 describes the related profiles for SAS Target Ports.

Central Class: CIM_SASPort

Scoping Class: a CIM_System in a separate autonomous profile

Table 72 - Related Profiles for SAS Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 83

Serial Attached SCSI (SAS) Target Port Subprofile

10

11
12

13
14
15

16
17

18

19
10.2 Description
Figure 11 illustrates the Serial Attached SCSI (SAS) Target Port. Serial Attached SCSI is a lower cost network
interface for SCSI communication.

SCSIProtocolEndpoint.ConnectionType shall be set to “SAS”. SASPort represents the port and is connected to
SCSIProtocolEndpoint by DeviceSAPImplemetation. The SASPort contains information about the speed for the
bus.

The SASPHY class represents a SAS PHY. A SAS Port may have multiple associated PHYs; generally, all the
PHYs are connected to the same initiator or expander and provide additional bandwidth.

10.2.1 Health and Fault Management

Table 73 describes SASPort OperationalStatus.

Figure 11 - Serial Attached SCSI (SAS) Target Port Instance Diagram

Table 73 - SASPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
84

 Serial Attached SCSI (SAS) Target Port Subprofile

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35
10.3 Methods

10.3.1 Extrinsic Methods of this Subprofile

10.3.2 Intrinsic Methods of this Subprofile
The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

10.4 Client Considerations and Recipes
None

10.5 CIM Elements
Table 74 describes the CIM elements for SAS Target Ports.

Table 74 - CIM Elements for SAS Target Ports

Element Name Requirement Description

10.5.1 CIM_ConcreteComponent Mandatory Associates SASPort and SASPHY.

10.5.2 CIM_DeviceSAPImplementation Mandatory Associates SASPort and
SCSIProtocolEndpoint.

10.5.3 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
ProtocolEndpoint.

10.5.4 CIM_SASPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

10.5.5 CIM_SCSIProtocolEndpoint Mandatory Represents management characteristics
related to the SCSI command set.

10.5.6 CIM_SystemDevice (Port) Mandatory Associates ComputerSystem to LogicalPort.

10.5.7 CIM_SystemDevice (SAS PHY) Mandatory Associates ComputerSystem to SASPHY.

10.5.8 SNIA_SASPHY Mandatory Several SASPHYs may together be
aggregated into a SAS Logical Port.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 85

Serial Attached SCSI (SAS) Target Port Subprofile

36

37

38

39

40

41

42

43

44
45
46

47

48

49

50
10.5.1 CIM_ConcreteComponent

Associates SASPort and SASPHY.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 75 describes class CIM_ConcreteComponent.

10.5.2 CIM_DeviceSAPImplementation

Associates SASPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Target Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SASPort

Mandatory CQL -Create SASPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_SASPort
AND
SourceInstance.CIM_SASPort::OperationalSt
atus <>
PreviousInstance.SAS_Port::OperationalStatu
s

Mandatory CQL -Modify SASPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SASPort

Mandatory CQL -Delete SASPort.

Table 75 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes

PartComponent Mandatory Reference to SASPHY.

GroupComponent Mandatory Reference to SASPort.

Table 74 - CIM Elements for SAS Target Ports

Element Name Requirement Description
86

 Serial Attached SCSI (SAS) Target Port Subprofile

51

52

53
54
55

56

57

58

59

60

61

62
63
64

65

66

67

68

69
Table 76 describes class CIM_DeviceSAPImplementation.

10.5.3 CIM_HostedAccessPoint

Associates ComputerSystem to ProtocolEndpoint. Limit to targets. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 77 describes class CIM_HostedAccessPoint.

10.5.4 CIM_SASPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Target Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 78 describes class CIM_SASPort.

Table 76 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to SASPort.

Table 77 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in the referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Table 78 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 87

Serial Attached SCSI (SAS) Target Port Subprofile

70

71
72
73

74

75

76

77

78

79

80
81
82

83

84

85

86
10.5.5 CIM_SCSIProtocolEndpoint

Represents management characteristics related to the SCSI command set. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 79 describes class CIM_SCSIProtocolEndpoint.

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 2 (Front-end Only).

PortType
(overridden)

Mandatory Shall be 94 (SAS).

PermanentAddress
(added)

Mandatory SAS Address. Shall be 16 un-separated upper case hex
digits.

Table 79 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

ConnectionType
(added)

Mandatory Shall be 8 (SAS).

Role (added) Mandatory Shall be 3 (Target).

Table 78 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Flags Requirement Description & Notes
88

 Serial Attached SCSI (SAS) Target Port Subprofile

87

88

89

90

91

92

93

94

95

96

97

98
10.5.6 CIM_SystemDevice (Port)

Associates ComputerSystem to LogicalPort. The class definition specializes the CIM_SystemDevice definition in
the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 80 describes class CIM_SystemDevice (Port).

10.5.7 CIM_SystemDevice (SAS PHY)

Associates ComputerSystem to SASPHY.

Requirement: Mandatory

Table 81 describes class CIM_SystemDevice (SAS PHY).

10.5.8 SNIA_SASPHY

Several SASPHYs may together be aggregated into a SAS Logical Port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 80 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem in the referencing profile.

PartComponent
(overridden)

Mandatory Reference to SASPort.

Table 81 - SMI Referenced Properties/Methods for CIM_SystemDevice (SAS PHY)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent Mandatory Reference to SASPHY.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 89

Serial Attached SCSI (SAS) Target Port Subprofile
Table 82 describes class SNIA_SASPHY.

EXPERIMENTAL

Table 82 - SMI Referenced Properties/Methods for SNIA_SASPHY

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HardwareMinimumP
hysicalLinkRate

Mandatory

HardwareMaximumP
hysicalLinkRate

Mandatory

ProgrammedMinimu
mPhysicalLinkRate

Mandatory

ProgrammedMaximu
mPhysicalLinkRate

Mandatory

NegotiatedPhysicalLi
nkRate

Mandatory
90

 Serial ATA (SATA) Target Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12
13
EXPERIMENTAL

Clause 11: Serial ATA (SATA) Target Ports Profile

11.1 Synopsis
Profile Name: SATA Target Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.13.1

Table 83 describes the related profiles for SATA Target Ports.

Central Class: CIM_SASPortt

Scoping Class: a CIM_System in a separate autonomous profile

Model Serial ATA (SATA) target ports.

11.2 Description
Figure 12 illustrates the Serial ATA Target Port Profile. Serial ATA has a simple bus structure. The SATAPort class
will include attributes that specifies bus speed and other hardware options.

Table 83 - Related Profiles for SATA Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 91

Serial ATA (SATA) Target Ports Profile

14

15
16

17

18

19

20

21

22
This model will not be used with LMM common subprofile. All nodes on the bus will have access to each other.

ProtocolEndpoint.ConnectionType shall be set to “other”. The ProtocolEndPoint class is associated to the ATAPort
class with DevImplementation. The ATAPort class contains all the bus operational settings.

11.2.1 Health and Fault Management

Table 84 describes ATAPort OperationalStatus.

11.3 Methods of this Subprofile
None

11.4 Client Considerations and Recipes
None

Figure 12 - SATA Target Port Instance Diagram

Table 84 - ATAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
92

 Serial ATA (SATA) Target Ports Profile

23

24

25

26
27
28

29

30

31

32

33
11.5 CIM Elements
Table 85 describes the CIM elements for SATA Target Ports.

11.5.1 CIM_ATAPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Target Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 86 describes class CIM_ATAPort.

Table 85 - CIM Elements for SATA Target Ports

Element Name Requirement Description

11.5.1 CIM_ATAPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

11.5.2 CIM_ATAProtocolEndpoint Mandatory Represents management characteristics
related to the ATA command set.

11.5.3 CIM_DeviceSAPImplementation Mandatory Associates front-end ATAPort and target
ATAProtocolEndpoint.

11.5.4 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
ATAProtocolEndpoint.

11.5.5 CIM_SystemDevice (Port) Mandatory Associates ComputerSystem to ATAPort.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ATAPort

Mandatory Create ATAPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_ATAPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Modify ATAPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ATAPort

Mandatory Delete ATAPort.

Table 86 - SMI Referenced Properties/Methods for CIM_ATAPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 93

Serial ATA (SATA) Target Ports Profile

34

35
36
37

38

39

40

41

42

43

44
45
46
47
11.5.2 CIM_ATAProtocolEndpoint

Represents management characteristics related to the ATA command set. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 87 describes class CIM_ATAProtocolEndpoint.

11.5.3 CIM_DeviceSAPImplementation

Associates front-end ATAPort and target ATAProtocolEndpoint. Limit to target ProtocolEndpoints and front-end
ports. The class definition specializes the CIM_DeviceSAPImplementation definition in the Generic Target Ports
profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most
column.

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 2 (Front-end Only).

PortType
(overridden)

Mandatory Shall be 92|93 (SATA or SATA2).

Table 87 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'ATA'.

ConnectionType
(added)

Mandatory Shall be 3 (SATA).

Role (added) Mandatory Shall be 3 (Target).

Table 86 - SMI Referenced Properties/Methods for CIM_ATAPort

Properties Flags Requirement Description & Notes
94

 Serial ATA (SATA) Target Ports Profile

48

49

50

51

52

53

54
55
56

57

58

59

60

61

62

63
64
65

66

67

68

69
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 88 describes class CIM_DeviceSAPImplementation.

11.5.4 CIM_HostedAccessPoint

Associates ComputerSystem to ATAProtocolEndpoint. Limit to targets. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 89 describes class CIM_HostedAccessPoint.

11.5.5 CIM_SystemDevice (Port)

Associates ComputerSystem to ATAPort. The class definition specializes the CIM_SystemDevice definition in the
Generic Target Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 88 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to ATAProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to ATAPort.

Table 89 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent
(overridden)

Mandatory

Dependent
(overridden)

Mandatory Reference to ATAProtocolEndpoint.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 95

Serial ATA (SATA) Target Ports Profile

70
 Table 90 describes class CIM_SystemDevice (Port).

EXPERIMENTAL

Table 90 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent
(overridden)

Mandatory Reference to ComputerSystem in referencing profile.

PartComponent
(overridden)

Mandatory Reference to ATAPort.
96

 SB Target Ports Profile

1

2

3

4

5

6

7

8

9

10

11
12
13

14
15
16
17
18
19

20

21
22

23

24
EXPERIMENTAL

Clause 12: SB Target Ports Profile

12.1 Synopsis
Profile Name: SB Target Ports (Component Profile)

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.13

Table 91 describes the related profiles for SB Target Ports.

Central Class: CIM_FCPort

Scoping Class: CIM_System

12.2 Description
The SB Target Port Profile models the SB (Single Byte) Fibre Channel specific aspects of a target storage system.
The Single Byte protocols are FC4 protocols that support mainframe IO (as opposed to SCSI, which supports IO
from non-mainframe systems such as Unix or Windows systems).

The SB Target Port Profile provides a way for storage profiles to model target ports that are dedicated to serving
SB hosts attachment. With this support a client will be able to distinguish FC ports that are provided for SCSI
access from FC Ports that are provided for mainframe attachment. This is an important distinction for management,
since fabric connectivity collections for SB would typically be separate for fabric connectivity collections for SCSI.
Similarly, management functions for masking and mapping are somewhat different for SB than SCSI. So, it is
important for management applications to be aware of the distinctions.

The SB Target Port Profile specializes the Generic Target Port Profile.

For SB enabled Fibre Channel ports, the concrete subclass of LogicalPort is FCPort. FCPort is always associated
1-1 with a SNIA_SBProtocolEndpoint instance.

12.3 Implementation
Figure 13 illustrates the SB Target Port Profile.

Table 91 - Related Profiles for SB Target Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 97

SB Target Ports Profile

25
26
27

28
29

30

31

32
33
SB Ports are Fibre Channel Ports with the SupportedFC4Types[] and ActiveFC4Types[] arrays holding the value
“28” (for “FC-SB-2 Control Unit”). The SupportedFC4Types[] property shall contain the value “28”. The
ActiveFC4Types[] property shall contain the value “28” for FCPorts that are actively supporting SB protocols.

The FCPort shall also support an SBProtocolEndpoint with a role property of either “3” (“Target”) or “4” (“Both
initiator and target”).

For the SB Target Port Profile, the FCPort is the central class of the Profile.

12.4 Health and Fault Management Consideration
Table 92 defines the SMI-S defined meanings of the OperationalStatus property for FCPorts used in the SB Target
Port Profile.

Figure 13 - SB Target Port Instance Diagram

Table 92 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled
98

 SB Target Ports Profile

34

35

36

37

38

39

40
41

42

43

44

45

46

47

48

49

50

51

52
12.5 Cascading Considerations
None

12.6 Methods of the Profile

12.6.1 Extrinsic Methods of the Profile

None

12.6.2 Intrinsic Methods of the Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

12.7 Client Considerations and Recipes
None

12.8 CIM Elements
Table 93 describes the CIM elements for SB Target Ports.

InService Port is in self test

Unknown

Table 93 - CIM Elements for SB Target Ports

Element Name Requirement Description

12.8.1 CIM_DeviceSAPImplementation Mandatory Associates front-end FCPort and target
SBProtocolEndpoint.

12.8.2 CIM_FCPort Mandatory The FCPort provides transport for SB
protocols.

12.8.3 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
SBProtocolEndpoint.

Table 92 - FCPort OperationalStatus

OperationalStatus Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 99

SB Target Ports Profile

53

54
55
56

57

58

59

60

61

62

63
64
65
12.8.1 CIM_DeviceSAPImplementation

Associates front-end FCPort and target SBProtocolEndpoint. Limit to target ProtocolEndpoints and front-end ports.
The class definition specializes the CIM_DeviceSAPImplementation definition in the Generic Target Ports profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 94 describes class CIM_DeviceSAPImplementation.

12.8.2 CIM_FCPort

The CIM_FCPort class for SB Target Ports is the same as the FC Target Port class, except that the
SupportedFC4Types and ActiveFC4Types properties are mandatory, and the SupportedFC4Types shall contain
"28" and the ActiveFC4Types should contain "28" to indicate support for FC-SB-2 Control Unit functions. The class

12.8.4 CIM_SystemDevice (Port) Mandatory Associates controller ComputerSystem to
FCPort.

12.8.5 SNIA_SBProtocolEndpoint Mandatory This defines the protocol being used on the
FC Port as SB (Single Byte).

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Mandatory Create FCPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change to FCPort
OperationalStatus.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Mandatory CQL -Change to FCPort OperationalStatus.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Mandatory Delete FCPort.

Table 94 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory

Antecedent
(overridden)

Mandatory

Table 93 - CIM Elements for SB Target Ports

Element Name Requirement Description
100

 SB Target Ports Profile

66
67

68

69

70

71

72

73

74
75
76

77

78

79

80
definition specializes the CIM_LogicalPort definition in the Generic Target Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 95 describes class CIM_FCPort.

12.8.3 CIM_HostedAccessPoint

Associates ComputerSystem to SBProtocolEndpoint. Limit to targets (Role = 3). The class definition specializes
the CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 95 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 2 (Front-end Only).

PortType
(overridden)

Optional

PermanentAddress
(added)

CD Mandatory Port WWN. Shall be 16 unseparated uppercase hex digits.

SupportedCOS
(added)

Optional

ActiveCOS (added) Optional

SupportedFC4Types
(added)

Mandatory For SB Target Ports this array shall contain 28 (FC-SB-2
Control Unit).

ActiveFC4Types
(added)

Mandatory For SB Target Ports this array should contain 28 (FC-SB-2
Control Unit).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 101

SB Target Ports Profile

81

82

83
84
85

86

87

88

89

90

91

92
93
94
95

96

97

98

99
Table 96 describes class CIM_HostedAccessPoint.

12.8.4 CIM_SystemDevice (Port)

Associates controller ComputerSystem to FCPort. The class definition specializes the CIM_SystemDevice
definition in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 97 describes class CIM_SystemDevice (Port).

12.8.5 SNIA_SBProtocolEndpoint

The SNIA_SBProtocolEndpoint specializes the Generic Target Port CIM_ProtocolEndpoint. The main difference is
that the OtherTypeDescription is set to "SB". The class definition specializes the CIM_ProtocolEndpoint definition
in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 96 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in the referencing profile.

Dependent
(overridden)

Mandatory Reference to SBProtocolEndpoint.

Table 97 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent
(overridden)

Mandatory Reference to ComputerSystem in the referencing profile.

PartComponent
(overridden)

Mandatory Reference to FCPort.
102

 SB Target Ports Profile

100
 Table 98 describes class SNIA_SBProtocolEndpoint.

EXPERIMENTAL

Table 98 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SB'.

Role (added) Mandatory Shall be 3 (Target).

ConnectionType
(added)

Mandatory Shall be 2 (Fibre Channel).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 103

SB Target Ports Profile
104

 Direct Attach (DA) Ports Profile

1

2

3
4

5
6

7
8

9
10
11
12

13

14
EXPERIMENTAL

Clause 13: Direct Attach (DA) Ports Profile

13.1 Description
The DAPort (Direct Attach) port models storage systems that attach directly to buses in a host system (e.g., PCI,
PCI-E, and chip interfaces on a motherboard). The DAPort can be viewed as both the initiator and Target ports.

This port can not be used with the LUN Mapping and Masking Profile. All volumes served by this port are fully
accessible by the host system.

Figure 14 illustrates the Direct Attach (DA) Ports Profile. Volumes served by this port shall be discovered and
presented by the Host Discovered Resources Profile.

The DAPort class is connected to the ProtocolEndpoint using the DeviceSAPImplementation association and to
the controller ComputerSystem (in the Host Hardware RAID Controller Profile) using SystemDevice.
SCSIProtocolController is associated to the controller COmputerSystem from the same ComputerSystem using
HostedAccessPoint.

13.2 Health and Fault Management
Not defined in this standard.

Figure 14 - DA Port Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 105

Direct Attach (DA) Ports Profile

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29
30

31

32

33

34
13.3 Supported Profiles and Packages
Related Profiles for DA Target Ports: Not defined in this standard.

13.4 Extrinsic Methods
Not defined in this standard.

13.5 Client Considerations and Recipes
Not defined in this standard.

13.6 Registered Name and Version
DA Target Ports version 1.4.0 (Component Profile)

CIM Schema Version: 2.11.0

Specializes SNIA Generic Target Ports version 1.4.0

13.7 CIM Elements
Table 99 describes the CIM elements for DA Target Ports.

13.7.1 CIM_DAPort

Models the "port" emulated by a host RAID controller. The class definition specializes the CIM_LogicalPort
definition in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 99 - CIM Elements for DA Target Ports

Element Name Requirement Description

13.7.1 CIM_DAPort Mandatory Models the "port" emulated by a host RAID
controller.

13.7.2 CIM_DeviceSAPImplementation Mandatory Associates DAPort and
SCSIProtocolEndpoint.

13.7.3 CIM_HostedAccessPoint Mandatory Associates ComputerSystem to
SCSIProtocolEndpoint.

13.7.4 CIM_SCSIProtocolEndpoint Mandatory ProtocolEndpoint representing support for
SCSI.

13.7.5 CIM_SystemDevice (Port) Mandatory Associates controller ComputerSystem to
DAPort.
106

 Direct Attach (DA) Ports Profile

35

36

37
38
39

40

41

42

43

44

45

46
47
48

49

50

51

52
Table 100 describes class CIM_DAPort.

13.7.2 CIM_DeviceSAPImplementation

Associates DAPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Target Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 101 describes class CIM_DeviceSAPImplementation.

13.7.3 CIM_HostedAccessPoint

Associates ComputerSystem to SCSIProtocolEndpoint. Limit to targets. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Target Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 100 - SMI Referenced Properties/Methods for CIM_DAPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 2 (Front-end Only).

PortType
(overridden)

Optional Not defined in this version of the standard.

Table 101 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to DAPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 107

Direct Attach (DA) Ports Profile

53

54

55
56
57

58

59

60

61

62

63

64
65
66
Table 102 describes class CIM_HostedAccessPoint.

13.7.4 CIM_SCSIProtocolEndpoint

ProtocolEndpoint representing support for SCSI. The class definition specializes the CIM_ProtocolEndpoint
definition in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 103 describes class CIM_SCSIProtocolEndpoint.

13.7.5 CIM_SystemDevice (Port)

Associates controller ComputerSystem to DAPort. The class definition specializes the CIM_SystemDevice
definition in the Generic Target Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Table 102 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent
(overridden)

Mandatory Reference to controller ComputerSystem.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Table 103 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

Role (added) Mandatory Shall be 3 (Target).

ConnectionType
(added)

Mandatory Shall be 1 (Other).

OtherConnectionTyp
e (added)

Mandatory
108

 Direct Attach (DA) Ports Profile

67

68

69

70

71
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 104 describes class CIM_SystemDevice (Port).

EXPERIMENTAL

Table 104 - SMI Referenced Properties/Methods for CIM_SystemDevice (Port)

Properties Flags Requirement Description & Notes

GroupComponent
(overridden)

Mandatory Reference to controller ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to DAPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 109

Direct Attach (DA) Ports Profile
110

 Generic Initiator Ports Profile

1

2

3

4

5

6

7

8

9
10

11
12

13

14
15

16

17

18
19
20
21
22
23

24
EXPERIMENTAL

Clause 14: Generic Initiator Ports Profile

14.1 Synopsis
Profile name: Generic Initiator Ports

Version: 1.4.0

Organization: SNIA

CIM schema version: 2.9.0 (later schema versions may be required for specializations)

Central Class: CIM_LogicalPort

Scoping Class: a CIM_System in a separate autonomous profile

The Generic Initiator Port Profile models the generic management interfaces of initiator ports in host adaptors or
storage systems.

This abstract profile specification shall not be directly implemented; implementations shall be based on a profile
specification that specializes the requirements of this profile.

14.2 Description
The Generic Initiator Port Profile models the generic behavior of initiator ports in host adaptors. It uses the same
primary classes as the Generic Target Port Profile (see Clause 6: Generic Target Ports Profile)

14.3 Implementation
The initiator port is modeled as a ProtocolEndpoint connected to a LogicalPort.

The LogicalDevice instances may represent local storage (embedded in the system containing the initiator ports) or
remote storage. When it represents remote storage the Name and NameFormat properties are used as
correlatable ids to reference the remote device. When the LogicalDevice represents local disk storage, it may be
represented as an instance of StorageVolume (subclass of LogicalDevice) or part of an instance of the Disk Drive
Lite Profile. A property on LogicalPort called UsageRestriction is available to indicate whether the controller is
capable of providing a “front end” (target), a “back end” (initiator), or both interfaces.

Figure 15 depicts the generic model

Figure 15 - Generic Initiator Port Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 111

Generic Initiator Ports Profile

25

26
27

28
29
30
31

32
33
34
35

36
37
38
14.3.1 Remote Device Models

The implementation may optionally include discovered remote elements. There are two optional approaches to
modeling remote elements, depending on the capabilities of the underlying host drivers

The first approach is to model a collection of ports representing the local and remote ports that are know to be
connected. This approach is appropriate for ATA device and when the underlying drivers or software is limited to
information about remote ports and does not include details of the logical devices connected to remote ports.
Figure 16 depicts the optional connectivity collection model.

The nature of membership in the collection varies with transports and configuration options. For example, in a
parallel SCSI environment, the ConnectivityCollection includes all initiators/targets attached to the bus. In an FC
fabric environment, the ConnectivityCollection contains ports that share a zone. In many cases, the
ConnectivityCollection could include remote initiators as well as remote devices.

The second approach to modeling remote devices is to include the full initiator/target/logical-unit path model that
describes multipath connectivity. This approach has the advantage of including the logical units and including the
full path connectivity. The disadvantage is that some OSes handle multipath support in different components from

Figure 16 - Optional Connectivity Collection Model
112

 Generic Initiator Ports Profile

39
40

41
42

43

44
45
46
47
48
49
HBA support, making it more efficient to provide the multipath model as part of the Host Discovered Resources
Profile. Figure 17 depicts the optional full-path model.

The instrumentation may support the full-path and connectivity collection options by making appropriate
ProtocolEndpoints members of ConnectivityCollections.

14.3.1.1 Optional Model for Attached Disks
Disks are modeled using the full-path model and the Disk Drive Lite Profile. The appropriate subclass of
InitiatorTargetLogicalUnitPath shall be dependent on whether the disks use the SCSI, ATA or SB commend set.
This association references StorageExtent and initiator and target ProtocolEndpoints. The association also
provides the disk’s logical unit number. The target ProtocolEndpoint referenced from InitiatorTargetLogicalUnitPath
shall be the ProtocolEndpoint from the Disk Drive Lite Profile associated indirectly to StorageExtent via DiskDrive.
This is the same ProtocolEndpoint described as the optional remote ProtocolEndpoint in initiator ports profiles.

Figure 17 - Optional Full-Path Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 113

Generic Initiator Ports Profile

50
51
The ProtocolEndpoints may be associated to a ConnectivityCollection representing a collection of logically
connected devices, as illustrated in Figure 18.

Figure 18 - HBA and Disk Model
114

 Generic Initiator Ports Profile

52

53
54
55

56

57
58
14.3.1.2 Optional Model for attached Tape/CD/DVD Drives
The model, illustrated in Figure 19, and requirements are similar to those for disks (see 14.3.1.1), but use the
Media Access Device Profile rather than Disk Drive Lite and the appropriate subclass of MediaAccessDevice
rather than DiskDrive.

14.3.1.3 Optional Port Statistics
An implementation of an initiator port profile may optionally support port statistics. Figure 20 depicts the model for
port statistics.

Figure 19 - HBA and Tape or Optical Devices

Figure 20 - Port Statistics
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 115

Generic Initiator Ports Profile

59
60
61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
If a specialization of the profile specifies a subclass of LogicalPortStatistics (e.g., FCPortStatistics), the
implementation should associate that subclass to the appropriate subclass of LogicalPort (e.g., FCPort), as shown
in Figure 21. Otherwise, an implementation should use LogicalPortStatistics directly.

14.3.2 Health and Fault Management Considerations

Not defined in this standard.

14.3.3 Cascading Considerations

Not defined in this standard.

14.4 Methods

14.4.1 Extrinsic Methods of this Profile

None

14.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

Figure 21 - Port Statistics Hierarchy
116

 Generic Initiator Ports Profile

78

79

80

81

82

83

84
• EnumerateInstanceNames

14.5 Use Cases
Not defined in this standard.

14.6 CIM Elements
Table 105 describes the CIM elements for Generic Initiator Ports.

14.6.1 CIM_ConnectivityCollection

Represents a collection of connected ProtocolEndpoints.

Table 105 - CIM Elements for Generic Initiator Ports

Element Name Requirement Description

14.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

14.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint.

14.6.3 CIM_ElementStatisticalData (Port
Statistics)

Optional Connects LogicalPort and
LogicalPortStatistics.

14.6.4 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

14.6.5 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

14.6.6 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

14.6.7 CIM_LogicalPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

14.6.8 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates
ProtocolEndpoints to the
ConnectivityCollection.

14.6.9 CIM_ProtocolEndpoint (Initiator) Mandatory Represents a protocol (command set)
supported by the port. The appropriate
subclass (SCSIProtocolEndpoint,
ATAProtocolEndpoint, SBProtocolEndpoint)
should be used in initiator port specialized
profiles.

14.6.10 CIM_ProtocolEndpoint (Target) Optional Models protocols of remote ports - target
devices and possibly other initiators.

14.6.11 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

14.6.12 SNIA_LogicalPortStatistics Optional Statistics for a port.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 117

Generic Initiator Ports Profile

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 106 describes class CIM_ConnectivityCollection.

14.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 107 describes class CIM_DeviceSAPImplementation.

14.6.3 CIM_ElementStatisticalData (Port Statistics)

Connects LogicalPort and LogicalPortStatistics.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 108 describes class CIM_ElementStatisticalData (Port Statistics).

14.6.4 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Table 106 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 107 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ProtocolEndpoint(Initiator).

Antecedent Mandatory Reference to LogicalPort.

Table 108 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Reference to LogicalPort.

Stats Mandatory Reference to LogicalPortStatistics.
118

 Generic Initiator Ports Profile

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 109 describes class CIM_HostedAccessPoint (Initiator).

14.6.5 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 110 describes class CIM_HostedAccessPoint (Target).

14.6.6 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 111 describes class CIM_HostedCollection (Connectivity Collection).

Table 109 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Initiator).

Table 110 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Target).

Table 111 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 119

Generic Initiator Ports Profile

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141
14.6.7 CIM_LogicalPort

Represents the logical aspects of the physical port and may have multiple associated protocols.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 112 describes class CIM_LogicalPort.

14.6.8 CIM_MemberOfCollection (Connectivity Collection)

Associates ProtocolEndpoints to the ConnectivityCollection.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 113 describes class CIM_MemberOfCollection (Connectivity Collection).

14.6.9 CIM_ProtocolEndpoint (Initiator)

Represents a protocol (command set) supported by the port.

Created By: Static

Table 112 - SMI Referenced Properties/Methods for CIM_LogicalPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or
4 if the port is unrestricted.

PortType Mandatory Initiator port specialized profiles specify the appropriate
subset of values.

Table 113 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member Mandatory Reference to ProtocolEndpoint.

Collection Mandatory Reference to ConnectivityCollection.
120

 Generic Initiator Ports Profile

142

143

144

145

146

147
148
149

150

151

152

153

154
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 114 describes class CIM_ProtocolEndpoint (Initiator).

14.6.10 CIM_ProtocolEndpoint (Target)

Models protocols of remote ports - target devices and possibly other initiators. The appropriate subclass
(SCSIProtocolEndpoint, ATAProtocolEndpoint, SBProtocolEndpoint) should be used in initiator port specialized
profiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 115 describes class CIM_ProtocolEndpoint (Target).

Table 114 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.

Table 115 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 121

Generic Initiator Ports Profile

155

156

157

158

159

160

161

162

163

164

165

166

167

168
14.6.11 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 116 describes class CIM_SystemDevice (Initiator Ports).

14.6.12 SNIA_LogicalPortStatistics

Statistics for a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 117 describes class SNIA_LogicalPortStatistics.

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.

Table 116 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent Mandatory Reference to LogicalPort.

Table 117 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted Mandatory

BytesReceived Mandatory

PacketsTransmitted Mandatory

PacketsReceived Mandatory

Table 115 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes
122

 Generic Initiator Ports Profile
EXPERIMENTAL
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 123

Generic Initiator Ports Profile
124

 Parallel SCSI (SPI) Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
EXPERIMENTAL

Clause 15: Parallel SCSI (SPI) Initiator Ports Profile

15.1 Synopsis
Profile Name: SPI Initiator Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.11.0

Related Profiles for SPI Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_SPIPort

Scoping Class: a CIM_System in a separate autonomous profile

The SPI Initiator Ports Profile models the behavior of a parallel SCSI (SPI) initiator port.

15.2 Description
The SPI Initiator Port Profile defines the model to parallel SCSI ports.

15.3 Implementation
A typical instance diagram is provided in Figure 22.

Figure 22 - SPI Initiator Port Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 125

Parallel SCSI (SPI) Initiator Ports Profile

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
15.3.1 Health and Fault Management Considerations

Table 118 summarizes the Health and Fault Management issues that are unique to this profile.

15.3.2 Cascading Considerations

Not defined in this standard.

15.4 Methods

15.4.1 Extrinsic Methods of this Profile

None

15.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

15.5 Detailed Use Cases and Recipes
None

Table 118 - SPIPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
126

 Parallel SCSI (SPI) Initiator Ports Profile

35

36

37

38
39
40

41

42

43

44
15.6 CIM Elements
Table 119 describes the CIM elements for SPI Initiator Ports.

15.6.1 CIM_ConnectivityCollection

Represents a collection of connected SCSIProtocolEndpoints. The class definition specializes the
CIM_ConnectivityCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 119 - CIM Elements for SPI Initiator Ports

Element Name Requirement Description

15.6.1 CIM_ConnectivityCollection Mandatory Represents a collection of connected
SCSIProtocolEndpoints.

15.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator SPILogicalPort and
SCSIProtocolEndpoint.

15.6.3 CIM_ElementStatisticalData (Port
Statistics)

Mandatory Connects SPIPort and LogicalPortStatistics.

15.6.4 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

15.6.5 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

15.6.6 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

15.6.7 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Represents a
collection of connected
SCSIProtocolEndpoints.

15.6.8
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

15.6.9 CIM_SCSIProtocolEndpoint (Initiator) Mandatory Represents support for the SCSI command
set.

15.6.10 CIM_SCSIProtocolEndpoint (Target) Mandatory Models protocols of remote ports - target
devices and possibly other initiators.

15.6.11 CIM_SPIPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

15.6.12 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

15.6.13 SNIA_LogicalPortStatistics Optional Statistics for a port.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 127

Parallel SCSI (SPI) Initiator Ports Profile

45

46

47
48
49

50

51

52

53

54

55

56
57
58

59

60

61

62

63
Table 120 describes class CIM_ConnectivityCollection.

15.6.2 CIM_DeviceSAPImplementation

Connects Initiator SPILogicalPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 121 describes class CIM_DeviceSAPImplementation.

15.6.3 CIM_ElementStatisticalData (Port Statistics)

Connects SPIPort and LogicalPortStatistics. The class definition specializes the CIM_ElementStatisticalData
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 122 describes class CIM_ElementStatisticalData (Port Statistics).

Table 120 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 121 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Initiator).

Antecedent
(overridden)

Mandatory Reference to SPIPort.

Table 122 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory Reference to SPIPort.

Stats Mandatory Reference to LogicalPortStatistics.
128

 Parallel SCSI (SPI) Initiator Ports Profile

64

65
66
67

68

69

70

71

72

73

74
75
76

77

78

79

80

81

82

83

84

85

86

87
15.6.4 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints. The class definition specializes the CIM_HostedAccessPoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 123 describes class CIM_HostedAccessPoint (Initiator).

15.6.5 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 124 describes class CIM_HostedAccessPoint (Target).

15.6.6 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 123 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Inititor).

Table 124 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Target).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 129

Parallel SCSI (SPI) Initiator Ports Profile

88

89

90
91
92

93

94

95

96

97

98

99

100

101

102

103

104
Table 125 describes class CIM_HostedCollection (Connectivity Collection).

15.6.7 CIM_MemberOfCollection (Connectivity Collection)

Represents a collection of connected SCSIProtocolEndpoints. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 126 describes class CIM_MemberOfCollection (Connectivity Collection).

15.6.8 CIM_SCSIInitiatorTargetLogicalUnitPath

Represents a path between a SCSI initiator, target, and logical unit.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 127 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

Table 125 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Table 126 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to SCSIProtocolEndpoint(Initiator or Target).

Collection Mandatory Reference to ConnectivityCollection.

Table 127 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

LogicalUnit Mandatory Reference to StorageExtent in Disk Drive Lite Profile or
MediaAccessDevice in Media Access Device Profile.

Target Mandatory Reference to SCSIProtocolEndpoint(Target).

Initiator Mandatory Reference to SCSIProtocolEndpoint(Initiatotor).
130

 Parallel SCSI (SPI) Initiator Ports Profile

105

106
107
108

109

110

111

112

113

114

115
116
117
118

119

120

121

122
15.6.9 CIM_SCSIProtocolEndpoint (Initiator)

Represents support for the SCSI command set. The class definition specializes the CIM_ProtocolEndpoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 128 describes class CIM_SCSIProtocolEndpoint (Initiator).

15.6.10 CIM_SCSIProtocolEndpoint (Target)

Models protocols of remote ports - target devices and possibly other initiators. The appropriate subclass
(SCSIProtocolEndpoint, ATAProtocolEndpoint, SBProtocolEndpoint) should be used in initiator port specialized
profiles. The class definition specializes the CIM_ProtocolEndpoint definition in the Generic Initiator Ports profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 128 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType
(added)

Mandatory Shall be 3 (Parallel SCSI).

Role (added) Mandatory Shall be 2 (Initiator).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 131

Parallel SCSI (SPI) Initiator Ports Profile

123

124

125
126
127

128

129

130

131

132
Table 129 describes class CIM_SCSIProtocolEndpoint (Target).

15.6.11 CIM_SPIPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 130 describes class CIM_SPIPort.

Table 129 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.

ConnectionType
(added)

Mandatory Shall be 3 (Parallel SCSI).

Table 130 - SMI Referenced Properties/Methods for CIM_SPIPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus
(overridden)

Mandatory Shall be 0 (Unknown), 2 (OK), 6 (Error), 10 (Stopped), or 11
(In Service).

UsageRestriction
(overridden)

Mandatory Shall be 3 (Back-end Only).

PortType
(overridden)

Mandatory Shall be 140 (SCSI Parallel).
132

 Parallel SCSI (SPI) Initiator Ports Profile

133

134
135
136

137

138

139

140

141

142

143

144

145

146

147

148
15.6.12 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports. The class definition specializes the CIM_SystemDevice definition in the
Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 131 describes class CIM_SystemDevice (Initiator Ports).

15.6.13 SNIA_LogicalPortStatistics

Statistics for a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 132 describes class SNIA_LogicalPortStatistics.

EXPERIMENTAL

Table 131 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to SPIPort(Initiator).

Table 132 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted Mandatory

BytesReceived Mandatory

PacketsTransmitted Mandatory

PacketsReceived Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 133

Parallel SCSI (SPI) Initiator Ports Profile
134

 iSCSI Initiator Port Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16
17
18

19
20
21
22
23
EXPERIMENTAL

Clause 16: iSCSI Initiator Port Profile

16.1 Synopsis
Profile Name: iSCSI Initiator Ports (Component Profile)

Version: 1.2.0

Organization: SNIA

CIM Schema Version: 2.13.1

Table 133 describes the related profiles for iSCSI Initiator Ports.

Specializes: Generic Initiator Port Profile

Central Class: CIM_EthernetPort

Scoping Class: a CIM_System in a separate autonomous profile

Models an adapter (NIC, HBA, TOE) for iSCSI.

16.2 Description
Models an adapter (NIC, HBA, TOE) for iSCSI.

16.3 Implementation
Other port profiles have a single physical port (LogicalPort subclass) associated with each SCSI initiator
(SCSIProtocolEndpoint). iSCSI allows multiple connections (each with a single Ethernet port) in a session that acts
as a SCSI initiator. This profile includes the subset of classes that model the SCSI initiator and its relationship to
logical classes that model physical elements (Ethernet ports).

Figure 23 depicts a configuration with an initiator with two Ethernet ports that are part of a single session that acts
as a SCSI initiator. The Ethernet ports (referred to in iSCSI literature as Network Portals) are modeled as instances
of EthernetPort, IPProtocolEndpoint, and TCPProtocolEndpoint with 1-1 cardinality. These ports are in the initiator
side, the target ports are not required in this profile. Note that all ProtocolEndpoint instances need a
HostAccessPoint association to the ComputerSystem, some are omitted to keep the diagram less cluttered.

Table 133 - Related Profiles for iSCSI Initiator Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 135

iSCSI Initiator Port Profile

24

25

26

27
16.3.1 Health and Fault Management Considerations

Table 134 describes EthernetPort OperationalStatus.

16.3.2 Cascading Considerations

Not defined in this standard.

Figure 23 - iSCSI Initiator Port Instance Diagram

Table 134 - EthernetPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
136

 iSCSI Initiator Port Profile

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
16.4 Methods

16.4.1 Extrinsic Methods of this Profile

None

16.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

16.5 Detailed Use Cases and Recipes
None

16.6 CIM Elements
Table 135 describes the CIM elements for iSCSI Initiator Ports.

Table 135 - CIM Elements for iSCSI Initiator Ports

Element Name Requirement Description

16.6.1 CIM_BindsTo (Host Hardware RAID
Controller)

Mandatory

16.6.2 CIM_DeviceSAPImplementation
(IPProtocolEndpoint to EthernetPort)

Mandatory

16.6.3 CIM_DeviceSAPImplementation
(iSSIProtocolEndpoint to EthernetPort)

Mandatory

16.6.4 CIM_EthernetPort (Host Hardware
RAID Controller)

Mandatory

16.6.5 CIM_HostedAccessPoint (System to
IPProtocolEndpoint)

Mandatory

16.6.6 CIM_HostedAccessPoint (System to
TCPProtocolEndpoint)

Mandatory

16.6.7 CIM_HostedAccessPoint (System to
iSCSIProtocolEndpoint)

Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 137

iSCSI Initiator Port Profile

45

46

47

48

49

50
16.6.1 CIM_BindsTo (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 136 describes class CIM_BindsTo (Host Hardware RAID Controller).

16.6.8 CIM_IPProtocolEndpoint (Host
Hardware RAID Controller)

Mandatory

16.6.9 CIM_LogicalDevice (Host Hardware
RAID Controller)

Optional

16.6.10 CIM_SystemDevice (System to
EthernetPort)

Mandatory

16.6.11 CIM_SystemDevice (System to
LogicalDevice)

Mandatory

16.6.12 CIM_TCPProtocolEndpoint (Host
Hardware RAID Controller)

Mandatory

16.6.13 CIM_iSCSIProtocolEndpoint (Host
Hardware RAID Controller)

Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_EthernetPort

Mandatory Port Creation.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_EthernetPort AND
SourceInstance.CIM_EthernetPort::Operation
alStatus <>
PreviousInstance.CIM_EthernetPort::Operatio
nalStatus

Mandatory CQL -Port Status Change.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_EthernetPort

Mandatory Port Removal.

Table 136 - SMI Referenced Properties/Methods for CIM_BindsTo (Host Hardware RAID Control-
ler)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 135 - CIM Elements for iSCSI Initiator Ports

Element Name Requirement Description
138

 iSCSI Initiator Port Profile

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
16.6.2 CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 137 describes class CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort).

16.6.3 CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 138 describes class CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthernetPort).

16.6.4 CIM_EthernetPort (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 137 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (IPProtoco-
lEndpoint to EthernetPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 138 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation (iSSIProtoco-
lEndpoint to EthernetPort)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 139

iSCSI Initiator Port Profile

68

69

70

71

72

73

74

75

76

77

78

79
Table 139 describes class CIM_EthernetPort (Host Hardware RAID Controller).

16.6.5 CIM_HostedAccessPoint (System to IPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 140 describes class CIM_HostedAccessPoint (System to IPProtocolEndpoint).

16.6.6 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 139 - SMI Referenced Properties/Methods for CIM_EthernetPort (Host Hardware RAID Con-
troller)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

PortType Mandatory

OperationalStatus Mandatory

PermanentAddress CD Mandatory

Table 140 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to IPProto-
colEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
140

 iSCSI Initiator Port Profile

80

81

82

83

84

85

86

87

88

89

90

91

92
Table 141 describes class CIM_HostedAccessPoint (System to TCPProtocolEndpoint).

16.6.7 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 142 describes class CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint).

16.6.8 CIM_IPProtocolEndpoint (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 143 describes class CIM_IPProtocolEndpoint (Host Hardware RAID Controller).

Table 141 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to TCPPro-
tocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 142 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (System to iSCSI-
ProtocolEndpoint)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 143 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint (Host Hardware
RAID Controller)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 141

iSCSI Initiator Port Profile

93

94

95

96

97

98

99

100

101

102

103
16.6.9 CIM_LogicalDevice (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 144 describes class CIM_LogicalDevice (Host Hardware RAID Controller).

16.6.10 CIM_SystemDevice (System to EthernetPort)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

IPv4Address CD Optional Maps to IMA_NETWORK_PORTAL_PROPERTIES,
ipAddress.

IPv6Address CD Optional Maps to IMA_NETWORK_PORTAL_PROPERTIES,
ipAddress.

ProtocolIFType Mandatory

Table 144 - SMI Referenced Properties/Methods for CIM_LogicalDevice (Host Hardware RAID
Controller)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory

Table 143 - SMI Referenced Properties/Methods for CIM_IPProtocolEndpoint (Host Hardware
RAID Controller)

Properties Flags Requirement Description & Notes
142

 iSCSI Initiator Port Profile

104

105

106

107

108

109

110

111

112

113

114

115

116
Table 145 describes class CIM_SystemDevice (System to EthernetPort).

16.6.11 CIM_SystemDevice (System to LogicalDevice)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 146 describes class CIM_SystemDevice (System to LogicalDevice).

16.6.12 CIM_TCPProtocolEndpoint (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 147 describes class CIM_TCPProtocolEndpoint (Host Hardware RAID Controller).

Table 145 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to EthernetPort)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 146 - SMI Referenced Properties/Methods for CIM_SystemDevice (System to LogicalDe-
vice)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory

Table 147 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint (Host Hardware
RAID Controller)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 143

iSCSI Initiator Port Profile

117

118

119

120

121

122
16.6.13 CIM_iSCSIProtocolEndpoint (Host Hardware RAID Controller)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 148 describes class CIM_iSCSIProtocolEndpoint (Host Hardware RAID Controller).

PortNumber CD Mandatory

ProtocolIFType Mandatory

Table 148 - SMI Referenced Properties/Methods for CIM_iSCSIProtocolEndpoint (Host Hardware
RAID Controller)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name CD Mandatory

ProtocolIFType Mandatory Other.

OtherTypeDescriptio
n

Mandatory

ConnectionType Mandatory iSCSI.

Role Mandatory Shall be 2 (Initiator).

Identifier Mandatory ISID.

Table 147 - SMI Referenced Properties/Methods for CIM_TCPProtocolEndpoint (Host Hardware
RAID Controller)

Properties Flags Requirement Description & Notes
144

 FC Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16

17
18
19
STABLE

Clause 17: FC Initiator Ports Profile

17.1 Synopsis
Profile Name: FC Initiator Ports (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.27.0

Table 149 describes the related profiles for FC Initiator Ports.

Specializes: Generic Initiator Ports Profile

Central Class: CIM_FCPort

Scoping Class: a CIM_System in a referencing autonomous profile

The FC Initiator Ports Profile models the behavior of a Fibre Channel port supporting FCP (SCSI command
protocol).

17.2 Description
The FC Initiator Ports Profile models the behavior of a Fibre Channel port supporting FCP (SCSI command
protocol).

17.3 Implementation
Figure 24 is an example of a single port and drive connected to a single system using Fibre Channel. This instance
diagram shows a disk (LogicalDevice in the diagram would be subclassed as something like StorageExtent) in an
array, connected by a Fibre Channel port. The full model for the disk is shown in Storage Management Technical

Table 149 - Related Profiles for FC Initiator Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 145

FC Initiator Ports Profile

20
21

22

23
24

25

26
27
28
29
Specification, Part 3 Block Devices, 1.6.0 Rev 4 Clause 11: Disk Drive Lite Subprofile. SCSIProtocolController is
not generally used in initiator contexts. It is included here to be compatible with SMI-S 1.0 clients.

17.3.1 Port Statistics

The FCPortStatistics subclass of NetworkPortStatistics is optional. If supported, FCPortStatistics shall be
associated to FcPort using ElementStatisticalData.

17.3.2 Logical Port Group (FC Node)

LogicalPortGroup may optionally be used to model the collection of ports that shared a Node WWN (in this case,
both ports on a card, but other implementations are in use). If LogicalPortGroup is instantiated, it shall be
associated to the ComputerSystem in the referencing profile using HostedCollection and also associated to
FCPorts using MemberOfCollection. Figure 25, “FC Node Model” shows to model for FC Nodes.

Figure 24 - Fibre Channel Initiator Instance Diagram

Figure 25 - FC Node Model
146

 FC Initiator Ports Profile

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
17.3.3 Health and Fault Management Considerations

Table 150 summarized the Health and Fault Management considerations specific to this profile.

17.3.4 Cascading Considerations

Not defined in this standard.

17.4 Methods

17.4.1 Extrinsic Methods of this Profile

None

17.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported
are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

17.5 Use Cases

17.5.1 Get the statistics for each FC port

This recipe is optional and assumes an FCPortStatistics instance is defined for each FCPort instance.

//

// DESCRIPTION

//

// Find the FCPortStatistics associated with FC ports

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

Table 150 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 147

FC Initiator Ports Profile

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87
//

// 1. A reference to the top-level ComputerSystem in the FC HBA Profile,

// which represents the system hosting the HBA, is known as $Host->

//

// Get a list of all the ports

$Ports->[] = AssociatorNames($Host->,// ObjectName

“CIM_SystemDevice”,// AssocClass

“CIM_FCPort”,// ResultClass

“GroupComponent”, // Role

“PartComponent”) // ResultRole

if ($Ports->[] == null || $Ports->[].length == 0) {

<ERROR! No FC Ports on the host system!>

}

for (#i in $Ports->[]) {

 // Get a list of FCPortStatistics associated with each port

 // Should only be exactly one FCPortStatistics instance

 $Stats->[] = AssociatorNames($Ports->[#i],// ObjectName

“CIM_ElementStatisticalData”,// AssocClass

“CIM_FCPortStatistics”,// ResultClass

“ManagedElement”,// Role

“Stats”) // ResultRole

 if ($Stats->[] == null || $Ports->[].length == 0) {

<ERROR! Each FCPort shall have an associated FCPortStatistics>

 } else {

 if ($Stats->[].length > 1) {

 <ERROR: More than 1 FCPortStatistics associated with a port>

}

 }

 // $Stats[0]-> holds that stats

}

17.6 CIM Elements
Table 151 describes the CIM elements for FC Initiator Ports.

Table 151 - CIM Elements for FC Initiator Ports

Element Name Requirement Description

17.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

17.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator FCPort and
SCSIProtocolEndpoint.

17.6.3 CIM_ElementStatisticalData (Port
Statistics)

Conditional Conditional requirement: support for the FC
HBA profile. Connects FCPort and
FCPortStatistics.
148

 FC Initiator Ports Profile
17.6.4 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

17.6.5 CIM_FCPortStatistics Conditional Conditional requirement: support for the FC
HBA profile. Statistics for a port.

17.6.6 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

17.6.7 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

17.6.8 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

17.6.9 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates
SCSIProtocolEndpoints to the
ConnectivityCollection.

17.6.10 CIM_ProtocolControllerForPort Optional Deprecated. Associates
SCSIProtocolController to FCPort.

17.6.11
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

17.6.12 CIM_SCSIProtocolController Optional Deprecated. Represents a SCSI logical unit
inventory.

17.6.13 CIM_SCSIProtocolEndpoint (Initiator) Mandatory Represents support for the SCSI command
set.

17.6.14 CIM_SCSIProtocolEndpoint (Target) Optional Models remote ports - target devices and
possibly other initiators.

17.6.15 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Optional Create FCPort.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND SourceInstance.OperationalStatus
<>PreviousInstance.OperationalStatus

Optional Deprecated WQL -Modify FCPort.

Table 151 - CIM Elements for FC Initiator Ports

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 149

FC Initiator Ports Profile

88

89

90

91

92

93

94

95

96
97
98

99

100

101

102

103
17.6.1 CIM_ConnectivityCollection

Represents a collection of connected ProtocolEndpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 152 describes class CIM_ConnectivityCollection.

17.6.2 CIM_DeviceSAPImplementation

Connects Initiator FCPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 153 describes class CIM_DeviceSAPImplementation.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us
<>PreviousInstance.CIM_FCPort::Operational
Status

Optional CQL -Modify FCPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Optional Delete FCPort.

Table 152 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 153 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to Initiator SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to FCPort.

Table 151 - CIM Elements for FC Initiator Ports

Element Name Requirement Description
150

 FC Initiator Ports Profile

104

105
106
107

108

109

110

111

112

113

114
115
116

117

118

119

120

121
17.6.3 CIM_ElementStatisticalData (Port Statistics)

Connects FCPort and FCPortStatistics. The class definition specializes the CIM_ElementStatisticalData definition
in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: support for the FC HBA profile.

Table 154 describes class CIM_ElementStatisticalData (Port Statistics).

17.6.4 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 155 describes class CIM_FCPort.

Table 154 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory Reference to FCPort.

Stats (overridden) Mandatory Reference to FCPortStatistics.

Table 155 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus
(overridden)

Mandatory Shall be 0 (Unknown), 2 (OK), 6 (Error), 10 (Stopped), or 11
(In Service).

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or
4 if the port is unrestricted.

PortType
(overridden)

Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other
or N or NL or F/NL or Nx or E or F or FL or B or G).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 151

FC Initiator Ports Profile

122

123
124
125

126

127

128
17.6.5 CIM_FCPortStatistics

Statistics for a port. The class definition specializes the SNIA_LogicalPortStatistics definition in the Generic Initiator
Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left
most column.

Created By: Static
Modified By: Static
Deleted By: Static

ElementName
(added)

Mandatory Port Symbolic Name.

Speed (added) Mandatory Speed in bits per second. Shall be 0, 1062500000 (1GFC),
2125000000 (2GFC), 4250000000 (4GFC), 8500000000
(8GFC), 10518750000 (10GFC), 14025000000 (16GFC),
21037500000 (20GFC) or 28500000000 (32GFC).

MaxSpeed (added) Mandatory Maximum Port Speed.

PortNumber (added) Optional

PermanentAddress
(added)

CD Optional Port WWN. PermanentAddress is optional when used as a
back-end port in a device. This may be overridden in
profiles that use this profile. Shall be 16 un-separated
upper case hex digits. See Storage Management Technical
Specification, Part 1 Common Architecture, 1.6.0 Rev 4
7.6.3 Standard Formats for Port Names.

NetworkAddresses
(added)

Optional For Fibre Channel end device ports, the Fibre Channel ID.
Shall be 16 un-separated upper case hex digits.

SupportedCOS
(added)

Optional Shall be 0 (unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3),
4 (Class 4), 6 (Class 6), or 7 (Class 7).

ActiveCOS (added) Optional Shall be 0 (unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3),
4 (Class 4), 6 (Class 6), or 7 (Class 7).

SupportedFC4Types
(added)

Optional

ActiveFC4Types
(added)

Optional

LinkTechnology
(added)

Mandatory Shall be 4 (FC).

SupportedMaximumT
ransmissionUnit
(added)

Mandatory

ActiveMaximumTrans
missionUnit (added)

Optional

PortDiscriminator
(added)

Conditional Experimental. Conditional requirement: support for the
Storage HBA profile.Shall include 11 (FC Native) and 12
(HBA).

Table 155 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes
152

 FC Initiator Ports Profile

129

130

131

132
133
134

135

136

137
Requirement: support for the FC HBA profile.

Table 156 describes class CIM_FCPortStatistics.

17.6.6 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints. The class definition specializes the CIM_HostedAccessPoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static

Table 156 - SMI Referenced Properties/Methods for CIM_FCPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted
(overridden)

Mandatory From NetworkPortStatistics Superclass. Maps to
HBA_PortStatistics.TxWords. Multiply word count by 4.

BytesReceived
(overridden)

Mandatory From NetworkPortStatistics Superclass. Maps to
HBA_PortStatistics.RxWords. Multiply word count by 4.

PacketsTransmitted
(overridden)

Mandatory From NetworkPortStatistics Superclass. Maps to
HBA_PortStatistics.TxFrames.

PacketsReceived
(overridden)

Mandatory From NetworkPortStatistics Superclass. Maps to
HBA_PortStatistics.RxFrames.

CRCErrors (added) Mandatory Maps to HBA_PortStatistics.InvalidCRCCount.

LinkFailures (added) Mandatory Maps to HBA_PortStatistics.LinkFailureCount.

PrimitiveSeqProtocol
ErrCount (added)

Mandatory

LossOfSignalCounter
(added)

Mandatory Maps to HBA_PortStatistics.LossOfSignalCount.

InvalidTransmission
Words (added)

Mandatory Maps to HBA_PortStatistics.InvalidTxWordCount.

StatisticTime (added) Optional Time last measurement was taken.

LIPCount (added) Mandatory

NOSCount (added) Mandatory

ErrorFrames (added) Mandatory

DumpedFrames
(added)

Mandatory

LossOfSyncCounter
(added)

Mandatory Maps to HBA_PortStatistics.LossOfSynchCount.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 153

FC Initiator Ports Profile

138

139

140

141
142
143

144

145

146

147

148

149

150

151

152

153

154

155
Requirement: Mandatory

Table 157 describes class CIM_HostedAccessPoint (Initiator).

17.6.7 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 158 describes class CIM_HostedAccessPoint (Target).

17.6.8 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 159 describes class CIM_HostedCollection (Connectivity Collection).

Table 157 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Initiator).

Table 158 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Target).

Table 159 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
154

 FC Initiator Ports Profile

156

157
158
159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
17.6.9 CIM_MemberOfCollection (Connectivity Collection)

Associates SCSIProtocolEndpoints to the ConnectivityCollection. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 160 describes class CIM_MemberOfCollection (Connectivity Collection).

17.6.10 CIM_ProtocolControllerForPort

Deprecated. Associates SCSIProtocolController to FCPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 161 describes class CIM_ProtocolControllerForPort.

17.6.11 CIM_SCSIInitiatorTargetLogicalUnitPath

Represents a path between a SCSI initiator, target, and logical unit.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 160 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to target or initiator SCSIProtocolEndpoint.

Collection Mandatory Reference to ConnectivityCollection.

Table 161 - SMI Referenced Properties/Methods for CIM_ProtocolControllerForPort

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to SCSIProtocolController.

Dependent Mandatory Reference to initiator FCPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 155

FC Initiator Ports Profile

178

179

180

181

182

183

184

185

186

187
188
189

190

191

192

193
Table 162 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

17.6.12 CIM_SCSIProtocolController

Deprecated. Represents a SCSI logical unit inventory.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 163 describes class CIM_SCSIProtocolController.

17.6.13 CIM_SCSIProtocolEndpoint (Initiator)

Represents support for the SCSI command set. The class definition specializes the CIM_ProtocolEndpoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 162 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

LogicalUnit Mandatory Reference to StorageExtent in Disk Drive Lite Profile or
MediaAccessDevice in Media Access Device Profile.

Initiator Mandatory Reference to SCSIProtocolEndpoint(Initiator).

Target Mandatory Reference to SCSIProtocolEndpoint(Target).

Table 163 - SMI Referenced Properties/Methods for CIM_SCSIProtocolController

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional

OperationalStatus Optional

MaxUnitsControlled Optional
156

 FC Initiator Ports Profile

194

195

196
197
198

199

200

201

202

203
Table 164 describes class CIM_SCSIProtocolEndpoint (Initiator).

17.6.14 CIM_SCSIProtocolEndpoint (Target)

Models remote ports - target devices and possibly other initiators. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 165 describes class CIM_SCSIProtocolEndpoint (Target).

Table 164 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

ConnectionType
(added)

Mandatory Shall be 2 (Fibre Channel).

Role (added) Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target).

Table 165 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 157

FC Initiator Ports Profile

204

205
206
207

208

209

210

211

212
17.6.15 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports. The class definition specializes the CIM_SystemDevice definition in the
Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 166 describes class CIM_SystemDevice (Initiator Ports).

STABLE

Role (added) Mandatory Should be set appropriately by the instrumentation. If not
known, use 0 (Unknown).

ConnectionType
(added)

Mandatory Shall be 8 (FC).

Table 166 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to FCPort.

Table 165 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes
158

 SAS Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16
17

18
EXPERIMENTAL

Clause 18: SAS Initiator Ports Profile

18.1 Synopsis
Profile Name: SAS Initiator Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.11.0

Related Profiles for SAS Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_SASPort

Scoping Class: a CIM_System in a separate autonomous profile

The SAS Initiator Port Profile models the management of a Serial Attached SCSI port that initiates commands to
devices.

18.2 Description
The SAS Initiator Port Profile defines the model Serial Attached SCSI (SAS) ports. A typical instance diagram is
provided in Figure 26.

The SASPhy class represents a SAS PHY. A SAS Port may have multiple associated PHYs; generally, all the
PHYs are connected to the same target or expander and provide additional bandwidth.

SASPort represents a SAS initiator port which is an aggregation of SASPHY instances.

Figure 26 - SAS Initiator Port Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 159

SAS Initiator Ports Profile

19

20

21
22

23

24

25

26

27

28

29

30
SNIA_SASPhyStatistics is optional and may be associated to SASPhy to hold PHY error statistics.

SNIA_LogicalPortStatistics is optional and may be associated to SASPort to hold port I/O statistics.

ATAProtocolEndpoint associated to SCSIProtocolEndpoint using BindsTo shall be used to represent support for
ATA (SATA) tunneled over SCSI.

18.2.1 Health and Fault Management Considerations

Table 167 summarizes the Health and Fault Management issues that are unique to this profile.

18.3 Methods of the profile
Not defined in this standard.

18.4 Client Considerations and Recipes
Not defined in this standard.

18.5 CIM Elements
Table 168 describes the CIM elements for SAS Initiator Ports.

Table 167 - SASPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown

Table 168 - CIM Elements for SAS Initiator Ports

Element Name Requirement Description

18.5.1 CIM_ATAProtocolEndpoint (Initiator) Optional Initiator ATA endpoints.

18.5.2 CIM_BindsTo Optional Associates SCSIProtocolEndpoint and
ATAProtocolEndpoint.

18.5.3 CIM_ConcreteComponent Mandatory Associates SASPort and SASPHY.

18.5.4 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

18.5.5 CIM_DeviceSAPImplementation Mandatory Connects Initiator SASLogicalPort and
SCSIProtocolEndpoint.

18.5.6 CIM_ElementStatisticalData (PHY
Statistics)

Optional Associates SASPort and SASPhyStatistics.

18.5.7 CIM_ElementStatisticalData (Port
Statistics)

Optional Connects LogicalPort and
LogicalPortStatistics.
160

 SAS Initiator Ports Profile

31

32

33

34

35

36
18.5.1 CIM_ATAProtocolEndpoint (Initiator)

Initiator ATA endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

18.5.8 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

18.5.9 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

18.5.10 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

18.5.11 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates
ProtocolEndpoints to the
ConnectivityCollection.

18.5.12 CIM_SASPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

18.5.13
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

18.5.14 CIM_SCSIProtocolEndpoint (Initiator) Mandatory Represents support for the SCSI command
set.

18.5.15 CIM_SCSIProtocolEndpoint (Target) Optional Models remote ports - target devices and
possibly other initiators.

18.5.16 CIM_SystemDevice (Initiator PHY) Mandatory Associates system to initiator SAS PHYs.

18.5.17 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

18.5.18 SNIA_LogicalPortStatistics Optional Statistics for a port.

18.5.19 SNIA_SASPHY Mandatory A PHY on a SAS HBA, Expander, or device.

18.5.20 SNIA_SASPhyStatistics Optional Statistics for a SAS PHY.

Table 168 - CIM Elements for SAS Initiator Ports

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 161

SAS Initiator Ports Profile

37

38

39

40

41

42

43

44

45

46

47

48

49

50
Table 169 describes class CIM_ATAProtocolEndpoint (Initiator).

18.5.2 CIM_BindsTo

Associates SCSIProtocolEndpoint and ATAProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 170 describes class CIM_BindsTo.

18.5.3 CIM_ConcreteComponent

Associates SASPort and SASPHY.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 169 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be 'ATA'.

ConnectionType Mandatory Shall be 3 (SATA).

Role Mandatory Shall be 3 (Target).

Table 170 - SMI Referenced Properties/Methods for CIM_BindsTo

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ATAProtocolEndpoint.

Antecedent Mandatory Reference to SCSIProtocolEndpoint.
162

 SAS Initiator Ports Profile

51

52

53

54

55

56

57

58

59

60
61
62

63

64

65

66

67

68

69

70
Table 171 describes class CIM_ConcreteComponent.

18.5.4 CIM_ConnectivityCollection

Represents a collection of connected ProtocolEndpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 172 describes class CIM_ConnectivityCollection.

18.5.5 CIM_DeviceSAPImplementation

Connects Initiator SASLogicalPort and SCSIProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 173 describes class CIM_DeviceSAPImplementation.

18.5.6 CIM_ElementStatisticalData (PHY Statistics)

Associates SASPort and SASPhyStatistics.

Requirement: Optional

Table 171 - SMI Referenced Properties/Methods for CIM_ConcreteComponent

Properties Flags Requirement Description & Notes

PartComponent Mandatory Reference to SASPHY.

GroupComponent Mandatory Reference to SASPort.

Table 172 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 173 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Initiator).

Antecedent
(overridden)

Mandatory Reference to SASPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 163

SAS Initiator Ports Profile

71

72

73

74

75

76

77

78

79

80
81
82

83

84

85

86

87
Table 174 describes class CIM_ElementStatisticalData (PHY Statistics).

18.5.7 CIM_ElementStatisticalData (Port Statistics)

Connects LogicalPort and LogicalPortStatistics.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 175 describes class CIM_ElementStatisticalData (Port Statistics).

18.5.8 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints. The class definition specializes the CIM_HostedAccessPoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 176 describes class CIM_HostedAccessPoint (Initiator).

Table 174 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (PHY Statistics)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Referenceto SASPort.

Stats Mandatory Reference to SASPhyStatistics.

Table 175 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Reference to LogicalPort.

Stats Mandatory Reference to LogicalPortStatistics.

Table 176 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Initiator).
164

 SAS Initiator Ports Profile

88

89
90
91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
106
107

108

109

110

111
18.5.9 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 177 describes class CIM_HostedAccessPoint (Target).

18.5.10 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 178 describes class CIM_HostedCollection (Connectivity Collection).

18.5.11 CIM_MemberOfCollection (Connectivity Collection)

Associates ProtocolEndpoints to the ConnectivityCollection. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 177 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint(Target).

Table 178 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 165

SAS Initiator Ports Profile

112

113

114
115
116

117

118

119

120

121

122

123

124
Table 179 describes class CIM_MemberOfCollection (Connectivity Collection).

18.5.12 CIM_SASPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 180 describes class CIM_SASPort.

18.5.13 CIM_SCSIInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static

Table 179 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to SCSIProtocolEndpoint.

Collection Mandatory Reference to ConnectivityCollection.

Table 180 - SMI Referenced Properties/Methods for CIM_SASPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus
(overridden)

Mandatory Shall be 0 (Unknown), 2 (OK), 6 (Error), 10 (Stopped), or 11
(In Service).

UsageRestriction
(overridden)

Mandatory Shall be 3 (Back-end Only).

PortType
(overridden)

Mandatory Shall be 94 (SAS).

PermanentAddress
(added)

Mandatory SAS Address. Shall be 16 un-separated upper case hex
digits. See Storage Management Technical Specification,
Part 1 Common Architecture, 1.6.0 Rev 4 7.6.3 Standard
Formats for Port Names.
166

 SAS Initiator Ports Profile

125

126

127

128

129
130
131

132

133

134

135

136
Deleted By: Static
Requirement: Optional

Table 181 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

18.5.14 CIM_SCSIProtocolEndpoint (Initiator)

Represents support for the SCSI command set. The class definition specializes the CIM_ProtocolEndpoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 182 describes class CIM_SCSIProtocolEndpoint (Initiator).

Table 181 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

LogicalUnit Mandatory Reference to StorageExtent in Disk Drive Lite Profile or
MediaAccessDevice in Media Access Device Profile.

Target Mandatory Reference to SCSIProtocolEndpoint(Target).

Initiator Mandatory Reference to SCSIProtocolEndpoint(Initiatotor).

Table 182 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

ConnectionType
(added)

Mandatory Shall be 8 (SAS).

Role (added) Mandatory Shall be 2 (Initiator).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 167

SAS Initiator Ports Profile

137

138
139
140

141

142

143

144

145

146

147

148

149

150

151

152
18.5.15 CIM_SCSIProtocolEndpoint (Target)

Models remote ports - target devices and possibly other initiators. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 183 describes class CIM_SCSIProtocolEndpoint (Target).

18.5.16 CIM_SystemDevice (Initiator PHY)

Associates system to initiator SAS PHYs.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 184 describes class CIM_SystemDevice (Initiator PHY).

Table 183 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n (overridden)

Mandatory Shall be the string 'SCSI'.

Role (added) Mandatory SCSI target or initiator role. Should be set appropriately by
the instrumentation. If not know, use 0 (Unknown).

ConnectionType
(added)

Mandatory Shall be 8 (SAS).

Table 184 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator PHY)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent Mandatory Reference to SASPHY.
168

 SAS Initiator Ports Profile

153

154
155
156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
18.5.17 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports. The class definition specializes the CIM_SystemDevice definition in the
Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 185 describes class CIM_SystemDevice (Initiator Ports).

18.5.18 SNIA_LogicalPortStatistics

Statistics for a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 186 describes class SNIA_LogicalPortStatistics.

18.5.19 SNIA_SASPHY

A PHY on a SAS HBA, Expander, or device.

Created By: Static
Modified By: Static
Deleted By: Static

Table 185 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to back-end (initiator) SASPorts.

Table 186 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted Mandatory

BytesReceived Mandatory

PacketsTransmitted Mandatory

PacketsReceived Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 169

SAS Initiator Ports Profile

174

175

176

177

178

179
Requirement: Mandatory

Table 187 describes class SNIA_SASPHY.

18.5.20 SNIA_SASPhyStatistics

Statistics for a SAS PHY.

Requirement: Optional

Table 188 describes class SNIA_SASPhyStatistics.

EXPERIMENTAL

Table 187 - SMI Referenced Properties/Methods for SNIA_SASPHY

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HardwareMinimumP
hysicalLinkRate

Mandatory

HardwareMaximumP
hysicalLinkRate

Mandatory

ProgrammedMinimu
mPhysicalLinkRate

Mandatory

ProgrammedMaximu
mPhysicalLinkRate

Mandatory

NegotiatedPhysicalLi
nkRate

Mandatory

Table 188 - SMI Referenced Properties/Methods for SNIA_SASPhyStatistics

Properties Flags Requirement Description & Notes

InvalidDwordCount Mandatory

RunningDisparityErro
rCount

Mandatory

LossOfDwordSyncCo
unt

Mandatory

ResetProblemCount Mandatory
170

 SAS Initiator Ports Profile
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 171

SAS Initiator Ports Profile
172

 ATA Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16
17

18
EXPERIMENTAL

Clause 19: ATA Initiator Ports Profile

19.1 Synopsis
Profile Name: ATA Initiator Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.13.1

Related Profiles for ATA Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Port Profile

Central Class: CIM_ATAPort

Scoping Class: a CIM_System in a separate autonomous profile

The ATA Initiator Ports Profile models the management of a PATA or SATA port that initiates commands to devices.

19.2 Description
The ATA Initiator Port Profile describes the model for Parallel or Serial ATA Ports with optional attached drives.

19.3 Implementation
The port is modeled as ATAPort (with PortType set to ATA for PATA ports or SATA) and ATAProtocolEndpoint
associated by DeviceSAPImplementation. Attached drives are optionally modeled as subclasses of LogicalDevice
(e.g., StorageVolume, TapeDrive) which are associated via SAPAvailableToElement to ATAProtocolEndpoint.

Figure 27 shows a class diagram for this profile.

Figure 27 - ATA Initiator Port Class Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 173

ATA Initiator Ports Profile

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37
19.3.1 Health and Fault Management Consideration

Table 189 summarizes the Health and Fault Management considerations that are specific to this profile.

19.3.2 Cascading Considerations

Not defined in this standard.

19.4 Methods of the Profile

19.4.1 Extrinsic Methods of the Profile

None.

19.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

19.5 Client Considerations and Recipes
None

Table 189 - ATAPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
174

 ATA Initiator Ports Profile

38

39

40

41

42

43

44

45
19.6 CIM Elements
Table 190 describes the CIM elements for ATA Initiator Ports.

19.6.1 CIM_ATAInitiatorTargetLogicalUnitPath

Represents a path between an ATA initiator, target, and logical unit.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 190 - CIM Elements for ATA Initiator Ports

Element Name Requirement Description

19.6.1 CIM_ATAInitiatorTargetLogicalUnitPath Optional Represents a path between an ATA initiator,
target, and logical unit.

19.6.2 CIM_ATAPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

19.6.3 CIM_ATAProtocolEndpoint (Initiator) Mandatory ProtocolEndpoints associated to initiator
ports.

19.6.4 CIM_ATAProtocolEndpoint (Target) Mandatory Models remote ports - target devices and
possibly other initiators.

19.6.5 CIM_ConnectivityCollection Mandatory Represents a collection of connected
ATAProtocolEndpoints.

19.6.6 CIM_DeviceSAPImplementation Mandatory Connects Initiator ATALogicalPort and
ATAProtocolEndpoint.

19.6.7 CIM_ElementStatisticalData (Port
Statistics)

Mandatory Connects ATAPort and LogicalPortStatistics.

19.6.8 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

19.6.9 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

19.6.10 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

19.6.11 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Represents a
collection of connected
ATAProtocolEndpoints.

19.6.12 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

19.6.13 SNIA_LogicalPortStatistics Optional Statistics for a port.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 175

ATA Initiator Ports Profile

46

47

48
49
50

51

52

53

54

55

56

57
58
59

60
Table 191 describes class CIM_ATAInitiatorTargetLogicalUnitPath.

19.6.2 CIM_ATAPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 192 describes class CIM_ATAPort.

19.6.3 CIM_ATAProtocolEndpoint (Initiator)

ProtocolEndpoints associated to initiator ports. The class definition specializes the CIM_ProtocolEndpoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static

Table 191 - SMI Referenced Properties/Methods for CIM_ATAInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

LogicalUnit Mandatory Reference to StorageExtent in Disk Drive Lite Profile or
MediaAccessDevice in Media Access Device Profile.

Target Mandatory Reference to ATAProtocolEndpoint(Target).

Initiator Mandatory Reference to ATAProtocolEndpoint(Initiatotor).

Table 192 - SMI Referenced Properties/Methods for CIM_ATAPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or
4 if the port is unrestricted.

PortType
(overridden)

Mandatory Shall be 91(ATA), 92(SATA) or 93(SATA2).

Name (added) C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.
176

 ATA Initiator Ports Profile

61

62

63

64

65

66
67
68

69

70

71

72

73
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 193 describes class CIM_ATAProtocolEndpoint (Initiator).

19.6.4 CIM_ATAProtocolEndpoint (Target)

Models remote ports - target devices and possibly other initiators. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 194 describes class CIM_ATAProtocolEndpoint (Target).

Table 193 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name (overridden) C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be 'ATA'.

Role (added) Mandatory Shall be 2 (Initiator).

ConnectionType
(added)

Mandatory Shall be 2 (ATA for PATA ports) or 3 (SATA).

Table 194 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 177

ATA Initiator Ports Profile

74

75
76
77

78

79

80

81

82

83

84
85
86

87

88

89

90
19.6.5 CIM_ConnectivityCollection

Represents a collection of connected ATAProtocolEndpoints. The class definition specializes the
CIM_ConnectivityCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 195 describes class CIM_ConnectivityCollection.

19.6.6 CIM_DeviceSAPImplementation

Connects Initiator ATALogicalPort and ATAProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n (overridden)

Mandatory Shall be 'ATA'.

Role (added) Mandatory Should be set appropriately by the instrumentation. If
unknown, use 0 (Unknown).

ConnectionType
(added)

Mandatory Shall be 2 (ATA for PATA ports) or 3 (SATA).

Table 195 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 194 - SMI Referenced Properties/Methods for CIM_ATAProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes
178

 ATA Initiator Ports Profile

91

92

93
94
95

96

97

98

99

100

101

102
103
104

105

106

107

108

109
Table 196 describes class CIM_DeviceSAPImplementation.

19.6.7 CIM_ElementStatisticalData (Port Statistics)

Connects ATAPort and LogicalPortStatistics. The class definition specializes the CIM_ElementStatisticalData
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 197 describes class CIM_ElementStatisticalData (Port Statistics).

19.6.8 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints. The class definition specializes the CIM_HostedAccessPoint
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 198 describes class CIM_HostedAccessPoint (Initiator).

Table 196 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to ATAProtocolEndpoint(Initiator).

Antecedent
(overridden)

Mandatory Reference to ATAPort.

Table 197 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory Reference to ATAPort.

Stats Mandatory Reference to LogicalPortStatistics.

Table 198 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to ATAProtocolEndpoint(Inititor).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 179

ATA Initiator Ports Profile

110

111
112
113

114

115

116

117

118

119

120

121

122

123

124

125

126

127
128
129

130

131

132

133
19.6.9 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints. The class definition specializes the
CIM_HostedAccessPoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 199 describes class CIM_HostedAccessPoint (Target).

19.6.10 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 200 describes class CIM_HostedCollection (Connectivity Collection).

19.6.11 CIM_MemberOfCollection (Connectivity Collection)

Represents a collection of connected ATAProtocolEndpoints. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 199 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent
(overridden)

Mandatory Reference to ATAProtocolEndpoint(Target).

Table 200 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
180

 ATA Initiator Ports Profile

134

135

136
137
138

139

140

141

142

143

144

145

146

147

148

149

150
Table 201 describes class CIM_MemberOfCollection (Connectivity Collection).

19.6.12 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports. The class definition specializes the CIM_SystemDevice definition in the
Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 202 describes class CIM_SystemDevice (Initiator Ports).

19.6.13 SNIA_LogicalPortStatistics

Statistics for a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 203 describes class SNIA_LogicalPortStatistics.

Table 201 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to ATAProtocolEndpoint(Initiator or Target).

Collection Mandatory Reference to ConnectivityCollection.

Table 202 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to ATAPort(Initiator).

Table 203 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted Mandatory

BytesReceived Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 181

ATA Initiator Ports Profile
EXPERIMENTAL

PacketsTransmitted Mandatory

PacketsReceived Mandatory

Table 203 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes
182

 FC-SB-x Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11

12
13
14
15
EXPERIMENTAL

Clause 20: FC-SB-x Initiator Ports Profile

20.1 Synopsis
Profile Name: SB Initiator Ports (Component Profile)

Version: 1.4.0

Organization: SNIA

CIM Schema Version: 2.13.0

Table 204 describes the related profiles for SB Initiator Ports.

The FC-SB-x Initiator Ports Profile models initiator ports that support the FC-SB-x protocol.

20.2 Description
The FC-SB-x Initiator Ports Profile models initiator ports that support the FC-SB-x protocol.

20.3 Implementation
Figure 28 is an example of a single initiator port. The instance diagram shows a disk (LogicalDevice in the diagram
would be subclassed as something like StorageExtent) in an array, connected by a Fibre Channel port. The full
model for the disk is shown in the Disk Drive Lite Profile. SBProtocolController is not generally used in initiator
contexts. It is included here to be compatible with SMI-S 1.0 clients.

Table 204 - Related Profiles for SB Initiator Ports

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory

Figure 28 - Fibre Channel Initiator Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 183

FC-SB-x Initiator Ports Profile

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34
20.3.1 Health and Fault Management Considerations

Table 205 summarizes the Health and Fault Management considerations specific to this profile.

20.3.2 Cascading Considerations

Not defined in this standard.

20.4 Methods

20.4.1 Extrinsic Methods of the Profile

None.

20.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

20.5 Client Considerations and Recipes
None

Table 205 - FCPort OperationalStatus

OperationalStatus Description

OK Port is online

Error Port has a failure

Stopped Port is disabled

InService Port is in Self Test

Unknown
184

 FC-SB-x Initiator Ports Profile

35

36
20.6 CIM Elements
Table 206 describes the CIM elements for SB Initiator Ports.

Table 206 - CIM Elements for SB Initiator Ports

Element Name Requirement Description

20.6.1 CIM_ConnectivityCollection Mandatory Represents a collection of connected
SBrotocolEndpoints.

20.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator SBLogicalPort and
SBProtocolEndpoint.

20.6.3 CIM_ElementStatisticalData (Port
Statistics)

Mandatory Connects SBPort and LogicalPortStatistics.

20.6.4 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

20.6.5 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

20.6.6 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

20.6.7 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

20.6.8 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Represents a
collection of connected SBProtocolEndpoints.

20.6.9 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to initiator ports.

20.6.10 SNIA_LogicalPortStatistics Optional Statistics for a port.

20.6.11
SNIA_SBInitiatorTargetLogicalUnitPath

Optional

20.6.12 SNIA_SBProtocolEndpoint (Initiator) Mandatory Represents a protocol (command set)
supported by the port. The appropriate
subclass (SCSIProtocolEndpoint,
ATAProtocolEndpoint, SBProtocolEndpoint)
should be used in initiator port specialized
profiles.

20.6.13 SNIA_SBProtocolEndpoint (Target) Mandatory Target or non-local ProtocolEndpoint.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Optional Create FCPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 185

FC-SB-x Initiator Ports Profile

37

38
39
40

41

42

43

44

45

46

47
48
49

50

51

52

53
20.6.1 CIM_ConnectivityCollection

Represents a collection of connected SBProtocolEndpoints. The class definition specializes the
CIM_ConnectivityCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 207 describes class CIM_ConnectivityCollection.

20.6.2 CIM_DeviceSAPImplementation

Connects Initiator SBLogicalPort and SBProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Optional CQL -Modify FCPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Optional Delete FCPort.

Table 207 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 206 - CIM Elements for SB Initiator Ports

Element Name Requirement Description
186

 FC-SB-x Initiator Ports Profile

54

55

56
57
58

59

60

61

62

63

64

65
66
67

68

69

70

71

72
Table 208 describes class CIM_DeviceSAPImplementation.

20.6.3 CIM_ElementStatisticalData (Port Statistics)

Connects SBPort and LogicalPortStatistics. The class definition specializes the CIM_ElementStatisticalData
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 209 describes class CIM_ElementStatisticalData (Port Statistics).

20.6.4 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 210 describes class CIM_FCPort.

Table 208 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SBProtocolEndpoint(Initiator).

Antecedent
(overridden)

Mandatory Reference to FCPort.

Table 209 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory Reference to FCPort.

Stats Mandatory Reference to LogicalPortStatistics.

Table 210 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 187

FC-SB-x Initiator Ports Profile

73

74

75

76
20.6.5 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction
(overridden)

Mandatory Shall be 3 for ports restricted to Back-end only or 4 if the
port is unrestricted.

PortType
(overridden)

Mandatory Shall be 0|1|10|11|12|13|14|15|16|17|18 (Unknown or Other
or N or NL or F/NL or Nx or E or F or FL or B or G).

ElementName
(added)

Mandatory Port Symbolic Name.

Speed (added) Mandatory

MaxSpeed (added) Mandatory Port Supported Speed from HBA API.

PortNumber (added) Optional

PermanentAddress
(added)

CD Optional Port WWN. PermanentAddress is optional when used as a
backend port in a device. This may be overridden in profiles
that use this profile. See Storage Management Technical
Specification, Part 1 Common Architecture, 1.6.0 Rev 4
7.6.3 Standard Formats for Port Names.

NetworkAddresses
(added)

Optional For Fibre Channel end device ports, the Fibre Channel ID.

SupportedCOS
(added)

Optional

ActiveCOS (added) Optional

SupportedFC4Types
(added)

Optional

ActiveFC4Types
(added)

Optional

LinkTechnology
(added)

Mandatory

SupportedMaximumT
ransmissionUnit
(added)

Mandatory

ActiveMaximumTrans
missionUnit (added)

Optional

Table 210 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes
188

 FC-SB-x Initiator Ports Profile

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93
Deleted By: Static
Requirement: Mandatory

Table 211 describes class CIM_HostedAccessPoint (Initiator).

20.6.6 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 212 describes class CIM_HostedAccessPoint (Target).

20.6.7 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 213 describes class CIM_HostedCollection (Connectivity Collection).

Table 211 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Initiator).

Table 212 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Target).

Table 213 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 189

FC-SB-x Initiator Ports Profile

94

95
96
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115
20.6.8 CIM_MemberOfCollection (Connectivity Collection)

Represents a collection of connected SBProtocolEndpoints. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 214 describes class CIM_MemberOfCollection (Connectivity Collection).

20.6.9 CIM_SystemDevice (Initiator Ports)

Associates system to initiator ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 215 describes class CIM_SystemDevice (Initiator Ports).

20.6.10 SNIA_LogicalPortStatistics

Statistics for a port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 214 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to SBProtocolEndpoint(Initiator or Target).

Collection Mandatory Reference to ConnectivityCollection.

Table 215 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent Mandatory Reference to LogicalPort.
190

 FC-SB-x Initiator Ports Profile

116

117

118

119

120

121

122
Table 216 describes class SNIA_LogicalPortStatistics.

20.6.11 SNIA_SBInitiatorTargetLogicalUnitPath

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 217 describes class SNIA_SBInitiatorTargetLogicalUnitPath.

Table 216 - SMI Referenced Properties/Methods for SNIA_LogicalPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

BytesTransmitted Mandatory

BytesReceived Mandatory

PacketsTransmitted Mandatory

PacketsReceived Mandatory

Table 217 - SMI Referenced Properties/Methods for SNIA_SBInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

UsePreferredPath Optional Boolean indicating whether preferred path processing is
required.

PreferredPath Optional Boolean indicating whether this is a preferred path.

PathGroupState Optional One of 0(Unknown), 2(Path grouping not supported),
3(Reset), 4(Grouped), or 5(Ungrouped).

PathGroupMode Optional One of 0(Unknown), 2(None), 3(Single path), or
4(Multipath). Single path and multipath only valid if
PathGroupState is grouped.

PathGroupID Optional String containing the ID from the OS, only valid if
PathGroupState is Grouped.

LogicalUnit Mandatory Reference to StorageExtent in Disk Drive Lite Profile or
MediaAccessDevice in Media Access Device Profile.

Target Mandatory Reference to SCSIProtocolEndpoint(Target).

Initiator Mandatory Reference to SCSIProtocolEndpoint(Initiator).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 191

FC-SB-x Initiator Ports Profile

123

124
125
126

127

128

129

130

131

132

133
134
135

136

137

138

139
20.6.12 SNIA_SBProtocolEndpoint (Initiator)

Represents a protocol (command set) supported by the port. The class definition specializes the
CIM_ProtocolEndpoint definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 218 describes class SNIA_SBProtocolEndpoint (Initiator).

20.6.13 SNIA_SBProtocolEndpoint (Target)

Target or non-local ProtocolEndpoint. The class definition specializes the CIM_ProtocolEndpoint definition in the
Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 218 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType
(overridden)

Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be 'SB'.

ConnectionType
(added)

Mandatory Shall be 2 (Fibre Channel).

Role (added) Mandatory Shall be 2 (Initiator) or 4 (Both Initiator and Target).
192

 FC-SB-x Initiator Ports Profile

140
 Table 219 describes class SNIA_SBProtocolEndpoint (Target).

EXPERIMENTAL

Table 219 - SMI Referenced Properties/Methods for SNIA_SBProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType
(overridden)

Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n (overridden)

Mandatory Shall be 'SB'.

Role (added) Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ConnectionType
(added)

Mandatory Shall be 2 (Fibre Channel).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 193

FC-SB-x Initiator Ports Profile
194

 Backend Ports Subprofile

1

2

3
4
5
6

DEPRECATED

Clause 21: Backend Ports Subprofile

The functionality of the Backend Ports Subprofile has been subsumed by Clause 17: FC Initiator Ports Profile.

The Backend Ports Subprofile is defined in section 7.3.3.13 of SMI-S 1.0.2. Any instrumentation that complies to
the Fibre Channel Initiator Port Profile defined in this specification may also claim compliance to that version of the
Backend Ports Subprofile and may register as both a 1.2.0 Fibre Channel Initiator Port Subprofile and 1.0.2
Backend Ports Subprofile.

DEPRECATED
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 195

Backend Ports Subprofile
196

 FCoE Initiator Ports Profile

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16
17
EXPERIMENTAL

Clause 22: FCoE Initiator Ports Profile

22.1 Synopsis
Profile Name: FCoE Initiator Ports (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.27.0

Related Profiles for FCoE Initiator Ports: Not defined in this standard.

Specializes: Generic Initiator Ports Profile

Central Class: CIM_FCPort

Scoping Class: CIM_ComputerSystem in the Base Server Profile (or some other autonomous profile)

The FCoE Initiator Ports Profile models the behavior of the Fibre Channel over Ethernet (FCoE) functionality of a
Converged Network Adaptor (CNA).

22.2 Description
The FCoE Initiator Ports Profile is a component profile that models the behavior of the Fibre Channel over Ethernet
(FCoE) functionality of a Converged Network Adaptor (CNA).

A CNA may support functionality beyond FCoE, including generic TCP/IP support. Functionality of CNAs other
than FCoE is outside the scope of this profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 197

FCoE Initiator Ports Profile

18

19

20
21
22
23
24

25

26
27
28
29

30
31
32

33

34
35
22.3 Implementation
Figure 29 shows the model for classes in the FCoE Initiator Ports Profile

Each FCoE port shall be modeled with single instance each of FCPort, EthernetPort, and SCSIProtocolEndpoint.
FCPort and EthernetPort shall be associated with HostedDependency. FCPort and EthernetPort shall each be
associated to the ComputerSystem in the Base Server Profile with SystemDevice. FCPort and
SCSIProtocolEndpoint shall be associated with DeviceSAPImplementation. SCSIProtocolEndpoint shall be
associated to the ComputerSystem (defined in the Base Server Profile) with HostedAccessPoint.

22.3.1 Relationship to Storage HBA Profile

The FCoE Initiator ports profile is used in conjunction with the Storage HBA Profile (see Storage Management
Technical Specification, Part 6 Host Elements, 1.6.0 Rev 4 Clause 6: Storage HBA Profile). The Storage HBA
Profile models the management of HBA cards independent of connectivity, and the FCoE Ethernet Ports Profile
models the management of FCoE ports on an HBA.

The ControlledBy association defined in Storage Management Technical Specification, Part 6 Host Elements, 1.6.0
Rev 4 Clause 6: Storage HBA Profile shall reference instance of FCPort and shall not reference instances of
EthernetPort.

22.3.2 Optional target model

Figure 30 shows an example of a single port and drive connected to a single system using Fibre Channel. This
instance diagram shows a disk (LogicalDevice in the diagram would be subclassed as something like

Figure 29 - FCoE Initiator Instance Diagram
198

 FCoE Initiator Ports Profile

36
37

38

39
40

41

42
43
44
45
StorageExtent) in an array, connected by a Fibre Channel port. The full model for the disk is shown in Clause 11:
Disk Drive Lite Subprofile.

22.3.3 Port Statistics

The FCPortStatistics subclass of NetworkPortStatistics is optional. If supported, FCPortStatistics shall be
associated to FcPort using ElementStatisticalData.

22.3.4 Logical Port Group (FC Node)

LogicalPortGroup may optionally be used to model the collection of ports that shared a Node WWN (in this case,
both ports on a card, but other implementations are in use). If LogicalPortGroup is instantiated, it shall be
associated to the ComputerSystem in the referencing profile using HostedCollection and also associated to
FCPorts using MemberOfCollection.

Figure 30 - Optional Target Element Model

Figure 31 - Logical Port Group Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 199

FCoE Initiator Ports Profile

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
22.3.5 Health and Fault Management Considerations

Table 220 summarized the Health and Fault Management considerations specific to this profile.

22.3.6 Cascading Considerations

Not defined in this standard.

22.4 Methods

22.4.1 Extrinsic Methods of this Profile

None

22.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

22.5 Detailed Use Cases and Recipes
None

Table 220 - FCPort OperationalStatus

OperationalStatus Description

(2) OK Port is online

(6) Error Port has a failure

(10) Stopped Port is disabled

(11) InService Port is in Self Test

(0) Unknown
200

 FCoE Initiator Ports Profile

65

66
22.6 CIM Elements
Table 221 describes the CIM elements for FCoE Initiator Ports.

Table 221 - CIM Elements for FCoE Initiator Ports

Element Name Requirement Description

22.6.1 CIM_ConnectivityCollection Optional Represents a collection of connected
ProtocolEndpoints.

22.6.2 CIM_DeviceSAPImplementation Mandatory Connects Initiator LogicalPort and
ProtocolEndpoint.

22.6.3 CIM_ElementStatisticalData (Port
Statistics)

Optional Connects LogicalPort and
LogicalPortStatistics.

22.6.4 CIM_EthernetPort Mandatory

22.6.5 CIM_FCPort Mandatory Represents the logical aspects of the physical
port and may have multiple associated
protocols.

22.6.6 CIM_FCPortStatistics Mandatory Statistics for a port.

22.6.7 CIM_HostedAccessPoint (Initiator) Mandatory Associates system to initiator protocol
endpoints.

22.6.8 CIM_HostedAccessPoint (Target) Optional Associates system to optional remote protocol
endpoints.

22.6.9 CIM_HostedCollection (Connectivity
Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates the
ConnectivityCollection to the hosting System.

22.6.10 CIM_HostedCollection (FC Node) Optional Associates the LogicalPortGroup (Fibre
Channel Node) to the hosting System.

22.6.11 CIM_HostedDependency
(NetworkPort to FCPort)

Mandatory Association between EthernetPort and
FCPort.

22.6.12 CIM_LogicalPortGroup Optional Collection of Fibre Channel ports that share a
Node WWN.

22.6.13 CIM_MemberOfCollection
(Connectivity Collection)

Conditional Conditional requirement: Support for
ConnectivityCollections. Associates
ProtocolEndpoints to the
ConnectivityCollection.

22.6.14 CIM_MemberOfCollection (FC Node) Optional Associates FCPort to the LogicalPortGroup.

22.6.15 CIM_ProtocolEndpoint (Initiator) Mandatory Represents a protocol (command set)
supported by the port. The appropriate
subclass (SCSIProtocolEndpoint,
ATAProtocolEndpoint, SBProtocolEndpoint)
should be used in initiator port specialized
profiles.

22.6.16 CIM_ProtocolEndpoint (Target) Optional Models protocols of remote ports - target
devices and possibly other initiators.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 201

FCoE Initiator Ports Profile

67

68

69

70

71

72

73

74

75
76
77

78

79

80

81
22.6.1 CIM_ConnectivityCollection

Represents a collection of connected ProtocolEndpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 222 describes class CIM_ConnectivityCollection.

22.6.2 CIM_DeviceSAPImplementation

Connects Initiator LogicalPort and ProtocolEndpoint. The class definition specializes the
CIM_DeviceSAPImplementation definition in the Generic Initiator Ports profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

22.6.17
CIM_SCSIInitiatorTargetLogicalUnitPath

Optional Represents a path between a SCSI initiator,
target, and logical unit.

22.6.18 CIM_SCSIProtocolEndpoint (Initiator) Mandatory

22.6.19 CIM_SCSIProtocolEndpoint (Target) Optional Models remote ports - target devices and
possibly other initiators.

22.6.20 CIM_SystemDevice (Ethernet Port) Mandatory Associates system to ethernet ports.

22.6.21 CIM_SystemDevice (Initiator Ports) Mandatory Associates system to FCPorts.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_FCPort

Optional CQL -Creation of an FCoE Port.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_FCPort
AND
SourceInstance.CIM_FCPort::OperationalStat
us <>
PreviousInstance.CIM_FCPort::OperationalSt
atus

Optional CQL -Modify FCPort.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_FCPort

Optional CQL -Deletion of an FCoE Port.

Table 222 - SMI Referenced Properties/Methods for CIM_ConnectivityCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Table 221 - CIM Elements for FCoE Initiator Ports

Element Name Requirement Description
202

 FCoE Initiator Ports Profile

82

83

84
85
86

87

88

89

90

91

92

93

94

95

96

97
Table 223 describes class CIM_DeviceSAPImplementation.

22.6.3 CIM_ElementStatisticalData (Port Statistics)

Connects LogicalPort and LogicalPortStatistics. The class definition specializes the CIM_ElementStatisticalData
definition in the Generic Initiator Ports profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 224 describes class CIM_ElementStatisticalData (Port Statistics).

22.6.4 CIM_EthernetPort

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 225 describes class CIM_EthernetPort.

Table 223 - SMI Referenced Properties/Methods for CIM_DeviceSAPImplementation

Properties Flags Requirement Description & Notes

Dependent
(overridden)

Mandatory Reference to SCSIProtocolEndpoint.

Antecedent
(overridden)

Mandatory Reference to FCPort.

Table 224 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Port Statistics)

Properties Flags Requirement Description & Notes

ManagedElement
(overridden)

Mandatory Reference to FC subclass.

Stats (overridden) Mandatory Reference to FCPortStatistics.

Table 225 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 203

FCoE Initiator Ports Profile

98

99
100
101

102

103

104

105

106
22.6.5 CIM_FCPort

Represents the logical aspects of the physical port and may have multiple associated protocols. The class
definition specializes the CIM_LogicalPort definition in the Generic Initiator Ports profile. Properties or methods not
inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 226 describes class CIM_FCPort.

CreationClassName Mandatory

DeviceID Mandatory

LinkTechnology Mandatory Shall be 2 (Ethernet).

OperationalStatus Mandatory Shall be 0 (Unknown), 2 (OK), 6 (Error), 10 (Stopped), or 11
(In Service).

PermanentAddress CD Mandatory The MAC Address. Shall be formatted as 12 un-separated
upper case hex digits.

Table 226 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

OperationalStatus Mandatory

UsageRestriction Mandatory Shall be 3 for ports restricted to back-end (initiator) only or
4 if the port is unrestricted.

PortType
(overridden)

Mandatory Shall be 0 (Unknown), 1 (Other), N (10), or Nx (13).

ElementName
(added)

Mandatory Port Symbolic Name.

Speed (added) Mandatory Speed in bits per second. Shall be 0, 1062500000 (1GFC),
2125000000 (2GFC), 4250000000 (4GFC), 8500000000
(8GFC), 10312500000 (10GE/10GFCoE), 14025000000
(16GFC), or 28500000000 (32GFC).

MaxSpeed (added) Mandatory Maximum Port Speed.

PortNumber (added) Optional

Table 225 - SMI Referenced Properties/Methods for CIM_EthernetPort

Properties Flags Requirement Description & Notes
204

 FCoE Initiator Ports Profile

107

108
109

110

111

112

113

114
22.6.6 CIM_FCPortStatistics

. The class definition specializes the SNIA_LogicalPortStatistics definition in the Generic Initiator Ports profile.
Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 227 describes class CIM_FCPortStatistics.

PermanentAddress
(added)

CD Optional Port WWN. PermanentAddress is optional when used as a
back-end port in a device. This may be overridden in
profiles that use this profile. Shall be 16 un-separated
upper case hex digits.

NetworkAddresses
(added)

Optional For Fibre Channel end device ports, the Fibre Channel ID.
Shall be 16 un-separated upper case hex digits.

SupportedCOS
(added)

Optional List of supported classes of services. Shall include 0
(unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3), 4 (Class
4), 6 (Class 6), or 7 (Class 7).

ActiveCOS (added) Optional List of active classes of services. Shall include 0
(unknown), 1 (Class 1), 2 (Class 2), 3, (Class 3), 4 (Class
4), 6 (Class 6), or 7 (Class 7).

SupportedFC4Types
(added)

Optional

ActiveFC4Types
(added)

Optional

LinkTechnology
(added)

Mandatory Shall be 4 (FC).

SupportedMaximumT
ransmissionUnit
(added)

Mandatory

ActiveMaximumTrans
missionUnit (added)

Optional

PortDiscriminator
(added)

Mandatory Experimental. Shall include 10 (FCoE) and 12 (HBA).

Table 227 - SMI Referenced Properties/Methods for CIM_FCPortStatistics

Properties Flags Requirement Description & Notes

ElementName Mandatory

InstanceID Mandatory

Table 226 - SMI Referenced Properties/Methods for CIM_FCPort

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 205

FCoE Initiator Ports Profile

115

116

117

118

119

120

121
22.6.7 CIM_HostedAccessPoint (Initiator)

Associates system to initiator protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 228 describes class CIM_HostedAccessPoint (Initiator).

BytesTransmitted Mandatory

BytesReceived Mandatory

PacketsTransmitted Mandatory

PacketsReceived Mandatory

CRCErrors (added) Mandatory Maps to HBA API HBA_PortStatistics.InvalidCRCCount.

LinkFailures (added) Mandatory Maps to HBA API HBA_PortStatistics.LinkFailureCount.

PrimitiveSeqProtocol
ErrCount (added)

Mandatory

LossOfSignalCounter
(added)

Mandatory Maps to HBA API HBA_PortStatistics.LossOfSignalCount.

InvalidTransmission
Words (added)

Mandatory Maps to HBA API HBA_PortStatistics.InvalidTxWordCount.

StatisticTime (added) Optional Time last measurement was taken.

LIPCount (added) Mandatory

NOSCount (added) Mandatory

ErrorFrames (added) Mandatory

DumpedFrames
(added)

Mandatory

LossOfSyncCounter
(added)

Mandatory Maps to HBA API HBA_PortStatistics.LossOfSynchCount.

Table 228 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Initiator)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Initiator).

Table 227 - SMI Referenced Properties/Methods for CIM_FCPortStatistics

Properties Flags Requirement Description & Notes
206

 FCoE Initiator Ports Profile

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141
22.6.8 CIM_HostedAccessPoint (Target)

Associates system to optional remote protocol endpoints.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 229 describes class CIM_HostedAccessPoint (Target).

22.6.9 CIM_HostedCollection (Connectivity Collection)

Associates the ConnectivityCollection to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 230 describes class CIM_HostedCollection (Connectivity Collection).

22.6.10 CIM_HostedCollection (FC Node)

Associates the LogicalPortGroup (Fibre Channel Node) to the hosting System.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 229 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint (Target)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem in referencing profile.

Dependent Mandatory Reference to ProtocolEndpoint(Target).

Table 230 - SMI Referenced Properties/Methods for CIM_HostedCollection (Connectivity Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to ConnectivityCollection.

Antecedent Mandatory Reference to ComputerSystem in referencing profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 207

FCoE Initiator Ports Profile

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156
Table 231 describes class CIM_HostedCollection (FC Node).

22.6.11 CIM_HostedDependency (NetworkPort to FCPort)

Association between EthernetPort and FCPort.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 232 describes class CIM_HostedDependency (NetworkPort to FCPort).

22.6.12 CIM_LogicalPortGroup

Represents the Fibre Channel Node.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 233 describes class CIM_LogicalPortGroup.

Table 231 - SMI Referenced Properties/Methods for CIM_HostedCollection (FC Node)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to ComputerSystem.

Dependent Mandatory Reference to LogicalPortGroup.

Table 232 - SMI Referenced Properties/Methods for CIM_HostedDependency (NetworkPort to
FCPort)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to EthernetPort.

Dependent Mandatory Reference to FCPort.

Table 233 - SMI Referenced Properties/Methods for CIM_LogicalPortGroup

Properties Flags Requirement Description & Notes

InstanceID Mandatory Opaque.

Name D Mandatory Fibre Channel Node WWN.

NameFormat Mandatory Shall be 'WWN'.

ElementName Mandatory Node Symbolic Name.
208

 FCoE Initiator Ports Profile

157

158
159
160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178
22.6.13 CIM_MemberOfCollection (Connectivity Collection)

Associates ProtocolEndpoints to the ConnectivityCollection. The class definition specializes the
CIM_MemberOfCollection definition in the Generic Initiator Ports profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ConnectivityCollections.

Table 234 describes class CIM_MemberOfCollection (Connectivity Collection).

22.6.14 CIM_MemberOfCollection (FC Node)

Associates FCPort to the LogicalPortGroup.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 235 describes class CIM_MemberOfCollection (FC Node).

22.6.15 CIM_ProtocolEndpoint (Initiator)

Represents a protocol (command set) supported by the port.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 234 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Connectivity Col-
lection)

Properties Flags Requirement Description & Notes

Member (overridden) Mandatory Reference to ProtocolEndpoint.

Collection Mandatory Reference to ConnectivityCollection.

Table 235 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (FC Node)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to LogicalPortGroup.

Member Mandatory Reference to FCPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 209

FCoE Initiator Ports Profile

179

180

181
182
183

184

185

186

187

188

189
Table 236 describes class CIM_ProtocolEndpoint (Initiator).

22.6.16 CIM_ProtocolEndpoint (Target)

Models protocols of remote ports - target devices and possibly other initiators. The appropriate subclass
(SCSIProtocolEndpoint, ATAProtocolEndpoint, SBProtocolEndpoint) should be used in initiator port specialized
profiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 237 describes class CIM_ProtocolEndpoint (Target).

22.6.17 CIM_SCSIInitiatorTargetLogicalUnitPath

Table 236 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name C Mandatory See Storage Management Technical Specification, Part 1
Common Architecture, 1.6.0 Rev 4 7.6.3 Standard Formats
for Port Names.

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.

Table 237 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
appropriately.

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI', 'ATA', or 'SB'. Initiator port
specialized profiles specify the appropriate subset.
210

 FCoE Initiator Ports Profile

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 238 describes class CIM_SCSIInitiatorTargetLogicalUnitPath.

22.6.18 CIM_SCSIProtocolEndpoint (Initiator)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 239 describes class CIM_SCSIProtocolEndpoint (Initiator).

22.6.19 CIM_SCSIProtocolEndpoint (Target)

Models remote ports - target devices and possibly other initiators.

Created By: Static
Modified By: Static

Table 238 - SMI Referenced Properties/Methods for CIM_SCSIInitiatorTargetLogicalUnitPath

Properties Flags Requirement Description & Notes

LogicalUnit Mandatory

Initiator Mandatory

Target Mandatory

Table 239 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Initiator)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ProtocolIFType Mandatory Shall be 1 (Other).

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 2 (Fibre Channel).

Role Mandatory Shall be 2 (Initiator).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 211

FCoE Initiator Ports Profile

205

206

207

208

209

210

211

212

213

214

215

216
217
218

219

220
Deleted By: Static
Requirement: Optional

Table 240 describes class CIM_SCSIProtocolEndpoint (Target).

22.6.20 CIM_SystemDevice (Ethernet Port)

Associates system to ethernet ports.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 241 describes class CIM_SystemDevice (Ethernet Port).

22.6.21 CIM_SystemDevice (Initiator Ports)

Associates system to FCPorts. The class definition specializes the CIM_SystemDevice definition in the Generic
Initiator Ports profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)' in
the left most column.

Created By: Static
Modified By: Static

Table 240 - SMI Referenced Properties/Methods for CIM_SCSIProtocolEndpoint (Target)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Role Mandatory Should be set appropriately by the instrumentation. If not
know, use 0 (Unknown).

ProtocolIFType Mandatory The values in MOFs map to IETF values and exclude
storage. Shall be 1 (Other) and set OtherTypeDescription
to 'SCSI'.

OtherTypeDescriptio
n

Mandatory Shall be the string 'SCSI'.

ConnectionType Mandatory Shall be 8 (FC).

Table 241 - SMI Referenced Properties/Methods for CIM_SystemDevice (Ethernet Port)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent Mandatory Reference to EthernetPort.
212

 FCoE Initiator Ports Profile

221

222

223
Deleted By: Static
Requirement: Mandatory

Table 242 describes class CIM_SystemDevice (Initiator Ports).

EXPERIMENTAL

Table 242 - SMI Referenced Properties/Methods for CIM_SystemDevice (Initiator Ports)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to ComputerSystem.

PartComponent
(overridden)

Mandatory Reference to FCPort.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 213

FCoE Initiator Ports Profile
214

 Access Points Subprofile

1

2

3

4
5

6
7
8
9

10
11

12
13
14
15
16
STABLE

Clause 23: Access Points Subprofile

23.1 Description
The Access Points Subprofile provides addresses of remote access points for management services.

This is modeled using a RemoteServiceAccessPoint linked to the managed system using a HostedAccessPoint
association.

A management service is typically associated with all elements in a system, but in some cases, a management
service relates to a subset of elements. The scope of a RemoteServiceAccessPoint may be constrained to a
subset of elements using SAPAvailableForElement. If the service referenced in RemoteServiceAccessPoint is not
referenced by any SAPAvailableForElement associations, then the service described by
RemoteServiceAccessPoint shall apply to all the elements of the system referenced via HostedAccessPoints. This
type of system-wide service is depicted in Figure 32.

If the service referenced in RemoteServiceAccessPoint is referenced by any SAPAvailableForElement
associations, then the service described by RemoteServiceAccessPoint shall apply to the subset of elements
referenced via SAPAvailabelForElement associations. The HostedAccessPoint association between
RemoteServiceAccessPoint is still mandatory (so the client can readily associate the service to a specific storage
system).

Figure 32 - System-wide Remote Access Point
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 215

Access Points Subprofile

17
18

19
20
21
22
23
24

25

26
Figure 33 depicts a configuration with two RemoveServiceAccessPoint instances. One represents a system-wide
service and the other represents a service that applies just to certain devices.

The exposed management services may represent a web UI that can be launched by a web browser, a telnet
interface, or some vendor-specific interface. RemoteServiceAccessPoint InfoFormat property describes the format
of the AccessIfo property; valid options include “URL” and FQDN”. In a URL, the text before the “://” is referred to
as the “scheme”. A URL with an http or HTTPS scheme is often a web/HTML page, but HTTP can be used for
other purposes. Table 243 specifies the requirements for InfoFormat, AccessInfo, and the scheme subset of a URL
AccessInfo.

23.2 Health and Fault Management Considerations
Not defined in this standard.

Figure 33 - Access Point Instance Diagram

Table 243 - RemoteAccessPoint InfoFormat and AccessInfo Properties

InfoFormat AccessInfo Scheme Description

“URL” “http” or “https” The references URL shall be a valid web
page. It should provide element
management for the system or elements
referenced by the associated
HostedAccessPoint association.

“Other” with
OtherInfoFormatDescription =
"Non-UI URL"

“http” or” https” Used for HTTP URLs that do not reference
a valid web UI.

“URL” anything other than “http”
and “https”

May be used. No standard behavior is
specified.

others from the MOF n/a May be used. No standard behavior is
specified.
216

 Access Points Subprofile

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
23.3 Cascading Considerations
Not defined in this standard.

23.4 Supported Subprofiles and Packages
Not defined in this standard.

23.5 Methods of this Profile
Not defined in this standard.

23.6 Client Considerations and Recipes
Not defined in this standard.

23.7 Registered Name and Version
Access Points version 1.3.0 (Component Profile)

23.8 CIM Elements
Table 244 describes the CIM elements for Access Points.

23.8.1 CIM_HostedAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 245 describes class CIM_HostedAccessPoint.

Table 244 - CIM Elements for Access Points

Element Name Requirement Description

23.8.1 CIM_HostedAccessPoint Mandatory Associate the RemoteServiceAccessPoint to
the System on which it is hosted.

23.8.2 CIM_RemoteServiceAccessPoint Mandatory A ServiceAccessPoint for management tools.

23.8.3 CIM_SAPAvailableForElement Optional This association identifies the element that is
serviced by the RemoteServiceAccessPoint.

Table 245 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Hosting System.

Dependent Mandatory The access point(s) that are hosted on this System.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 217

Access Points Subprofile

45

46

47

48

49

50

51

52

53

54

55

56
23.8.2 CIM_RemoteServiceAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 246 describes class CIM_RemoteServiceAccessPoint.

23.8.3 CIM_SAPAvailableForElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 247 describes class CIM_SAPAvailableForElement.

STABLE

Table 246 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

ElementName Mandatory User Friendly name.

AccessInfo Mandatory Management Address.

InfoFormat Mandatory The format of the Management Address. For
interoperability, this shall be 'URL' (200).

Table 247 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element.

AvailableSAP Mandatory The service access point.
218

 Cascading Subprofile

1

2
3
4
5
6
7
8
9

10

11

12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27

28
29
30

31
32
33
34
35
36
37

38

39
40
41
DEPRECATED

Clause 24: Cascading Subprofile

Note: The Cascading Subprofile is scheduled for removal for SMI-S 2.0. The functionality of this profile will
not be replaced in SMI-S 2.0. In SMI-S 2.0, cascading elements are to be done as profile specific
cascading component profile or the cascading elements are to simply be embedded in the profile that is
doing the cascading. The SNIA would like to hear from anyone that has implemented the Cascading
Subprofile. If your company or organization has implemented this profile and is a member of the SNIA,
please contact the SMI-S Core Technical Working Group or indicate your preference to keep this profile
in SMI-S 2.0 during member reviews and ballots. If your company or organization has implemented this
profile and is not a member of the SNIA, please indicate your preference to keep this profile as part of
SMI-S using the SNIA feedback portal: http://www.snia.org/tech_activities/feedback/ .

24.1 Description
The Cascading Subprofile defines the set of classes, methods and behavior used to model cross profile
dependencies and references. This includes modeling of cross CIM server references when the referenced profile
is managed by another CIM server.

Examples of SMI-S Profiles that should support the Cascading Subprofile include Storage Virtualizer, NAS Heads
and Volume Managers. However, other profiles may also support the Cascading Subprofile for cross profile
references. For example, an Array Profile may support the Cascading Subprofile to effect cross profile references
used in “remote copy.”

For ease of documentation, a profile that supports the Cascading Subprofile is referred to as a cascading profile.
The profile referenced is referred to as a leaf profile. For example, storage virtualization would support the
Cascading Subprofile and would be a cascading profile. It would reference storage volumes in one or more Array
profiles. In such configurations, the Array profiles would be referred to as Leaf profiles.

The cascading subprofile defines a common approach to “stitching” resources in the cascading profile to resources
in the leaf profiles. While the general mechanism used is common, the specifics may vary depending on the
resources that are stitched together. For example, a Storage Virtualization Profile would stitch StorageExtents (in
the virtualizer) to StorageVolumes (in arrays). But a Volume Manager would stitch LogicalDisks (in the volume
manager) to StorageVolumes (in arrays or virtualizers).

The cascading subprofile defines how to model the relationships between CIM Servers when there are CIM
Servers of Leaf profiles that are referenced by a CIM Server of the cascading profile, and how a client manages the
interaction between CIM Servers in a cascading configuration (including CIM Server credentials).

In addition to the Cascading Subprofile, there are two related subprofiles that may also be supported by the
cascading profile or the leaf profiles. They are the Credential Management Subprofile, which defines the classes,
methods and behavior for managing the credentials used by a CIM server of the cascading profile when accessing
(different) CIM Servers of Leaf profiles. The second is the Security Resource Ownership Subprofile (or a
specialization of this subprofile) which defines the classes, methods and behavior of recording ownership in the
leaf profiles. The usage of these subprofiles will be referenced in this subprofile, but their definition is contained in
separate subprofile specifications.

The Cascading Subprofile provides block-level configuration management in the current version of SMI-S.

The Cascading Subprofile defines cascading of resources at the block level. That is, a Cascading Profile uses
Block storage resources of the leaf profiles. These are StorageVolumes or LogicalDisks. In the current version of
SMI-S the model will only be tested in the context of cascading for block storage.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 219

Cascading Subprofile

42

43

44

45

46

47
48
49

50

51
52
53
54

55
56
57
58

59
60
61
62
24.1.1 Instance Diagrams

There are three aspects of the cascading subprofile that are illustrated separately:

• Logical Topology (usage of leaf resources by cascading profiles)

• Resource Allocation/Deallocation

• CIM Server Topology (usage of CIM Servers by other CIM Servers)

In addition, there are the relationships between the Cascading Subprofile and the Security Resource Ownership
Subprofile and the Credential Management Subprofile. This relationship will be illustrated, but the details of those
subprofiles are documented in their own sections.

24.1.1.1 Logical Topology
Figure 34 illustrates the basic constructs for modeling the logical topology represented by cascading profiles. The
cascading profile is the top box. The modeling for the cascading subprofile is in the dashed box (in the Cascading
Profile). The leaf profile is the lower box. Note that for the basic modeling of the logical topology of cascading, there
are no modeling requirements on the leaf profile.

Note: The dashed classes in Figure 34 are instances that are cached in the Cascading Profile. They are
redundant with the instances maintained by the Leaf profile. The dashed arrows between the
Cacsading Profile and the Leaf Profile signifies “stitching” based on durable names or correlatable ids
for the resources represented. The dashed arrows are not instantiated associations.

If the Cascading Subprofile is supported by the Cascading Profile, then there will be support for instantiating “leaf”
“top level object” (e.g., ComputerSystems) and “leaf” LogicalDevices (e.g., StorageVolumes) in those Leaf Profiles
that are “visible” to the Cascading Profile (device). The instances of the “leaf” “top level object” can be found by
traversing the CascadingDependency association from the “top level object” of the Cascading Profile.

Figure 34 - Instance Diagram for Logical Topology
220

 Cascading Subprofile

63
64
65

66
67
68
69

70
71
72

73
74
75
76
77

78
79

80

81
82
83
84
85
86

87
88
89

90
91
92
93
94

95
96
97
The leaf resources (logical devices) that are visible to the Cascading Profile have an association (e.g.,
SystemDevice association) to the “leaf” top level object (e.g., ComputerSystem) that has exposed them to the
Cascading Profile.

The top level object, Hosted or SystemDevice association and LogicalDevices mirrors information that is in the
Leaf Profile. In some Cascading Profile configurations, the Cascading Profile may want to subscribe to life cycle
indications on the devices of interest in the Leaf Profile. However, that is a consideration of the Cascading Profile.
It is not required as part of the Cascading Subprofile.

From the top level object (e.g., ComputerSystem) of the Leaf, there may be a SAPAvailableForElement association
to a RemoteServiceAccessPoint instance. The RemoteServiceAccessPoint identifies information need for access
to the management interface to the Leaf system. This management interface may or may not be a CIM interface.

The expectation is that the model represented in Figure 34 will be automatically maintained by the Cascading
Profile (and providers). There are no methods for client manipulation of this model. In the case of the
RemoteServiceAccessPoint instance, the expectation is that discovery of leaf systems would be an automatic
process (e.g., SLP discovery of SMI-S Profiles and Servers) and that the provider would record the access
information based on its discovery processes.

In the simplest form of cascading, this is sufficient to model the logical topology of the cascading. However, many
implementations will need to go further (see 24.1.1.2).

24.1.1.2 Resource Allocation/Deallocation
In some cascading environments, it is necessary to distinguish between resources that are “visible” to the
Cascading Profile from resources that are actually “in use.” For example, a Volume Manager or storage
virtualization system may be able to “see” a number of storage volumes (logical units) through its ports. But this
does not necessarily mean that is has allocated and is using them. A separate step is required to “prepare” the
resources for use. In the case of storage virtualization systems, this step would include assigning the storage to a
storage pool in the virtualizer.

To readily discern which storage volumes (logical devices) are “visible” and which volumes are assigned, two
collections are defined. The collection of “visible” resources is the “RemoteResources” collection. The collection of
assigned resources is the “AllocatedResources” collection. This is illustrated in Figure 35.

The SNIA_AllocationService may or may not exist. The actual function of Allocation may be implemented as a side
effect of other methods. For example, allocating a Leaf StorageVolume may occur as a side effect of
CreateOrModifyStoragePool, where an extent (e.g., leaf StorageVolume) is added to a StoragePool. The
semantics of CreateOrModifyStoragePool constructs all the necessary associations for the StorageExtent (and
may also have the semantics of an implied allocation of the StorageVolume).

To determine if allocation or deallocation are explicit (via allocate/deallocate method calls) or implicit (side effect of
another method), the client should inspect the “AsynchronousMethodsSupported” and
“SynchronousMethodsSupported” properties of the SNIA_CascadingCapabilities instance for the System.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 221

Cascading Subprofile
Figure 35 - Resource Allocation/Deallocation Instance Diagram
222

 Cascading Subprofile

98

99
100
101

102
103

104

105
106

107

108
109

110
111
24.1.1.3 CIM Server Topology
In addition to a cascading system using leaf systems and its resources, a cascading profile may also model the
dependencies between the CIM Server of the cascading profile and the CIM Servers of the Leaf Profiles. This is
illustrated in Figure 36.

As with the logical topology, the server topology is effected by caching Leaf information in the cascading profile.
Specifically, the cached instances from the leaf profiles are:

ObjectManager – to allow the dependency between ObjectManagers to be instantiated in the cascading profile.

Namespace – to provide cached information on the namespace of the leaf CIM Server. This would be the Interop
Namespace for accessing the Server Profile of the CIM Server.

RegisteredProfile – to identify the Profile of the Leaf Profile (e.g., Array or Virtualizer).

In addition, the necessary associations (HostedProfile, NamespaceInManager and ElementConformsToProfile)
would be instantiated to connect the relevant instances.

The actual dependence between the CIM Server (ObjectManager) of the Cascading Profile and the CIM Server
(ObjectManager) of the Leaf systems is represented by instances of Dependency.

Figure 36 - Cascading Server Topology
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 223

Cascading Subprofile

112

113
114

115

116
117
118
24.1.1.4 Cascading with the Resource Ownership Subprofile

Figure 37 illustrates cascading when used in conjunction with the Security Resource Ownership Profile. The
Security Resource Ownership (or a specialization of it) would be implemented in the Leaf Profile.

24.1.1.5 Cascading with the Credentials Management Subprofile
As an extension of the modeling of CIM Server topology, a cascading profile may implement the Credentials
Management Subprofile. When this is done it extends the modeling for the Server topology as illustrated in
Figure 38.

Figure 37 - Instance Diagram for Cascading with Resource Ownership
224

 Cascading Subprofile

119
120
121

122

123
124
125
126
The Credential Management information would be associated with the CIM Server ObjectManager instance for a
Leaf system. The Credential Management Subprofile would identify how the cascading system would authenticate
itself with the Leaf system.

24.1.1.6 Modeling for Defining Cascading Capabilities
As indicated in previous discussions, only parts of the Cascading subProfile are mandatory. For a list of what
elements are mandatory, see Table 250. In order to make it relatively easy for clients to determine what is
supported, implementation of the SNIA_CascadingCapabilities class is mandatory if cascading is supported. The
modeling for this class is illustrated in Figure 39.

Figure 38 - Instance Diagram for Cascading with Credential Management Subprofile
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 225

Cascading Subprofile

127
128

129

130
131
132

133
134
135

136
137

138
139

140
141

142
143
The SNIA_CascadingCapabilities instance would be found by doing association traversal from the
RegisteredSubprofile for cascading following the ElementCapabilites association.

The properties of SNIA_CascadingCapabilities are defined as follows:

• FeaturesSupported - This is an array that defines the cascading features that are supported by the
implementation of the Cascading Profile. The values are "Ownership", "Leaf Credentials", "OM Dependencies"
and "Allocation Service".

• SupportedElementTypes - This is an array that defines the type of “Remote Resource” ManagedElements that
are supported by the implementation. For this version of SMI-S, only StorageVolumes and LogcialDisks are
supported.

• AsynchronousMethodsSupported – This is an array that defines any asynchronous methods supported for
allocation or deallocation of leaf resources. The values are “Allocation” or “Deallocation”.

• SynchronousMethodsSupported – This is an array that defines any synchronous methods supported for
allocation or deallocation of leaf resources. The values are “Allocation” or “Deallocation”.

The Cascading Subprofile uses durable names of leaf resources for stitching together the Leaf Profile and its
resources to the corresponding instances in the Cascading Profile.

The CIM Server of the Cascading Profile may use indications (or provider poll on access) to keep its model
accurate.

Figure 39 - Modeling of Cascading Capabilities
226

 Cascading Subprofile

144

145

146
147
148
149

150
151
152

153

154
155
156
157
158
159

160
161

162
163

164

165

166

167

168

169
24.2 Health and Fault Management Considerations

24.2.1 Reporting Health of Leaf Systems, Resources and Object Managers

A Cascading Profile should not report health of leaf resources without verifying the health of those resources (via
direct reference to the Leaf Profile). The Cascading Profile may keep health properties in its local copy of the
instances for leaf resources for its own purposes, but it should always refer to the leaf profile on requests from
clients.

A request for a health property (e.g., OperationalStatus) should result in a request to the underlying leaf resource
for the information. If the leaf resource is not available (e.g., the connection to the CIM Server is broken) the
Cascading Profile may report health from its local copy of the instance.

24.2.2 Cascading Indications of Health

Given a Cascading Profile is dependent upon leaf resources, the CIM Server of the Cascading Profile may chose
to subscribe to health (OperationalStatus) indications on the leaf resources it is actively using (allocated
resources). Generally speaking, health problems on leaf resources will translate to health problems on one or more
resources in the Cascading Profile. For example, if a StorageVolume in the Array (leaf) profile has an
OperationalStatus of “Error”, this may cause one or more StorageVolumes in a Virtualizer that is using the array to
either be in error or be degraded.

Health indications should cascade. However, how they cascade will depend on where and how the leaf resources
are used.

However a cascading profile discovers a problem with leaf resources, then it may be reflected in operational status
of the cascader’s resources.

24.3 Cascading Considerations
Not defined in this standard.

24.4 Supported Subprofiles and Packages
Table 248 describes the supported profiles for Cascading.

24.5 Methods of this Subprofile
Table 249 summarized the extrinsic methods supported by the Cascading Subprofile.

Table 248 - Supported Profiles for Cascading

Profile Name Organization Version Requirement Description

Server SNIA 1.6.0 Mandatory

Table 249 - Extrinsic Methods Supported by Cascading Subprofile

Method Created Instances Deleted Instances Modified Instances

Allocate MemberOfCollection N/A N/A

Deallocate N/A MemberOfCollection N/A
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 227

Cascading Subprofile

170

171
172

173

174
175

176

177
178

179

180

181

182

183

184

185
186

187

188

189
190

191

192
193

194

195
196

197

198
199

200

201

202

203

204
24.5.1 Allocate

Starts a job to allocate remote resources (from the RemoteResources collection) to the AllocatedResources
collection.

Allocate (

[IN, Description (Enumeration indicating the type of element being allocated. This type value shall
match the type of the instances.),

 ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" },

 Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

 uint16 ElementType;

[IN (false), OUT, Description (Reference to the job (may be null if job completed).)]

 CIM_ConcreteJob REF Job,

[IN, Description (The reference to the AllocatedResource collection to which Elements are being added.)]

 SNIA_AllocatedResources REF Collection,

[IN, Description (Array of strings containing representations of references to CIM_ManagedElement instances, that
are being allocated to the AllocatedResources Collection.)]

 string InElements[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "In Use",
"DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor Specific" }]

24.5.2 Deallocate

Starts a job to remove remote resources (from the AllocatedResources collection) and return them to the
RemoteResources collection.

Deallocate (

 [IN, Description (Enumeration indicating the type of element being deallocated. This type value shall match
the type of the instances.),

 ValueMap { "0", "1", "2", "3", "4", "5", "6", "7", "8" },

 Values { "Unknown", "Reserved", "Any Type", "StorageVolume", "StorageExtent", "StoragePool",
"ComputerSystem", "LogicalDisk", "FileShare" }]

Only “3” (StorageVolume) is supported in this version of SMI-S.

 uint16 ElementType;

 [IN (false), OUT, Description (Reference to the job (may be null if job completed).)]

 CIM_ConcreteJob REF Job,

[IN, Description (The reference to the AllocatedResource collection from which Elements are being removed.)]
228

 Cascading Subprofile

205

206
207

208

209

210
211

212

213

214
215

216

217
218

219

220
221

222

223
224

225

226
227

228

229
230
 SNIA_AllocatedResources REF Collection,

[IN, Description (Array of strings containing representations of references to CIM_ManagedElement instances,
that are being deallocated from the AllocatedResources Collection.")]

 string InElements[]);

Error returns are:

{ "Job Completed with No Error", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "In
Use", "DMTF Reserved", "Method Parameters Checked - Job Started", "Method Reserved", "Vendor Specific" }

24.6 Client Considerations and Recipes

24.6.1 Recipe MPCP01: Determining Resources used by cascading Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.2 Recipe MPCP02: Monitoring the existence of Cascading Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.3 OPTIONAL: Recipe MPCP03: Allocation of Leaf Resources

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.4 OPTIONAL: Recipe MPCP04: Deallocation of Leaf Resources

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.5 Recipe MPCP05: Monitoring the existence of “Stitching” between Profiles

This recipe is not defined in this standard. It will be included in a future revision, based on implementation
experience.

24.6.6 Supported SNIA_CascadingCapabilities Patterns

The SNIA_CascadingCapabilities patterns in Table 250 are formally recognized and supported by this version of
SMI-S.

Table 250 - Cascading Capabilities Patterns

FeaturesSupported SupportedElementTypes SynchronousMethod
s

Supported

AsynchronouosMethods
Supported

none StorageVolume none none

Ownership,

Leaf Credentials,

OM Dependencies,
Allocation Service

StorageVolume Allocation

Deallocation

Allocation

Deallocation
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 229

Cascading Subprofile

231

232

233

234
24.7 Registered Name and Version
Cascading version 1.3.0 (Component Profile)

24.8 CIM Elements
Table 251 describes the CIM elements for Cascading.

Allocation Service StorageVolume Allocation

Deallocation

none

Allocation Service StorageVolume none Allocation

Deallocation

Ownership,

Leaf Credentials,

OM Dependencies

StorageVolume none none

Table 251 - CIM Elements for Cascading

Element Name Requirement Description

24.8.1 CIM_ComputerSystem (Leaf System) Mandatory 'Top level' system that represents the leaf
system.

24.8.2 CIM_Dependency (Object Managers) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled. This
associates the Object Manager of the Leaf
System to the Object Manager of the
Cascading System.

24.8.3 CIM_Dependency (Profile to Object
Manager)

Conditional Conditional requirement: This is required if
RegisteredProfiles of Leaf systems are
modeled. This associates the
RegisteredProfile of a leaf system to the
Object Manager of the leaf system.

24.8.4 CIM_Dependency (Systems) Mandatory This associates the Leaf System to the
Cascading System.

24.8.5 CIM_ElementCapabilities Mandatory This associates the CascadingCapabilities to
the cascading system (e.g.,
ComputerSystem).

Table 250 - Cascading Capabilities Patterns (Continued)

FeaturesSupported SupportedElementTypes SynchronousMethod
s

Supported

AsynchronouosMethods
Supported
230

 Cascading Subprofile
24.8.6 CIM_ElementConformsToProfile (Leaf) Conditional Conditional requirement: This is required if
RegisteredProfiles of Leaf systems are
modeled. This associates the
RegisteredProfile of the Leaf Profile to the
Leaf system (e.g., ComputerSystem).

24.8.7 CIM_HostedCollection (Allocated
Resources)

Mandatory This would associate the AllocatedResources
collection to the top level system for the
Cascading Profile (e.g., Storage Virtualizer).

24.8.8 CIM_HostedCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This
would associate the RemoteResources
collection to the top level system for the
Cascading Profile (e.g., Storage Virtualizer).

24.8.9 CIM_HostedService (Allocation
Service)

Conditional Conditional requirement: This is required if
SNIA_AllocationService is modeled. This
associates the AllocationService to the
system in the cascading profile that hosts the
service.

24.8.10 CIM_HostedService (Object
Manager)

Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled. This
associates the ObjectManager to the system
in the cascading profile that hosts the service.

24.8.11 CIM_LogicalDisk Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = '7' ('LogicalDisk'). A remote
LogicalDisk that is imported to the referencing
profile.

24.8.12 CIM_LogicalIdentity (General) Mandatory Associates local resource (e.g.,
StorageExtent) to a remote (imported)
resource (e.g., StorageVolume or
LogicalDisk).

24.8.13 CIM_LogicalIdentity (LogicalDisk) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = '7' ('LogicalDisk'). Associates local
StorageExtent to a remote (imported)
LogicalDisk.

24.8.14 CIM_LogicalIdentity (StorageVolume) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = '3' ('StorageVolume'). Associates
local StorageExtent to a remote (imported)
StorageVolume.

24.8.15 CIM_MemberOfCollection (Allocated
Resources)

Mandatory This supports collecting leaf resources. This is
required to support the AllocatedResources
collection.

Table 251 - CIM Elements for Cascading

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 231

Cascading Subprofile
24.8.16 CIM_MemberOfCollection (Remote
Resources)

Conditional Conditional requirement: This is required if
SNIA_RemoteResources is modeled. This
supports collecting leaf resources. This is
optional when used to support the
RemoteResources collection (the
RemoteResources collection is optional).

24.8.17 CIM_Namespace (Leaf) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled. There
would be one for every namespace supported.

24.8.18 CIM_NamespaceInManager (Leaf) Conditional Conditional requirement: This is required if
Leaf ObjectManagers are modeled. This
associates the namespace to the
ObjectManager.

24.8.19 CIM_ObjectManager (Leaf) Optional This is the Object Manager service of the CIM
Server.

24.8.20 CIM_RegisteredProfile (Leaf) Optional A registered profile that is supported by the
CIM Server.

24.8.21 CIM_RemoteServiceAccessPoint
(Leaf)

Optional CIM_RemoteServiceAccessPoint represents
the management interface to a leaf system.

24.8.22 CIM_SAPAvailableForElement Conditional Conditional requirement: This is required if
CIM_RemoteServiceAccessPoint is modeled.
Represents the association between a
RemoteServiceAccessPoint and the leaf
System to which it provides access.

24.8.23 CIM_StorageVolume Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = '3' ('StorageVolume'). A remote
StorageVolume that is imported to the
referencing profile.

24.8.24 CIM_SystemDevice (Leaf Devices) Conditional Conditional requirement: This is required if
SNIA_CascadingCapabilities.SupportedElem
entTypes = '3'|'4'|'7' (StorageVolume |
StorageExtent | LogicalDisk). This association
links LogicalDevice remote resources to the
scoping system. This is used to associate the
remote resources with the System that
manages them.

24.8.25 SNIA_AllocatedResources Mandatory This is a SystemSpecificCollection for
collecting leaf resources that have been
deployed for use in the Cascading profile
(e.g., StorageVolumes assigned to a
virtualizer's StoragePool).

24.8.26 SNIA_AllocationService Optional This service provides methods for allocating
and deallocating leaf resources.

Table 251 - CIM Elements for Cascading

Element Name Requirement Description
232

 Cascading Subprofile

235

236

237

238

239

240

241

242
243
244

245
24.8.1 CIM_ComputerSystem (Leaf System)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 252 describes class CIM_ComputerSystem (Leaf System).

24.8.2 CIM_Dependency (Object Managers)

CIM_Dependency is an association between an Object Manager of a Leaf System and the Object Manager of the
Cascading System (ComputerSystem). If the Leaf System and the Cascading System are supported by the same
Object Manager, then no Dependency would exist.

CIM_Dependency is not subclassed from anything.

24.8.27 SNIA_CascadingCapabilities Mandatory This defines the cascading capabilities
supported by the implementation of the profile.

24.8.28 SNIA_RemoteResources Optional This is a SystemSpecificCollection for
collecting leaf resources that may be allocated
by the system of the Cascading profile (e.g.,
StorageVolumes assigned to a virtualizer's
StoragePool).

Table 252 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Leaf System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory Unique identifier for the leaf system. E.g., IP address.

ElementName Mandatory User friendly name.

OtherIdentifyingInfo C Mandatory

IdentifyingDescription
s

C Mandatory

OperationalStatus Mandatory Overall status of the Leaf system.

NameFormat Mandatory Format for Name property.

Dedicated Mandatory Indicates that this computer system is dedicated to
operation as a leaf system.

PrimaryOwnerContac
t

M Optional Contact a details for owner.

PrimaryOwnerName M Optional Owner of the Leaf system.

Table 251 - CIM Elements for Cascading

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 233

Cascading Subprofile

246

247

248

249

250

251

252
253

254

255

256

257

258

259

260

261
262
263

264

265

266

267

268
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 253 describes class CIM_Dependency (Object Managers).

24.8.3 CIM_Dependency (Profile to Object Manager)

CIM_Dependency is an association between RegisteredProfile and the Object Manager that provides the
management interface.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if RegisteredProfiles of Leaf systems are modeled.

Table 254 describes class CIM_Dependency (Profile to Object Manager).

24.8.4 CIM_Dependency (Systems)

CIM_Dependency is an association between a Leaf System and the Cascading System (ComputerSystem). The
specific nature of the dependency is determined by associations between resources of the cascading system and
resources of the leaf system.

CIM_Dependency is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 253 - SMI Referenced Properties/Methods for CIM_Dependency (Object Managers)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Object Manager of the Cascading System.

Dependent Mandatory The Object Manager of the Leaf System.

Table 254 - SMI Referenced Properties/Methods for CIM_Dependency (Profile to Object Manager)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Leaf Object Manager.

Dependent Mandatory The RegisteredProfile for the Leaf System.
234

 Cascading Subprofile

269

270

271
272

273

274

275

276

277

278

279

280
281

282

283

284

285

286

287
Table 255 describes class CIM_Dependency (Systems).

24.8.5 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,ComputerSystem) and their
capabilities (e.g., SNIA_CascadingCapabilities).

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 256 describes class CIM_ElementCapabilities.

24.8.6 CIM_ElementConformsToProfile (Leaf)

CIM_ElementConformsToProfile is the association between the RegisteredProfile of the leaf profile and the system
of the leaf (i.e., leaf ComputerSystem).

CIM_ElementConformsToProfile is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if RegisteredProfiles of Leaf systems are modeled.

Table 257 describes class CIM_ElementConformsToProfile (Leaf).

Table 255 - SMI Referenced Properties/Methods for CIM_Dependency (Systems)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The Cascading System.

Dependent Mandatory The Leaf System.

Table 256 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 257 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Leaf)

Properties Flags Requirement Description & Notes

ConformantStandard Mandatory The RegisteredProfile of the leaf system.

ManagedElement Mandatory Reference to the top-level system of the leaf profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 235

Cascading Subprofile

288

289
290
291
292

293

294

295

296

297

298

299

300
301
302
303

304

305

306

307

308

309

310

311
312

313

314
24.8.7 CIM_HostedCollection (Allocated Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Cascading Subprofile, it is used to associate the Allocated Resources to the top level
Computer System of the Cascading Profile.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 258 describes class CIM_HostedCollection (Allocated Resources).

24.8.8 CIM_HostedCollection (Remote Resources)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Cascading Subprofile, it is used to associate the Remote Resources to the top level
Computer System of the Cascading Profile.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 259 describes class CIM_HostedCollection (Remote Resources).

24.8.9 CIM_HostedService (Allocation Service)

CIM_HostedService is an association between a Service (SNIA_AllocationService) and the System
(ComputerSystem) on which the functionality resides.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static

Table 258 - SMI Referenced Properties/Methods for CIM_HostedCollection (Allocated Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 259 - SMI Referenced Properties/Methods for CIM_HostedCollection (Remote Resources)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
236

 Cascading Subprofile

315

316

317

318

319

320
321

322

323

324

325

326

327

328

329
330
331

332

333

334

335
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_AllocationService is modeled.

Table 260 describes class CIM_HostedService (Allocation Service).

24.8.10 CIM_HostedService (Object Manager)

CIM_HostedService is an association between a Service (SNIA_AllocationService) and the System
(ComputerSystem) on which the functionality resides.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 261 describes class CIM_HostedService (Object Manager).

24.8.11 CIM_LogicalDisk

A remote LogicalDisk that is imported to the referencing profile. If the referencing profile has access to the leaf
profile, the data in this class should reflect what the referencing profile obtains from that profile. If the referencing
profile does not have access to the leaf profile, then this should be filled out as best can be done.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '7' ('LogicalDisk').

Table 260 - SMI Referenced Properties/Methods for CIM_HostedService (Allocation Service)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory >The AllocationService hosted on the System.

Table 261 - SMI Referenced Properties/Methods for CIM_HostedService (Object Manager)

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 237

Cascading Subprofile

336
 Table 262 describes class CIM_LogicalDisk.

Table 262 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name Mandatory OS Device Name.

NameFormat Mandatory Format for name.

ExtentStatus Mandatory

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.
238

 Cascading Subprofile

337

338
339

340

341

342

343

344

345

346

347

348

349

350

351
24.8.12 CIM_LogicalIdentity (General)

Associates local resource (e.g., StorageExtent) to a remote (imported) resource (e.g., StorageVolume or
LogicalDisk).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 263 describes class CIM_LogicalIdentity (General).

24.8.13 CIM_LogicalIdentity (LogicalDisk)

Associates local StorageExtent to a remote (imported) LogicalDisk.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '7' ('LogicalDisk').

Table 264 describes class CIM_LogicalIdentity (LogicalDisk).

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 263 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (General)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported) resource.

SameElement Mandatory This is a reference to the local resource that maps to the
remote (imported) resource.

Table 264 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (LogicalDisk)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported) LogicalDisk.

SameElement Mandatory This is a reference to the local StorageExtent that maps to
the remote (imported) LogicalDisk.

Table 262 - SMI Referenced Properties/Methods for CIM_LogicalDisk

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 239

Cascading Subprofile

352

353

354

355

356

357

358

359

360
361

362

363

364

365

366

367

368
369

370

371

372

373
24.8.14 CIM_LogicalIdentity (StorageVolume)

Associates local StorageExtent to a remote (imported) StorageVolume.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3' ('StorageVolume').

Table 265 describes class CIM_LogicalIdentity (StorageVolume).

24.8.15 CIM_MemberOfCollection (Allocated Resources)

This use of MemberOfCollection is to collect all resource instances (in the AllocatedResources collection). Each
association is created as a result of the Allocate method or as a side effect of a cascading profile specific operation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 266 describes class CIM_MemberOfCollection (Allocated Resources).

24.8.16 CIM_MemberOfCollection (Remote Resources)

This use of MemberOfCollection is to collect all resource instances (in the RemoteResources collection). Each
association (and the RemoteResources collection, itself) is created through external means.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_RemoteResources is modeled.

Table 265 - SMI Referenced Properties/Methods for CIM_LogicalIdentity (StorageVolume)

Properties Flags Requirement Description & Notes

SystemElement Mandatory This is a reference to the remote (imported)
StorageVolume.

SameElement Mandatory This is a reference to the local StorageExtent that maps to
the remote (imported) StorageVolume.

Table 266 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Allocated
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory
240

 Cascading Subprofile

374

375

376

377

378

379

380

381

382

383

384

385
Table 267 describes class CIM_MemberOfCollection (Remote Resources).

24.8.17 CIM_Namespace (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 268 describes class CIM_Namespace (Leaf).

24.8.18 CIM_NamespaceInManager (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if Leaf ObjectManagers are modeled.

Table 267 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Remote
Resources)

Properties Flags Requirement Description & Notes

Member Mandatory

Collection Mandatory

Table 268 - SMI Referenced Properties/Methods for CIM_Namespace (Leaf)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ObjectManagerCreati
onClassName

Mandatory

ObjectManagerName Mandatory

CreationClassName Mandatory

Name Mandatory

ClassType Mandatory

DescriptionOfClassT
ype

Mandatory Mandatory if ClassType is set to 'Other'.

ClassInfo Optional Deprecated in the MOF, but required for 1.0 compatibility.

DescriptionOfClassIn
fo

Optional Deprecated in the MOF, but mandatory for 1.0 compatibility.
Mandatory if ClassInfo is set to 'Other'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 241

Cascading Subprofile

386

387

388

389

390

391

392

393

394

395

396

397
Table 269 describes class CIM_NamespaceInManager (Leaf).

24.8.19 CIM_ObjectManager (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 270 describes class CIM_ObjectManager (Leaf).

24.8.20 CIM_RegisteredProfile (Leaf)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 269 - SMI Referenced Properties/Methods for CIM_NamespaceInManager (Leaf)

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 270 - SMI Referenced Properties/Methods for CIM_ObjectManager (Leaf)

Properties Flags Requirement Description & Notes

Name Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

ElementName Mandatory

Description Mandatory

OperationalStatus Mandatory

Started Mandatory

StopService() Optional
242

 Cascading Subprofile

398

399

400
401

402

403

404

405

406

407

408
Table 271 describes class CIM_RegisteredProfile (Leaf).

24.8.21 CIM_RemoteServiceAccessPoint (Leaf)

CIM_RemoteServiceAccessPoint is an instance that provides access information for accessing the actual leaf
profile via a management interface.

CIM_RemoteServiceAccessPoint is not subclassed from CIM_ServiceAccessPoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 272 describes class CIM_RemoteServiceAccessPoint (Leaf).

24.8.22 CIM_SAPAvailableForElement

Table 271 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Leaf)

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the profile instance.

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
Profile. For SMI-S profiles, this would be SNIA.

OtherRegisteredOrga
nization

Optional

RegisteredName Mandatory This is the name assigned by the organization that created
the profile.

RegisteredVersion Mandatory This is the version number of the organization that defined
the profile.

AdvertiseTypes Mandatory Defines the advertisement of this profile. If the property is
null then no advertisement is defined. A value of 1 is used
to indicate 'other' and a 3 is used to indicate 'SLP'.

AdvertiseTypeDescri
ptions

Optional This shall not be NULL if 'Other' is identified in
AdvertiseType.

Table 272 - SMI Referenced Properties/Methods for CIM_RemoteServiceAccessPoint (Leaf)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory The CIM Class name of the Computer System hosting the
management interface.

SystemName Mandatory The name of the Computer System hosting the
management interface.

CreationClassName Mandatory The CIM Class name of the management interface.

Name Mandatory The unique name of the management interface.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 243

Cascading Subprofile

409

410

411

412

413

414

415
416
417

418

419

420

421

422
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if CIM_RemoteServiceAccessPoint is modeled.

Table 273 describes class CIM_SAPAvailableForElement.

24.8.23 CIM_StorageVolume

A remote StorageVolume that is imported to the referencing profile. If the referencing profile has access to the leaf
profile, the data in this class should reflect what the referencing profile obtains from that profile. If the referencing
profile does not have access to the leaf profile, then this should be filled out as best can be done.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3' ('StorageVolume').

Table 274 describes class CIM_StorageVolume.

Table 273 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Leaf System.

AvailableSAP Mandatory

Table 274 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory Opaque identifier.

ElementName Optional User-friendly name.

Name CD Mandatory The identifier for this volume.

OtherIdentifyingInfo CD Optional Additional correlatable names.

IdentifyingDescription
s

Optional

NameFormat Mandatory The type of identifier in the Name property.

NameNamespace Mandatory The namespace that defines uniqueness for the
NameFormat.

ExtentStatus Mandatory
244

 Cascading Subprofile

423

424

425

426
24.8.24 CIM_SystemDevice (Leaf Devices)

Created By: Static
Modified By: Static
Deleted By: Static

OperationalStatus Mandatory Value shall be 2|3|6|8|15 (OK or Degraded or Error or
Starting or Dormant).

BlockSize Mandatory

NumberOfBlocks Mandatory The number of blocks of capacity consumed from the
parent StoragePool.

ConsumableBlocks Mandatory The number of blocks usable by consumers.

IsBasedOnUnderlyin
gRedundancy

Mandatory

NoSinglePointOfFailu
re

Mandatory

DataRedundancy Mandatory

PackageRedundancy Mandatory

DeltaReservation Mandatory

Usage Optional The specialized usage intended for this element.

OtherUsageDescripti
on

Optional Set when Usage value is "Other".

ClientSettableUsage Optional Lists Usage values that can be set by a client for this
element.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

InstallDate N Optional Not Specified in this version of the Profile.

StatusDescriptions N Optional Not Specified in this version of the Profile.

HealthState N Optional Not Specified in this version of the Profile.

EnabledState N Optional Not Specified in this version of the Profile.

OtherEnabledState N Optional Not Specified in this version of the Profile.

RequestedState N Optional Not Specified in this version of the Profile.

EnabledDefault N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

Table 274 - SMI Referenced Properties/Methods for CIM_StorageVolume

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 245

Cascading Subprofile

427
428

429

430

431
432

433

434
435

436

437

438

439

440

441

442
443

444

445

446
447

448
Requirement: This is required if SNIA_CascadingCapabilities.SupportedElementTypes = '3'|'4'|'7' (StorageVolume |
StorageExtent | LogicalDisk).

Table 275 describes class CIM_SystemDevice (Leaf Devices).

24.8.25 SNIA_AllocatedResources

An instance of a default SNIA_AllocatedResources defines the set of remote (leaf) resources that are allocated
and in use by the Cascading Profile.

SNIA_AllocatedResources is subclassed from CIM_SystemSpecificCollection.

At least one instance of the SNIA_AllocatedResources shall exist for a Profile and shall be hosted by one of the
ComputerSystems of that Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 276 describes class SNIA_AllocatedResources.

24.8.26 SNIA_AllocationService

The SNIA_AllocationService class provides methods for allocating and deallocating remote resources for use in
the Cascading Profile.

The SNIA_AllocationService class is subclassed from CIM_Service.

There may be an instance of the SNIA_AllocationService if Allocation or Deallocation are supported.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the SNIA_CascadingCapabilities.

Created By: Static

Table 275 - SMI Referenced Properties/Methods for CIM_SystemDevice (Leaf Devices)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Leaf Computer System that contains this device.

PartComponent Mandatory The logical device that is managed by a computer system.

Table 276 - SMI Referenced Properties/Methods for SNIA_AllocatedResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the AllocatedResources collection
(e.g., AllocatedVolumes).

ElementType Mandatory The type of remote resources collected by the
AllocatedResources collection.

For this version of SMI-S, the only value supported is '3'
(StorageVolume).
246

 Cascading Subprofile

449

450

451

452

453

454
455

456
457

458

459

460

461

462

463
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 277 describes class SNIA_AllocationService.

24.8.27 SNIA_CascadingCapabilities

An instance of the SNIA_CascadingCapabilities class defines the specific support provided with the
implementation of the Cascading Profile.

There would be zero or one instance of this class in a profile. There would be none if the profile did not support the
Cascading Subprofile. There would be exactly one instance if the profile did support the Cascading Subprofile.

SNIA_CascadingCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 278 describes class SNIA_CascadingCapabilities.

Table 277 - SMI Referenced Properties/Methods for SNIA_AllocationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Allocate() Optional Support for this method is optional. This method allocates
remote (leaf) resources to the AllocatedResources
collection.

Deallocate() Optional Support for this method is optional. This method is used to
remove remote (leaf) resources from the
AllocatedResources collection.

Table 278 - SMI Referenced Properties/Methods for SNIA_CascadingCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

FeaturesSupported Mandatory ValueMap { '2', '3', '4', '5' },

Values {'Ownership', 'Leaf Credentials', 'OM
Dependencies', 'Allocation Service'}.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 247

Cascading Subprofile

464

465
466

467

468
469

470

471

472

473

474
24.8.28 SNIA_RemoteResources

An instance of a default SNIA_RemoteResources defines the set of remote (leaf) resources that are available to be
used by the Cascading Profile.

SNIA_RemoteResources is subclassed from CIM_SystemSpecificCollection.

One instance of the SNIA_RemoteResources would exist for each Element type for a Profile and shall be hosted
by one of the ComputerSystems of that Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 279 describes class SNIA_RemoteResources.

DEPRECATED

SupportedElementTy
pes

Mandatory For this version of SMI-S, only the value '3'
(StorageVolume) is supported.

ValueMap { '2', '3', '4', '5', '6', '7', '8' },

Values {'Any Type', 'StorageVolume', 'StorageExtent',
'StoragePool', 'ComputerSystem', 'LogicalDisk',
'FileShare'}.

SupportedSynchrono
usActions

Mandatory ValueMap { '2', '3' },

Values {'Allocation', 'Deallocation'}.

SupportedAsynchron
ousActions

Mandatory ValueMap { '2', '3' },

Values {'Allocation', 'Deallocation'}.

Table 279 - SMI Referenced Properties/Methods for SNIA_RemoteResources

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A user-friendly name for the RemoteResources collection
(e.g., RemoteVolumes).

ElementType Mandatory The type of remote resources collected by the
RemoteResources collection.

For this version of SMI-S, the only value supported is '3'
(StorageVolume).

Table 278 - SMI Referenced Properties/Methods for SNIA_CascadingCapabilities

Properties Flags Requirement Description & Notes
248

 Health Package

1

2

3
4
5
6

7
8
9

10

11
12
13
14

15
16
17
18
19

20

21

22

23
24

25
26
27
28

29
30
31
32
33
34

35
36
37
38
39
40
STABLE

Clause 25: Health Package

25.1 Description
Failures and abnormal occurrences are a common and expected part of monitoring, controlling, and configuring
devices and applications. A SMI-S client needs to be prepared at all times to trap unexpected situations and take
appropriate action. This package defines the general mechanisms used in the expression of health in SMI-S. This
package does not define the particular way a particular profile, subprofile, or package reports health.

This package builds on Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4
Clause 5: Health and Fault Management. In particular, this package defines the basis of all the sections that
currently and will exist in this specification or future versions of same.

25.1.1 Error Reporting Mechanism

Error are reports for many reasons. Not all the reasons are directly related to the operation being imposed on the
implementation by the client. It is therefore necessary for the client to be able to distinguish between errors that are
associated to problems in the formation and invocation of a method, extrinsic or intrinsic, or are related to other
conditions.

The client application may need to reform the method call itself, by fixing parameters for example, or the client may
need to stop what its attempting. At a basic level, the client needs to know that this operation will succeed at all,
given the prevailing conditions on the managed element. A client may also need to notify the end-user of the
situation that is preventing the client from fulfilling its function. A HFM application may need to investigate the
failure and develop a prognosis.

The types of errors are categorized in the three following types.

a) Errors associated to the method call

b) Errors caused by adverse prevailing conditions in the managed element

c) Errors causes by adverse prevailing conditions in the WBEM Server or related, infrastructural compo-
nents

Obviously, the method called may not exist. There may be a spelling mistake for the method name. One or more of
the parameters may be incorrectly formed, expressed, or otherwise invalid. The first type of error, type a, is
designed to inform the client that the operation attempted is still valid, but that the request was faulty. The intent of
such an error is to tell the client what is wrong with the method call and allow the method to be invoked again.

On the other hand, the device or application may be in some failure condition which prevents it from honoring this
particular or several method calls. This type of error, type b, tells the client that the it is unlikely that the method
being attempted will be honored. Specifically, the method execution is blocked by the prevailing condition being
described in the error itself. Given the presence of both type a and type b error situations, the implementation

should report the type b error. In this case, it does not matter how many fixes are made to the method call, the
method call will fail anyway.

The WBEM Service is a separate architectural element from the managed element itself. It can fail, even though
the methods and the managed element itself are without error. For example, the WBEM Server may allow only a
limited number of concurrent connection or request and reject all others. The server may be shutting down or
starting up and thus be unable to process any requests at the time. Unlike type b errors, type c errors are usually
transient in nature. Since a failure in the WBEM Server or its components constitutes a communications failure, the
reporting of type c errors shall take precedence over all other existing error type conditions.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 249

Health Package

41
42
43
44
45

46
47
48

49

50
51
52

53
54
55
56

57

58

59
60
61

62

63

64
65
66

67
68
69

70
71
72
73

74
75
76
77

78
79
80

81

82
83
The WBEM Server returns a error response or a results response to the request, which contains the operation
previously mentioned. Errors in WBEM may be reported through two ways. The status code itself provides basic
failure information. The number of status codes is very limited. Also on conveyed on the error response, is a Error
instance. The Error provides vastly most information than the status code and, as such, is a superior mechanism
for reporting errors.

The CIM Error provides attributes to express the categorization and severity of the error. More importantly, the CIM
Error and AlertIndication, to be discussed later, contain the exact expression of the nature of the error and
additional parameters to that error.

25.1.2 Event Reporting Mechanism

It is not sufficient to simply report the adverse conditions of the device or application through the error reporting
mechanism. Many of the adverse conditions that would be reported to a client application attempting control or
configuration operations are also of interest to client applications monitoring the very same device or application.

The CIM Event model provides a special class for reporting event conditions, AlertIndication. The AlertIndication is
used to report a device or application conditions that may also be represented in one or more other instances.
When the implementation detects the presence of a supported condition, it generates an AlertIndication to those
listening clients.

It is recommended that the type b and type c errors reported in also be reported through AlertIndications.

25.1.3 Standard Events

The expression of Error or an Alertindication is not entirely meaningful to the SMI-S client without the
standardization. A client can use these classes to determine the category, severity, and some other characteristics
of the event, but the client can not determine the exact nature of the event without this standardization.

Standard events are registered and this registry is maintained by some organization or company, like SNIA.

Primary event identification and characterization properties:

• OwningEntity
This property defines the registration entity for the event. The entities that are in scope for SMI-S are “DMTF”
and “SNIA”. If the OwningEntity is neither of these, then this specification provides no meaning for this event.

• MessageID
This property defines an event identifier that is unique for the OwningEntity. The combination of the
OwningEntity and MessageID defines the entry in the registry.

• Message
This property contains the message that can be forwarded to the end-user. The message is built from using
the static, MessageFormatString, and dynamic, MessageArguments, components. This text may be
localized. This text is not intended for programmatic processing

• MessageArguments
This property defines the variable content for the message. The client would programmatically process the
arguments to get further details on the nature of the event. For example, the message argument can tell the
client which method parameter has a problem and what the problem is.

• MessageFormatString
This property defines the static component of the message. This property is not included in the event
instance itself and is only present in the event registry.

25.1.4 Reporting Health

Many devices or applications can attempt to fix themselves upon encountering some adverse condition. The set of
components which the device or application can attempt to fix is called the Fault Region. The set may include part
250

 Health Package

84
85

86
87
88
89

90
91
92
93

94

95
96
97
98
or all of other devices or applications. Having the Fault Regions declared helps a HFM application, acting as a
doctor, to do no harm by attempting to interfere and thereby adversely effect the corrective action being attempted.

When components fail or become degraded, they can cause other components to fail or become degraded. For an
HFM application to report or attempt to diagnose the problem, the device or application should express what the
cause and effect relationships are that define the extent of the components affected by the failure or degradation.
The RelatedElementCausingError class provides just such a mechanism.

The cause and effect relationships identified by the RelatedElementCausingError association may be a chain of
cause and effect relationships with many levels. Given that devices or applications are sometimes subject to
several levels of decomposition, each level of may have its own set of these associations that represent the
ranking of cause and effect relationships and their effect on the parent component on the given level.

25.1.5 Computer System Operational Status

For most profiles, the ComputerSystem class is used to define the top or head of the object hierarchy. A profile may
allow for partitioning or clustering by having more than one ComputerSystem, but one ComputerSystem often
represents the device or application representation. In this role, it is important the summary of the health of the
device or application is declared in the ComputerSystem instance.

Table 280 - OperationalStatus Details

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” The system has a good status.

2 “OK” 4 “Stressed” The system is stressed, for example the
temperature is over limit or there is too
much IO in progress.

2 “OK” 5 “Predictive Failure” The system will probably fail sometime
soon.

3 “Degraded” The system is operational but not at 100%
redundancy. A component has suffered a
failure or something is running slow.

6 “Error” An error has occurred causing the system
to stop. This error may be recoverable
with operator intervention.

6 “Error” 7 “Non-recoverable error” A severe error has occurred. Operator
intervention is unlikely to fix it.

6 “Error” 16 “Supporting entity in error” A modeled element has failed.

12 “No contact” The provider knows about the array but
has not talked to it since last reboot.

13 “Lost communication” The provider used to be able to
communicate with the array, but has now
lost contact.

8 “Starting” The system is starting up.

9 “Stopping” The system is shutting down.

10 “Stopped” The data path is OK but shut down, the
management channel is still working.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 251

Health Package

99
100
101
102

103
104

105

106

107
108

109
110
111

112
113
114
115

116

117
118
119
120

121
122

123
124

125
126

127

128
129
130

131
132
133
134

135
136
OperationalStatus is an array. The primary and subsidiary statuses are both OperationalStatus property, and are
summarized in Table 280. If the subsidiary operational status is present in the array, it is intended to provide
additional clarification to the primary operational status. The implementation shall report one of the above
combinations of statuses. It may also report additional statuses beyond the ones defined in Table 280.

The operational status combinations listed in Table 280 that include descriptions about “provider” (i.e., the CIM
Provider), are only valid in those cases where the implementation of SMI-S employs a proxy provider.

The operational statuses listed in Table 280 shall not be used to report the status of the WBEM Server itself.

EXPERIMENTAL

25.1.6 Event Reporting

The implementation may report Event or AlertIndication instances. The profile, subprofile, or package that includes
this package defines whether or not these events are supported and when the events are produced.

If the support Event or AlertIndication is implemented, then the implementation shall also support the common
messages through both Errors and AlertIndications. This means that the implementation produce the common
event listed in the registry when the condition, also described in the registry, is present.

It is mandatory to report error conditions through both AlertIndication or Lifecycle indication and Error in those
cases where Error is returned when the method call failed for reasons other than the method call itself. For
example, if the device is over heated, then a method call can fail because of this condition. It is expected that the
device will report an over heat AlertIndication to listening clients as well.

25.1.7 Fault Region

If the device or application is itself attempting to rectify an adverse condition reported through a standard error,
then the implementation shall report what corrective action, if any, it is taking. This is necessary to prevent a HFM
application from also trying to rectify the very same condition. An HFM application should avoid a interfering with
ongoing corrective action taken by the device or application itself.

The corrective action may be a process, like hardware diagnostics or volume rebuild. In which case, the above
requirement is fulfilled by expressing the instances representing the process.

The corrective action may be a state change, like reboot. In which case, the above requirement is fulfilled by
expressing the state change in some CIM Instances.

In all cases, the profile, subprofile, or package that includes this package defines the standard events included and
the associated, possible corrective actions taken in response to these events.

25.1.8 RelatedElementCausingError

This package provides a mechanism in which the effect of a component failure on other components can be
reported. the RelatedElementCausingError association defines what components are causing a particular
component to failure or become degraded.

Some effects are more germane to the failure or degradation than others. In other words, there are primary and
second effects. This association provides a mechanism for ranking the effect. The implementing shall provide the
EffectCorrelation property, but it recommended that the implementation also provide the
FailureRelationshipInitiated and Ranking properties

If there are these cause and effect relationships, the RelatedElementCausingError association should be
implemented to report the causes of the failure or degradation.

EXPERIMENTAL
252

 Health Package

137

138
139
140
141
142
143
144

145
146
147
148

149
150
151
152
153
154

155

156

157

158

159

160

161

162

163

164

165

166

167
25.1.9 HealthState

The HealthState property in LogicalDevice defines the state for a particular component. The OperationalStatus
defines operational status. For example, a disk or port may be taken off-line for service. The component’s health
may still be OK or not OK. The two properties, when used in combination, disambiguate the health of the
component. For example, a OperationStatus of 10 “Stopped” and a HealthState of 30 “Major Failure” means that
the component is off-line and has failed. While a OperationalStatus of 10 “Stopped” and a HealthState of 5 “OK” for
the very same component means that although the component is off-line, the component is still in good working
order.

The HealthState of a component should not represent the health of any other component as well by way of a
summary or aggregate health state. However, if the component is itself relies on other components for its health,
because the component itself is an aggregate of components, then the HealthState may represent a summary
HealthState by side-effect.

HealthState is a mandatory for all system device logical devices that are defined by the profile or subprofile that
includes this package. It is recommended that HealthState is something other than 0 “Unknown”. However, a
component may report “Unknown” after it has reported one of the other HealthStates. When HealthState changes
from 5 “OK”, it is mandatory that a LogicalDevice report some other HealthState (e.g., 30 “Major Failure”) before
reporting 0 “Unknown”. Such a requirement is necessary, so that the client can notice the adverse state change via
polling or indication before the component is no longer responding.

25.2 Health and Fault Management Considerations
Not defined in this standard.

25.3 Cascading Considerations
Not defined in this standard.

25.4 Supported Subprofiles and Packages
Not defined in this standard.

25.5 Client Considerations and Recipes
Not defined in this standard.

Not defined in this standard.

25.6 Registered Name and Version
Health version 1.2.0 (Component Profile)

25.7 CIM Elements
Table 281 describes the CIM elements for Health.

Table 281 - CIM Elements for Health

Element Name Requirement Description

25.7.1 CIM_ComputerSystem Mandatory

25.7.2 CIM_LogicalDevice Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 253

Health Package

168

169

170

171

172

173
25.7.1 CIM_ComputerSystem

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 282 describes class CIM_ComputerSystem.

25.7.3 CIM_RelatedElementCausingError Optional

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus[*] <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus[*]

Mandatory CQL -Operational Status change of the device
and application.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Operational Status change
of the device and application.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDevice AND
SourceInstance.CIM_LogicalDevice::HealthSt
ate <>
PreviousInstance.CIM_LogicalDevice::Health
State

Mandatory CQL -Health State change of the logical
component.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_LogicalDevice AND
SourceInstance.HealthState <>
PreviousInstance.HealthState

Mandatory Deprecated WQL -Health State change of the
logical component.

Table 282 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory

OperationalStatus Mandatory Overall status of the Host.

Table 281 - CIM Elements for Health

Element Name Requirement Description
254

 Health Package

174

175

176

177

178

179

180

181

182

183

184

185
25.7.2 CIM_LogicalDevice

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 283 describes class CIM_LogicalDevice.

25.7.3 CIM_RelatedElementCausingError

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 284 describes class CIM_RelatedElementCausingError.

Table 283 - SMI Referenced Properties/Methods for CIM_LogicalDevice

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

HealthState Mandatory Reports the health of the component beyond the
operational status.

Table 284 - SMI Referenced Properties/Methods for CIM_RelatedElementCausingError

Properties Flags Requirement Description & Notes

FailureRelationshipIn
itiated

Optional Reports the date and time when this cause and effect was
created. The population of this property is
RECOMMENDED.

EffectCorrelation Mandatory Describes the general nature of the cause and effect
correlation.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 255

Health Package
STABLE

Ranking Optional Describes the order of effect from 1, the highest effect, on.
If there is only one of these associations between two
elements, the ranking shall 1. Once more associations are
added, then it RECOMMENDED that the implementation
assist the client by stating which of the cause and effect
relationship should be reviewed and addressed first. This
property assists a client in accomplishing a triage of known
problems.

Antecedent Mandatory Element causing the failure.

Dependent Mandatory

Table 284 - SMI Referenced Properties/Methods for CIM_RelatedElementCausingError

Properties Flags Requirement Description & Notes
256

 Job Control Subprofile

1

2

3
4

5

6
7
8

9

10

11
12
13

14
15

16
17
18
19
20
21
STABLE

Clause 26: Job Control Subprofile

26.1 Description
In some profiles, some or all of the methods described may take some time to execute (longer than a HTTP time-
out). In this case, a mechanism is needed to handle asynchronous execution of the method as a 'Job'.

This subprofile defines the constructs and behavior for job control for SNIA profiles that make use of the subprofile.

Note: The subprofile describes a specific use of the constructs and properties involved. The actual CIM
capability may be more, but this specification clearly states what clients may depend on in SNIA profiles
that implement the Job Control Subprofile.

26.1.1 Instance Diagram

A normal instance diagram is provided in Figure 40.

When the Job Control Subprofile is implemented and a client executes a method that executes asynchronously, a
reference to an instance of ConcreteJob is returned and the return value for the method is set to “Method
parameters checked - job started”.

The ConcreteJob instance allows the progress of the method to be checked, and instance Indications can be used
to subscribe for Job completion.

The associations OwningJobElement and AffectedJobElement are used to indicate the service whose method
created the job by side-effect and the element being affected by the job. The job itself may create, modify and/or
delete many elements during its execution. The nature of this affect is the creation or deletion of the instances or
associations or the modification of instance properties. These elements, albeit regular instances or associations,
are said to be affected by the job. The elements linked by AffectedJobElement may change through the execution
of the job, and in addition, the job may be associated to more than one Input and/or Output elements or other

Figure 40 - Job Control Subprofile Model

Service
(e.g., StorageConfigurationService)

OwningJobElement

ManagedElement
(e.g., StorageVolume)AffectedJobElement

AssociatedJobMethodResult

ConcreteJob

MethodResult
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 257

Job Control Subprofile

22
23

24
25
26
27

28
29

30
31
32

33
34

35
36

37
38
39

40
41
42

43
44
45

46
47
48

49

50
51
52
53
54
55

56
57
58

59
60
elements affected by side-effect. Input and Output elements are those referenced by method parameters of the
same type, input and output parameters respectively.

EXPERIMENTAL

The following set of rules defines the nature of the AffectedJobElement associations for a given job in terms of the
references passed as parameters to the service method that spawned the job. Obviously, the distinction of Input
element from Output element in the following rules only makes sense if these parameters are not both Input and
Output elements.

• If all Elements created by the method exists immediately upon the return from the method, then
AffectedJobElement shall reference the Output Element.

• If the Output Element, one or more, does not exist until the job has completed, the AffectedJobElement shall
reference the Input Element until the job completes, at which time AffectedJobElement shall then reference the
Output Element instead.

• In the event the job fails and the Output Element created during the job and referenced by AffectedJobElement
is no longer available, AffectedJobElement shall revert to referencing the Input Element.

• If the method affects elements without referencing elements as Output parameters, then the
AffectedJobElement Association shall reference the Input element, one or more.

• If the method only modifies the elements referenced with method parameters, then the AffectedJobElement
association references the modified elements. Elements modified by the job shall be reference by this
association.

• If the method affects elements but references no elements as either Input or Output parameters or the only
Input elements referenced are those of the elements to be deleted, then AffectJobElement associations shall
exist to other elements that are affected by the job.

• Other elements whose references are not used in the method invocation, but that are created or modified by
side-effect of the job’s execution shall be associated to the job via the AffectJobElement association, but may
cease to be associated once the job has finished execution.

The lifetime of a completed job instance, and thus the AffectedJobElement association to the appropriate Element
is currently implementation dependent. However, the set of AffectedJobElement associations to Input and Output
element present when the job finishes execution shall remain until the job is deleted.

26.1.2 MethodResult

Jobs are produced by side effect of the invocation of an extrinsic method. Reporting the resulting Job is the
purpose of this subprofile. The MethodResult class is used to report the extrinsic method called and the
parameters passed to the method. In this way, third party observers of a CIMOM can tell what the job is and what it
is doing. A MethodResult instance contains the LifeCycle indications that have been or would have been produced
as the result of the extrinsic method invocation. That is, the instance contains the indications whether or not there
were the appropriate indication subscription at the time the indication were produced.

A client may fetch the method lifecycle indication produced when the method was called from the PreCallIndication
attribute. This indication, an instance of InstMethodCall, contains the input parameters provided by the client that
called the method.

A client may fetch the method lifecycle indication produced once the method execution was completed from the
PostCallIndication. This indication contains the input parameters provided by the client that called the method and
258

 Job Control Subprofile

61
62

63

64
65

66

67
68

69

70
71
72

73

74

75

76

77

78
79

80
81

82

83

84

85
86

87
88
89
output parameters returned by the method implementation. Parameters that are both input and output parameters
will contain the output parameter provided by the method implementation.

EXPERIMENTAL

26.1.3 OperationalStatus for Jobs

 The OperationalStatus property is used to communicate that status of the job that is created. As such, it is critical
that implementations are consistent in how this property is set. The values that shall be supported consistently are:

• 2 “OK” - combined with 17 “Completed” to indicate that the job completed with no error.

• 6 “Error” - combined with 17 “Completed” to indicate that the job did not complete normally and that an error
occurred.

• 10 “Stopped” implies a clean and orderly stop.

• 17 “Completed” indicates the Job has completed its operation. This value should be combined with either 2
“OK” or 6 “Error, so that a client can tell if the complete operation passed (Completed with OK), and failure
(Completed with Error).

26.1.4 JobState for Jobs

The JobState property is used to communicate Job specific states and statuses.

• 2 “New” - Job was created but has not yet started

• 3 “Starting” - Job has started

• 4 “Running” - Job is current executing

• 5 “Suspended” - Job has been suspended. The Job may be suspended for many reasons like it has been
usurped by a higher priority or a client has suspended it (not described within this subprofile).

• 6 “Shutting Down” - Job is completing its work, has been terminated, or has been killed. The Job may be
cleaning up after only having completed some of its work.

• 7 “Completed” - Job has completed normally, its work has been completed successfully.

• 8 “Terminated” - Job has been terminated

• 9 “Killed” - Job has been aborted. The Job may not cleanup after itself.

• 10 “Exception” - Job failed and is in some abnormal state. The client may fetch the error conditions from the
job. See 26.5.2.

Table 285 maps the standard mapping between the OperationalStatus and JobState properties on ConcreteJob.
The actual values of the properties are listed in Table 285with the associated value from the property’s ValueMap
qualifier.

Table 285 - OperationalStatus to Job State Mapping

OperationalStatus JobState Job is

2 “OK”, 17 “Completed” 7 “Completed” Completed normally

6 “Error”, 17 “Completed” 10 “Exception” Completed abnormally

10 “Stopped” 8 “Terminated” Terminated
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 259

Job Control Subprofile

90

91
92

93
94
95
96

97
98

99

100
101

102
103

104
26.1.5 Determining How Long a Job Remains after Execution

The Job shall report how long it will remain after it has finished executing, fails on its own, is terminated, or is killed.
The TimeBeforeRemoval attribute reports a datetime offset.

The TimeBeforeRemoval and DeleteOnCompletion attributes are related. If the DeleteOnCompletion is FALSE,
then the Job shall remain until is it explicitly deleted. If the DeleteOnCompletion is TRUE, then the Job shall exist
for the length of time specified in the TimeBeforeRemoval attribute. An implementation may not support the setting
of the DeleteOnCompletion attribute because it does not support the client modifying the Job instance.

The amount of time specified in the TimeBeforeRemoval should be five or more minutes. This amount of time
allows a client to recognize that the Job has failed and retrieve the Error.

26.2 Health and Fault Management
The implementation should report CIM Errors from the ConcreteJob.GetError() method. See Clause 25: Health
Package for details.

EXPERIMENTAL

The standards messages specific to this profile are listed in Table 286. See Clause 8: Standard Messages in
Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4 for a description of
standard messages and the list all standard messages

EXPERIMENTAL

6 “Error” 9 “Killed” Aborted / Killed

2 “OK” 4 “Running” Executing

15 “Dormant” 2 “New” Created but not yet executing

2 “OK”, 8 “Starting” 3 “Starting” Starting up

2 “OK” 5 “Suspended” Suspended

2 “OK”, 9 “Stopping” 6 “Shutting Down” Terminated and potentially
cleaning up

6 “Error” 6 “Shutting Down” Killed and is aborting

Table 286 - Standard Message for Job Control Subprofile

Message ID Message Name

DRM22 Job failed to start

DRM23 Job was halted

Table 285 - OperationalStatus to Job State Mapping

OperationalStatus JobState Job is
260

 Job Control Subprofile

105

106

107

108

109

110

111
112

113

114
115

116
117
118
119

120

121
122

123

124
125
126
127

128
129
130

131

132
133
134
135
136

137
138
26.3 Cascading Considerations
Not defined in this standard.

26.4 Support Subprofiles and Packages
Not defined in this standard.

26.5 Methods of the Profile

26.5.1 Job Modification

A Job instance may be modified. The DeleteOnCompletion and TimeBeforeRemoval properties are writable. If the
intrinsic ModifyInstance method is supported, then the setting of both attributes shall be supported.

EXPERIMENTAL

26.5.2 Getting Error Conditions from Jobs
uint32 GetError(

[Out, EmbeddedObject] string Error);

This method is used to fetch the reason for the job failure. The type of failure being report is when a Job stops
executing on its own. That is, the Job was not killed or terminated. An Embedded Object, encoded in a string, shall
returned if the method is both supported and the job has failed. The Job shall report the 10 “Exception” status when
the Job has failed on its own.

The GetError method should be supported.

The Error string contains a Error instance. See Clause 25: Health Package for details on how to process this CIM
Instance.

EXPERIMENTAL

26.5.3 Suspending, Killing or Terminating a Job

A Job may be suspended, terminated or killed. Suspending a Job means that the Job will not be executing and be
suspended until it is resumed. Terminating a job means to request that the Job stop executing and that the Job
clean-up its state prior to completing. Killing a job means to request that the Job abort executing, usually meaning
there is little or no clean-up of Job state.

uint32 RequestStateChange(
[In] RequestedState,
[In] TimeoutPeriod);

A client may request a state change on the Job.

• RequestedState - The standard states that can be requested are “Start”, “Suspend”, “Terminate”, “Kill”,
“Service”. A new Job may be started. A suspended Job may be resumed, using the “Started” requested status.
A executing Job may be suspended, terminated, or killed. A new or executing Job may be put into the “Service”
state. The “Service” state is vendor specific. An implementation can indicate what state transitions are
supported by not returning the 4 098 “Invalid State Transition” return code

• TimeoutPeriod - The client expects the state transition to occur within the specified amount of time. The
implementation may support the method but not this parameter.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 261

Job Control Subprofile

139

140

141

142

143
144

145

146

147

148
149

150
151
152
153
154

155
156
157

158

159
160

161
162
163

164
165

166

167

168

169
Return codes:

• 0 “Completed with No Error”

• 1 “Not Supported” - The method is not supported

• 2 “Unknown/UnSpecified Error” - Failure for some vendor specific reason

• 3 “Can not complete within Timeout Period” - The requested amount of time is less than how long the
requested state transition takes

• 4 “Failed”

• 5 “Invalid Parameters” - The parameters are incorrect

• 6 “In Use” - Another client has requested a state change that has not completed

• 4 096 “Method Parameters Checked - Transition Started” - The method can return before the state transition
completes. This error code tells that calling that this situation has occurred

• 4 097 “Invalid State Transition” - The state change requested is invalid for the current state. 4 098 “Use of
Timeout Parameter Not Supported” - This implementation does not support the TimeoutPeriod parameter. A
client may pass a NULL for the TimeoutPeriod and try again. There is no mechanism to determine what state
changes are supported by a particular implementation. Such a mechanism is planned for a future version of
this specification.

• 4 099 “Busy” - A state change is underway in the Job and, as such, the state can not be changed. An
implementation may use this return code to indicate the job can not be suspended, killed, or terminated at all or
in the current phase of execution

26.6 Client Considerations and Recipes
If the operation will take a while (longer than an HTTP timeout), a handle to a newly minted ConcreteJob is
returned. This allows the job to continue in the background. Note a few things:

• The job is associated to the Service via OwningJobElement and is also linked to the object being modified/
created via AffectedJobElement. For example, a job to create a StorageVolume may start off pointing to a Pool
until the Volume is instantiated at which point the association would change to the StorageVolume.

• These jobs do not have to get instantiated! If the method completes quickly, a null can be returned as a handle,
as illustrated in Figure 41.

• It may take some time before the Job starts.

• A Job may be terminated or killed.

• Jobs may be modified.

• Jobs may be restarted.
262

 Job Control Subprofile

170

171

172

173
26.7 Registered Name and Version
Job Control version 1.5.0 (Component Profile)

26.8 CIM Elements
Table 287 describes the CIM elements for Job Control.

Figure 41 - Storage Configuration

Table 287 - CIM Elements for Job Control

Element Name Requirement Description

26.8.1 CIM_AffectedJobElement Mandatory

26.8.2 CIM_AssociatedJobMethodResult Mandatory

26.8.3 CIM_ConcreteJob Mandatory

26.8.4 CIM_MethodResult Mandatory

26.8.5 CIM_OwningJobElement Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 263

Job Control Subprofile
SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::JobStatus
<>
PreviousInstance.CIM_ConcreteJob::JobStat
us

Optional CQL -Deprecated. Modification of Job Status
for a Concrete Job.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.JobStatus <>
PreviousInstance.JobStatus

Optional Deprecated WQL -Deprecated: Modification of
Job Status for a Concrete Job.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::PercentC
omplete <>
PreviousInstance.CIM_ConcreteJob::Percent
Complete

Mandatory CQL -Modification of Percentage Complete for
a Concrete Job.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.PercentComplete <>
PreviousInstance.PercentComplete

Mandatory Deprecated WQL -Modification of Percentage
Complete for a Concrete Job.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 17 AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 2

Mandatory CQL -Modification of Operational Status for a
Concrete Job to 'Complete' and 'OK'.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus = 17 AND
SourceInstance.OperationalStatus = 2

Mandatory Deprecated WQL -Modification of Operational
Status for a Concrete Job to 'Complete' and
'OK'.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 17 AND ANY
SourceInstance.CIM_ConcreteJob::Operation
alStatus[*] = 6

Mandatory CQL -Modification of Operational Status for a
Concrete Job to 'Complete' and 'Error'.

Table 287 - CIM Elements for Job Control

Element Name Requirement Description
264

 Job Control Subprofile

174

175

176

177

178

179

180

181

182

183

184
26.8.1 CIM_AffectedJobElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 288 describes class CIM_AffectedJobElement.

26.8.2 CIM_AssociatedJobMethodResult

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.OperationalStatus = 17 AND
SourceInstance.OperationalStatus = 6

Mandatory Deprecated WQL -Modification of Operational
Status for a Concrete Job to 'Complete' and
'Error'.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.CIM_ConcreteJob::JobState
<>
PreviousInstance.CIM_ConcreteJob::JobStat
e

Mandatory CQL -Modification of Job State for a Concrete
Job.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ConcreteJob AND
SourceInstance.JobState <>
PreviousInstance.JobState

Mandatory Deprecated WQL -Modification of Job State
for a Concrete Job.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ConcreteJob

Mandatory Creation of a ConcreteJob.

Table 288 - SMI Referenced Properties/Methods for CIM_AffectedJobElement

Properties Flags Requirement Description & Notes

AffectedElement Mandatory The ManagedElement affected by the execution of the Job.

AffectingElement Mandatory The Job that is affecting the ManagedElement.

Table 287 - CIM Elements for Job Control

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 265

Job Control Subprofile

185

186

187

188

189

190

191
Table 289 describes class CIM_AssociatedJobMethodResult.

26.8.3 CIM_ConcreteJob

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 290 describes class CIM_ConcreteJob.

Table 289 - SMI Referenced Properties/Methods for CIM_AssociatedJobMethodResult

Properties Flags Requirement Description & Notes

Job Mandatory The Job that has parameters.

JobParameters Mandatory The parameters for the method which by side-effect
created the Job.

Table 290 - SMI Referenced Properties/Methods for CIM_ConcreteJob

Properties Flags Requirement Description & Notes

InstanceID Mandatory

Name Mandatory The user-friendly name for this instance of Job. In addition,
the user-friendly name can be used as a property for a
search or query. (Note: Name does not have to be unique
within a namespace.)".

OperationalStatus Mandatory Describes whether the Job is running or not.

JobStatus Optional Add additional detail beyond OperationalStatus about the
runtime status of the Job. This property is free form and
vendor specific.

JobState Mandatory Add additional detail beyond the OperationalStatus about
the runtime state of the Job.

ElapsedTime Optional The time interval that the Job has been executing or the
total execution time if the Job is complete.

PercentComplete Mandatory The percentage of the job that has completed at the time
that this value is requested. Optimally, the percentage
should reflect the amount of work accomplished in relation
to the amount of work left to be done. 0 percent complete
means that the job has not started and 100 percent
complete means the job has finished all its work. However,
in the degenerate case, 50 percent complete means that
the job is running and may remain that way until the job
completes.
266

 Job Control Subprofile

192

193

194

195

196
26.8.4 CIM_MethodResult

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

DeleteOnCompletion Mandatory Indicates whether or not the job should be automatically
deleted upon completion. If this property is set to false and
the job completes, then the extrinsic method
DeleteInstance shall be used to delete the job versus
updating this property. Even if the Job is set to delete on
completion, the job shall remain for some period of time,
see GetError() method.

ErrorCode Optional A vendor specific error code. This is set to zero if the job
completed without error.

ErrorDescription Optional A free form string containing the vendor error description.

TimeBeforeRemoval Mandatory The amount of time the job will exist after the execution of
the Job if DeleteOnCompletion is set to FALSE. Jobs that
complete successfully or fail shall remaining for at least this
period of time before being removed from the model
(CIMOM).

GetError() Mandatory This method is used to retrieve the error that caused the
Job to fail. The Job shall remain in the model long enough
to allow client to a) notice that the job was stopped
executing and b) to retrieve the error using this method.
There are not requirements for how long the job must
remain; however, it is suggested that the Job remain for at
least five minutes. JobStatus=10 (Exception) tell the client
that the job failed and this method can be called to retrieve
the reason why embedded in the CIM_Error, see GetError()
method.

RequestStateChange
()

Optional This method changes the state of the job. The client may
suspend, terminate, or shutdown the job. To terminate a job
means to request a clean shutdown of the job, have it finish
some portion of it's work and terminate or to roll back the
changes done by the job to date. The implement can make
the choice which behavior. To kill a job means to abort the
job, perhaps leaving some element of the work partially
done and in an unknown state.

Table 290 - SMI Referenced Properties/Methods for CIM_ConcreteJob

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 267

Job Control Subprofile

197

198

199

200

201

202

203
Table 291 describes class CIM_MethodResult.

26.8.5 CIM_OwningJobElement

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 292 describes class CIM_OwningJobElement.

STABLE

Table 291 - SMI Referenced Properties/Methods for CIM_MethodResult

Properties Flags Requirement Description & Notes

InstanceID Mandatory

PreCallIndication Mandatory Contains a copy of the CIM_InstMethodCall produced
when the configuration or control change method was
called. This Embedded Instance shall contain the
configuration or control change extrinsic method name
(MethodName) and parameters (MethodParameters).

PostCallIndication Mandatory Contains a copy of the CIM_InstMethodCall produced
when the configuration or control change method has
completed execution and control was returned to the client.
This Embedded Instance shall contain the configuration or
control change extrinsic method name (MethodName) and
parameters (MethodParameters).

Table 292 - SMI Referenced Properties/Methods for CIM_OwningJobElement

Properties Flags Requirement Description & Notes

OwningElement Mandatory The ManagedElement responsible for the creation of the
Job. (e.g., StorageConfigurationService).

OwnedElement Mandatory The Job created by the ManagedElement.
268

 Location Subprofile

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16
STABLE

Clause 27: Location Subprofile

27.1 Description
Associated with product information, a PhysicalPackage may also have a location. This is indicated using an
instance of a Location class and the PhysicalElementLocation association.

27.1.1 Instance Diagram

Figure 42 illustrates a typical instance diagram.

27.2 Health and Fault Management Considerations
Not defined in this standard.

27.3 Cascading Considerations
Not defined in this standard.

27.4 Supported Subprofiles and Packages
None.

27.5 Methods of the Profile
None.

27.6 Client Considerations and Recipes
None

Figure 42 - Location Instance
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 269

Location Subprofile

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
27.7 Registered Name and Version
Location version 1.4.0 (Component Profile)

27.8 CIM Elements
Table 293 describes the CIM elements for Location.

27.8.1 CIM_Location

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 294 describes class CIM_Location.

27.8.2 CIM_PhysicalElementLocation

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 293 - CIM Elements for Location

Element Name Requirement Description

27.8.1 CIM_Location Mandatory

27.8.2 CIM_PhysicalElementLocation Mandatory Associates the location to package.

Table 294 - SMI Referenced Properties/Methods for CIM_Location

Properties Flags Requirement Description & Notes

Name Mandatory A free-form string defining a label for the Location.

PhysicalPosition Mandatory A free-form string indicating the placement of a
PhysicalElement.

ElementName Optional User-friendly name.

Address Optional A free-form string indicating a street, building or other type
of address for the PhysicalElement's Location.
270

 Location Subprofile

32
 Table 295 describes class CIM_PhysicalElementLocation.

STABLE

Table 295 - SMI Referenced Properties/Methods for CIM_PhysicalElementLocation

Properties Flags Requirement Description & Notes

Element Mandatory

PhysicalLocation Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 271

Location Subprofile
272

 Extra Capacity Set Subprofile

1

2

3
4

5

DEPRECATED

Clause 28: Extra Capacity Set Subprofile

The functionality of the Extra Capacity Set Subprofile has been replaced by the Clause 30: Multiple Computer
System Subprofile.

The Extra Capacity Set Subprofile is defined in section B.8 of SMI-S 1.0.2.

DEPRECATED
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 273

Extra Capacity Set Subprofile
274

 Cluster Subprofile

1

2
3

4
5
6
7

DEPRECATED

Clause 29: Cluster Subprofile

The functionality of the Cluster Subprofile has been subsumed by Clause 30: Multiple Computer System
Subprofile.

The Cluster Subprofile is defined in section 7.3.3.3 of SMI-S 1.0.2. Any instrumentation that complies to the
Multiple Computer System Subprofile defined in this specification may also claim compliance to that version of the
Cluster Subprofile and may register as both a 1.1.0 Multiple Computer System Subprofile and 1.0.2 Cluster
Subprofile.

DEPRECATED
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 275

Cluster Subprofile
276

 Multiple Computer System Subprofile

1

2

3
4
5

6
7
8
9

10

11
12
13

14
15
16
17
18
19
20

21
22
STABLE

Clause 30: Multiple Computer System Subprofile

30.1 Description
The Multiple Computer System Subprofile models multiple systems that cooperate to present a “virtual” computer
system with additional capabilities or redundancy. This virtual aggregate system is sometimes referred to as a
cluster. and is illustrated in Figure 43.

The general pattern for the redundancy aspect of Multiple Systems uses an instance of RedundancySet to
aggregate multiple “real” ComputerSystem instances (labeled RCS0 and RCS1 in the diagram). Another
ComputerSystem instance (TCS0) is associated to the RedundancySet instance using a ConcreteIdentity
association and is associated to the real ComputerSystems using ComponentCS.

30.1.1 Top Level System

The top (“virtual”) system in this diagram (labeled TCS0) is referred to as the Top Level System. Note that for
single-system configurations, the top-level system is the only system. Top-level systems have characteristics
different from the underlying ComputerSystem instances.

The Top Level System is associated to the registered profile described in Clause 40: Server Profile. Other elements
such as LogicalDevices (ports, volumes), ServiceAccessPoints, and Services are associated to the top-level
system if these elements are supported by multiple underlying systems (for example, the underlying systems
provide failover and/or load balancing). Alternatively, elements can be associated to an underlying system if that
system is a single point of failure. For example, a RAID array may associate StorageVolume instances to a top-
level system since these are available when one underlying system (RAID controller) fails, all the port elements are
associated to one underlying system because the ports become unavailable when this system fails.

The Dedicated property is required for top-level systems. Each profile defines the values that are appropriate for
Dedicated.

Figure 43 - Two Redundant Systems Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 277

Multiple Computer System Subprofile

23

24
25

26

27

28
29
30
31

32

33
34
30.1.2 Non-Top-Level Systems

Each ComputerSystem instance shall have a unique Name property. For non-top-level systems, Name may be
vendor-unique; in which case, NameFormat shall be set to “Other”.

ComputerSystem.Dedicated should not be used in non-top-level systems.

Non-top-level systems shall not be associated to registered profiles or subprofiles.

Each non-top-level ComputerSystem shall be associated to the top-level system using ComponentCS. Note that
non-top-level systems may not be members of a RedundancySet. For example, a top-level system may be
associated to a RedundancySet with two systems as described in Figure 43 and also associated via
ComponentCS to another Computer (not a member of a RedundancySet) representing a service processor.

30.1.3 Types of RedundancySets

The TypeOfSet property of RedundancySet is a list describing the types of redundancy. Its values are summarized
in Table 296.

Table 296 - Redundancy Type

Redundancy
Type

Description

N+1 All ComputerSystems are active, are unaware and function independent of one
another. However, there exists at least one extra ComputerSystem to achieve
functionality.

Load Balanced All computer systems are active. However, their functionality is not independent
of each other. Their functioning is determined by some sort of load balancing
algorithm (implemented in hardware and/or software). 'Sparing' is implied (i.e.,
each computer system can be a spare for the other(s).

Sparing All computer systems are active and are aware of each other. However, their
functionality is independent until failover. Each computer system can be a spare
for the other(s).

Limited Sparing All members are active, and they may or may not be aware of each and they are
not spares for each other. Instead, their redundancy is indicated by the IsSpare
relationship.

Other/Unspecified The relationship between the computer systems is not specified.
278

 Multiple Computer System Subprofile

35

36
37
38

39

40
41
42
43

44

45
46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61
62
63
30.1.4 Multiple Tiers of Systems

The diagram above describes two tiers of systems; the real systems (labeled RCS0 and RCS1) in the lower tier are
aggregated into a top-level system (TCS0) in the upper tier. There may be more than two tiers, as depicted in
Figure 44.

The systems in the bottom tier (RCS0-RCS3) represent "real" systems.

RedundancySet.TypeOfSet can be used as part of multiple tier configurations to describe different types of
redundancy at different tiers. For example, a virtualization system has four controllers that operate in pairwise
redundancy. This could be modeled using the model in the diagram above and setting TypeOfSet in the top
RedundancySet to “N+1” and setting TypeOfSet to “LoadBalancing” in the lower two RedundacySets.

30.1.5 Associations between ComputerSystems and other Logical Elements

SystemDevice associates device (subclasses of LogicalDevice such as LogicalPort or StorageVolume) and
ComputerSystem instances. The cardinality of SystemDevice is one-to-many; a LogicalDevice may be associated
with one and only one ComputerSystem. If the device availability is equivalent to that of the top-level system, it
shall be associated to the top-level system via SystemDevice. If the device may become unavailable while the
system as a whole remains available, the device shall be associated to a non-top-level system that has availability
equivalent to the device. This system could be a real system or a system in an intermediate tier (representing some
redundancy less than full redundancy).

This same approach shall be used for all other logical CIM elements with associations to systems. For example,
HostedService and HostedAccessPoint shall associate elements (services, access points, and protocol endpoints)
to the ComputerSystem with availability to the element.

Based on the arrangement of systems in figure 31, associations from systems to service and capabilities classes
shall not be lower than associations to other classes. For the purpose of formally stating this rule, each
ComputerSystem is assigned a level number. The profile's top-level ComputerSystem has level number 0. The
ComputerSystem instances that are members of RedundancySets associated via ConcreteIdentity to the top-level
system have level number 1. The members of redundancy sets associated to the level number 1 systems via
ConcreteIdentity have level number 2. In general, the ComputerSystem members of redundancy sets associated
to the level number n systems via ConcreteIdentity have level number n+1. The level of non-system objects is the
level of the ComputerSystem instance associated to the object via associations such as SystemDevice,
HostedAccessPoint, HostedService, or ElementCapabilities.

Figure 44 - Multiple Redundancy Tier Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 279

Multiple Computer System Subprofile

64
65

66
67
68
69
70
71
72

73
74
75
76

77
78
79

80
81
82
83
84
85

86

87
88
89
90
Figure 45 demonstrates these system level numbers using the same configuration from Figure 44. Note that
ComponentCS diagrams are omitted from this diagram to avoid clutter.

All subclasses of CIM_Service and CIM_Capabilities shall have a level number less than or equal to the level
number of storage classes (ports, volumes, etc.) that are influenced by the properties and methods of the Service
and Capabilities classes. In some cases, different storage classes are influenced by different Service or
Capabilities classes; the “level number less than or equal to” requirement may apply differently to different Service/
Capabilities classes. It is always valid to associate Service and Capabilities classes to the top-level
ComputerSystem since the level number of the top-level system (0) is always less than or equal to the level
number of any other system.

Example 1 - An array with two controllers is modeled as a top-level ComputerSystem with real systems
representing the controllers. The system’s storage volumes remain available when one controller fails, but each
LogicalPort becomes unavailable when a controller fails. The StorageVolumes should be associated to the top-
level ComputerSystem and the LogicalPorts should be associated to one of the real ComputerSystems.
Example 2 - An array with four pair-wise redundant controllers. Each LogicalPort is associated with a pair of
controllers - if one controller in a pair fails, the port is still accessible through the alternate controller. This
corresponds to Figure 44; the ports should be associated with one of the ComputerSystems in the middle tier.
A provider shall delete and create associations between ComputerSystems and logical elements (e.g., ports,
logical devices) during failover or failback to represent changes in availability. This includes SystemDevice,
HostedAccessPoint, HostedService, or HostedFileSystem associations (and other associations weak to systems).
The effect of the creation and deletion of associations is to switch these elements from one ComputerSystem to
another. The profiles that include Multiple Computer System Subprofile shall specify the affected associations and
indications for creation and deletion of these associations.

30.1.6 Associations between ComputerSystems and PhysicalPackages and Products

The relationship between ComputerSystems, PhysicalPackages, and Products is defined in the Physical Package
Package (see Clause 31: Physical Package Package) which may be required by the profile including the Multiple
Computer System Subprofile. Typically, the top-level system is associated to a PhysicalPackage which is
associated to a Product. Non-top-level systems may also be associated to PhysicalPackage and indirectly to a

Figure 45 - System Level Numbers
280

 Multiple Computer System Subprofile

91
92

93
94
95
96

97
98
99

100
101
102

103
104
105
106
107

108
109
110
111
112

113

114
115

116

117
118
119
120
121

122

123

124

125
Product. If all underlying ComputerSystems share the same physical package, a single PhysicalPackage should
be associated to the upper ComputerSystem.

The relationships between ComputerSystems, redundancy sets, and CIM logical elements serve as a redundancy
topology - informing the client of the availability of subsets of logical elements. The relationships between
PhysicalPackages and logical elements serve as a physical topology. These two topologies need not be
equivalent. Consider these examples:

Example 1: a RAID array with a single controller (no redundancy); the controller and all backend disks are housed
in a single chassis. This is modeled as a single ComputerSystem, no RedundancySets, no ComponentCS
associations, and a single PhysicalPackage with a single associated Product.

Example 2: a RAID array with two redundant controllers; both controllers and all backend disks share a single
chassis. In this case, the redundancy topology matches Figure 43. The top-level ComputerSystem is associated to
a PhysicalPackage with a single associated Product.

Example 3: two arrays described in example 1 are assembled as part of common rack and sold as a single
product. Note that although there are two controllers, there is no redundancy - the two controllers act completely
independently. This is modeled as two top-level computer systems attached to separate PhysicalPackages
(representing the two internal chassis); These two PhysicalPackages have a Container association to third
PhysicalPackage representing the assembly - which has an association to a Product.

Example 4: two arrays described in Example 1 are assembled as part of a common rack and also share a high-
speed trunk and a mutual failover capability. This failover capability means the two controllers share a
RedundancySet and common top-level system. The result is similar to example 2, but each real ComputerSystem
is now associated to separate PhysicalPackages which have Contiainer associations to a common
PhysicalPackage.

30.1.7 Storage Systems without Multiple Systems

In configurations where the instrumentation does not model multiple ComputerSystem instances, all the
associations described above reference the one and only ComputerSystem.

30.1.8 Durable Names and Correlatable IDs of the Subprofile

This subprofile does not impose any requirements on names. The requirements for ComputerSystem names are
defined in the profiles that depend on Multiple Computer System Subprofile and in Storage Management Technical
Specification, Part 1 Common Architecture, 1.6.0 Rev 4 Clause 7: Correlatable and Durable Names. Clients should
not expect that a network name or IP address is exposed as a ComputerSystem property. The Access Points
Subprofile should be used to model a network access point.

30.2 Health and Fault Management Considerations
The requirements for OperationalStatus of a ComputerSystem are discussed in Clause 25: Health Package.

30.3 Cascading Considerations
None
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 281

Multiple Computer System Subprofile

126

127

128

129
130

131

132
133
134
135

136

137
138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157
30.4 Supported Subprofiles and Packages
Table 297 describes the supported profiles for Multiple Computer System.

30.5 Methods of the Profile
This subprofile does not include any extrinsic methods. A client may use this subprofile to discover information
about the topology of computer systems, but cannot change the topology.

30.6 Client Considerations and Recipes
A client cannot generally, interoperably navigate the redundancy topology using ComponentCS because some
Component CS associations may not parallel RedundancySet associations. But a client may use ComponentCS
selectively to speed up certain tasks. In particular, a client may locate the top-level system from other
ComputerSystems using ComponentCS.

30.6.1 Find Top-level Computer Systems

Top-level systems are the only objects in SMI-S associated to RegisteredProfile via ElementConformsToProfile.
(See 41.5.5.)

30.6.2 Find the Top-level Computer System for any LogicalDevice
/

// DESCRIPTION:

// Find the Top-level Computer System for any CIM_LogicalDevice

//

// Preconditions:

// $Device - Reference the LogicalDevice

//

// Find Systems associated to $Device

$Systems->[] = AssociatorNames($Device->, // ObjectName

 “CIM_SystemDevice”, // AssocClass

 “CIM_System”, // ResultClass

 “PartComponent”, // Role

 “GroupComponent”) // ResultRole

if ($Systems == null || $Systems->[].size != 1) {

 <ERROR! must be exactly one ComputerSystem Associated via

 SystemDevice to each LogicalDevice instance>

}

// System->[0] is the associated system; see if it’s the

Table 297 - Supported Profiles for Multiple Computer System

Profile Name Organization Version Requirement Description

Storage Server
Asymmetry

SNIA 1.4.0 Optional
282

 Multiple Computer System Subprofile

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203
// top-level system for the scoping profile. All ComponentCS

// association GroupComponent references must refer to the

// profile’s top-level system.

$UpperSystems->[] = AssociatorNames($System->[0],

“CIM_ComponentCS”,// AssocClass

“CIM_ComputerSystem”,// ResultClass

“PartComponent”,// Role

“GroupComponent”) // ResultRole

if ($UpperSystems != null && $UpperSystems->[].size > 1) {

// The restriction below is a characteristic of this subprofile

// and matches the DMTF Partinion white paper.

 <ERROR! must be no more than one ComputerSystem Associated

 via ComponentCS to each LogicalDevice instance>

}

// If an upper system was found, it must be the top-level

// system; if not, then the system associated to the device

// must be the top-level system

if ($UpperSystems->[].size == 1) {

 $TopLevelSystem = $UpperSystems->[0]

} else {

 $TopLevelSystem = $System->[0]

}

// The remaining steps are not needed to locate the top-level

// system, but validate the classes and associations.

//

// The system associated to the device may also be part of a RedundancySet.

// If so, follow a chain from that system to the RedundancySet, then

// follow ConcreteIdentity to a system - then check to see if it has

// ConponentCS to the top-level system. Keep iterating till no more

// RedundancySets - this must be the same system as TopLevelSystem.

do {

 // Get the RedundancySet that $System->[0] is a member of

 $RedundancySets->[] = AssociatorNames($System->[0],

“CIM_MemberOfCollection”,

“CIM_RedundancySet”,

“Member”,

“Collection”)

 if ($RedundancySets == null || $RedundancySets->[].size ==0) {

 #InARedundancySet = false

 } else {

 #InARedundancySet = true

// Error is more than one RedundancySet

if ($RedundancySets->[].size != 1) {

 <ERROR: A system cannot be the member of multiple RedundancySets>

}

 $Systems->[] = AssociatorNames($RedundancySets->[0], // ObjectName
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 283

Multiple Computer System Subprofile

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239
 “CIM_LogicalIdentity”, // AssocClass

 “CIM_System”, // ResultClass

 “SameElement”, // Role

 “SystemElement”) // ResultRole

 if ($Systems == null || $Systemss->[].size != 1) {

 <ERROR: There must be exactly one System associated to each

 RedundancySet>

}

// if System->[0] is not the TopLevelSystem, it must have ComponentCS

if ($System->[0] != $TopLevelSystem) {

 $UpperSystems->[] = AssociatorNames($System->[0],

 “CIM_ComponentCS”,// AssocClass

 “CIM_ComputerSystem”,// ResultClass

 “PartComponent”,// Role

 “GroupComponent”) // ResultRole

 if ($UpperSystems == null && $UpperSystems->[].size != 1) {

 <ERROR: must be no more than one ComputerSystem Associated

 via ComponentCS to each LogicalDevice instance>

 }

 if ($UpperSystems->[0] != $TopLevelSystem) {

 <ERROR: The one end of every ComponentCS must be the Top Level

 system>

 }

}

 }

} while (#InARedundancySet)

// The top-level system must be associated to a RegisteredProfile

$Profiles->[] = AssociatorNames($TopLevelSystem,

“CIM_ElementConformsToProfile”,

“CIM_RegisteredProfile”,

NULL, NULL)

if ($Profiles == null || $Profiles->[].size == 0) {

 <ERROR: Top-Level system not associated to RegisteredProfile>

}

30.7 Registered Name and Version
Multiple Computer System version 1.2.0 (Component Profile)
284

 Multiple Computer System Subprofile

240

241
30.8 CIM Elements
Table 298 describes the CIM elements for Multiple Computer System.

Table 298 - CIM Elements for Multiple Computer System

Element Name Requirement Description

30.8.1 CIM_ComponentCS Mandatory Associates non-top-level systems to the top-
level system.

30.8.2 CIM_ComputerSystem (Non-Top-Level
System)

Mandatory Non-Top-level System.

30.8.3 CIM_ConcreteIdentity Mandatory Associates aggregate (possibly top-level)
ComputerSystem and RedundancySet.

30.8.4 CIM_IsSpare Optional Associates the ComputerSystem that may be
used as a spare to the RedundancySet of
ActiveComputerSystem.

30.8.5 CIM_MemberOfCollection Mandatory Associates RedundancySet and its member
ComputerSystems.

30.8.6 CIM_RedundancySet Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Creation of a ComputerSystem instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a ComputerSystem instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.OperationalStatus <>
PreviousInstance.OperationalStatus

Mandatory Deprecated WQL -Change of Operational
Status of a ComputerSystem instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ComputerSystem AND
SourceInstance.CIM_ComputerSystem::Oper
ationalStatus <>
PreviousInstance.CIM_ComputerSystem::Op
erationalStatus

Mandatory CQL -Change of Operational Status of a
ComputerSystem instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.RedundancyStatus <>
PreviousInstance.RedundancyStatus

Mandatory Deprecated WQL -Change of redundancy
status.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Mandatory CQL -Change of redundancy status.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 285

Multiple Computer System Subprofile

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259
30.8.1 CIM_ComponentCS

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 299 describes class CIM_ComponentCS.

30.8.2 CIM_ComputerSystem (Non-Top-Level System)

Non-Top-level system.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 300 describes class CIM_ComputerSystem (Non-Top-Level System).

30.8.3 CIM_ConcreteIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 299 - SMI Referenced Properties/Methods for CIM_ComponentCS

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The Top-Level ComputerSystem; must be assocated to a
RegisteredProfile.

PartComponent Mandatory The contained (Sub)ComputerSystem.

Table 300 - SMI Referenced Properties/Methods for CIM_ComputerSystem (Non-Top-Level Sys-
tem)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Name Mandatory

NameFormat Mandatory Non-top-level system names are not correlatable, any
format is valid.

ElementName Mandatory

OperationalStatus Mandatory
286

 Multiple Computer System Subprofile

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274
Table 301 describes class CIM_ConcreteIdentity.

30.8.4 CIM_IsSpare

Associates the ComputerSystem that may be used as a spare to the RedundancySet of ActiveComputerSystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 302 describes class CIM_IsSpare.

30.8.5 CIM_MemberOfCollection

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 303 describes class CIM_MemberOfCollection.

30.8.6 CIM_RedundancySet

Table 301 - SMI Referenced Properties/Methods for CIM_ConcreteIdentity

Properties Flags Requirement Description & Notes

SystemElement Mandatory

SameElement Mandatory

Table 302 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory

FailoverSupported Mandatory

Dependent Mandatory The RedundancySet.

Antecedent Mandatory The spare system.

Table 303 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 287

Multiple Computer System Subprofile

275

276

277

278

279
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 304 describes class CIM_RedundancySet.

STABLE

Table 304 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

RedundancyStatus Mandatory The redundancy status shall be either 'Unknown' 0,
'Redundant' 2, or 'Redundancy Lost'. The implementation
should report 2 or 3 most of the time, although it may report
0 sometimes. It should report 2 when there is at least one
spare per the RedundancySet. It should report 3 when
there are no more spares (via IsSpare association) per the
RedundancySet.

TypeOfSet Mandatory
288

 Physical Package Package

1

2

3
4
5
6

7
8
9

10

11

12
13
14
15
16
17
18

19
20
21

22
23
24

25
26
27
STABLE

Clause 31: Physical Package Package

31.1 Description
Physical Package Package models information about a storage system’s physical package and optionally about
internal sub-packages. A System is 'realized' using a SystemPackaging association to a PhysicalPackage (or a
subclasses such as Chassis). The physical containment model can then be built up using Container associations
and subclasses (such as PackageInChassis).

Physical elements are described as products using the Product class and ProductPhysicalComponent
associations, as shown in Figure 46. The Product instances may be built up into a hierarchy using the
ProductParentChild association. The Product class holds information such as vendor name, serial number and
version.

31.1.1 Well Defined Subcomponents

In addition to defining physical packages at the “System” level, PhysicalPackage may also be defined at a lower,
subcomponent level. For example, PhysicalPackage is used in the Disk Drive Lite Subprofile and for devices
supported by storage media libraries (e.g., TapeDrive and ChangerDevice). If the subcomponents are supported
by the Profile, they should model their physical packaging. When subcomponents are modeled, there shall be a
container relationship between their physical package and the containing package (e.g., the System level physical
package). In addition, there shall be a ProductParentChild association between the subcomponent Product and the
parent Product.

The Physical Package constructs may also be used to model other aspects of the environment. However, this is
not mandatory. Note that each logical device may be realized by a card. The cards are contained in a controller
chassis.

When establishing physical packages for logical device subcomponents (e.g., disk drives, changers, etc.) the
provider shall populate both Container and Realizes associations. When establishing physical packages for
processor subcomponents

(e.g., non-top level systems.) the provider shall populate both Container and SystemPackaging associations.
When establishing the Product instances for the subcomponent packages the provider shall populate the
ProductParentChild association to the parent product. This is illustrated in Figure 47.

Figure 46 - Physical Package Package Mandatory Classes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 289

Physical Package Package

28

29
30
31
32
33
31.1.2 Multiple Product Identities

Instrumentation may optionally describe multiple product identities for a physical package, for example, product
information for both an OEM and vendor. This information should be modeled as multiple instances of
CIM_Product associated with the LogicalIdentity association. The Product instance that clients should treat as
primary is directly associated with PhysicalPackage via ProductPhysicalComponent. Additional product instances
are associated with the primary product using the LogicalIdentity association.

Figure 47 - Modeling for well defined subcomponents
290

 Physical Package Package

34

35

36

37

38

39

40

41

42

43

44

45
46
47
Figure 48 shows an example of the use of mandatory and optional physical package classes.

31.2 Health and Fault Management Considerations
Not defined in this standard.

31.3 Cascading Considerations
Not defined in this standard.

31.4 Supported Subprofiles and Packages
Related Profiles for Physical Package: Not defined in this standard.

31.5 Methods of this Profile
Not defined in this standard.

31.6 Client Considerations and Recipes

31.6.1 Find Asset Information

Information about a system is modeled in PhysicalPackage. PhysicalPackage may be subclassed to Chassis; the
more general PhysicalPackage is used here to accommodate device implementations that are deployed in multiple
chassis. PhysicalPackage has an associated Product with physical asset information such as Vendor and Version.

Figure 48 - Physical Package Package with Optional Classes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 291

Physical Package Package

48

49
50
51
52
53
54

55

56
57
58

59
60
61

62

63

64

65

66
31.6.2 Finding Product information

To locate product information (Vendor, Serial number and product versions) information about a device that is
conforms to the profile, you would start with the “top-level” computer system and traverse the SystemPackaging to
the PhysicalPackage (e.g., a Chassis). From the PhysicalPackage, the client would then traverse the
ProductPhysicalComponent association to locate the Product instance. The primary Vendor, Serial Number and
version for the device is in the Product instance associated with the PhysicalPackage. Additional product identities
may be associated with the primary Product using the LogicalIdentity association.

31.6.3 Finding Asset information

There are certain subcomponents of a device that a client may be interested in locating. For example, disk drives in
an array or changer devices in a library. To locate the asset information of these subcomponents, the client would
follow the ProductParentChild association from the system Product to lower level Products.

Alternatively, if the client is starting from a LogicalDevice, it can locate the PhysicalPackage by following the
Realizes association from the LogicalDevice. From the PhysicalPackage, the client can find the Product
information by traversing the ProductPhysicalComponent association.

31.7 Registered Name and Version
Physical Package version 1.5.0 (Component Profile)

CIM Schema Version: 2.23

31.8 CIM Elements
Table 305 describes the CIM elements for Physical Package.

Table 305 - CIM Elements for Physical Package

Element Name Requirement Description

31.8.1 CIM_Container Optional Associates a PhysicalPackage to its
component physical packages (e.g., Drives in
a Storage System).

31.8.2 CIM_LogicalIdentity Optional Associates the primary product information to
secondary product information.

31.8.3 CIM_PhysicalElementLocation Conditional Conditional requirement: Support for the
Location profile. Associates the physical
package of the system to its location.

31.8.4 CIM_PhysicalPackage (Component) Optional A physical package for a component of the
overall system.

31.8.5 CIM_PhysicalPackage (System) Mandatory The physical package for the overall system.

31.8.6 CIM_Product (Component) Optional The product information for a physical
package that is a component of the system.

31.8.7 CIM_Product (System) Mandatory The product information for the physical
package of the system.
292

 Physical Package Package

67

68
69

70

71

72

73

74

75

76
77

78

79

80

81
31.8.1 CIM_Container

Associates a PhysicalPackage to its component physical packages (e.g., Drives in a Storage System). This may be
subclassed (e.g., PackageInChassis or CardOnCard), but only the Container properties are required.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 306 describes class CIM_Container.

31.8.2 CIM_LogicalIdentity

Associates the primary product information to secondary product information. The secondary product information
might be the OEM product information.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

31.8.8 CIM_ProductParentChild Optional If more than one product comprises a system,
this association should be used to indicate the
'parent' product.

31.8.9 CIM_ProductPhysicalComponent
(Component)

Optional Associates a component physical package to
its product information.

31.8.10 CIM_ProductPhysicalComponent
(System)

Mandatory Associates the system physical package to its
product information.

31.8.11 CIM_SystemPackaging (Component) Optional Associates a component system and its
physical components.

31.8.12 CIM_SystemPackaging (System) Mandatory Associates the top level system and its
physical package.

Table 306 - SMI Referenced Properties/Methods for CIM_Container

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to the higher level physical package.

PartComponent Mandatory A reference to a lower level physical package.

Table 305 - CIM Elements for Physical Package

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 293

Physical Package Package

82

83

84

85

86

87

88

89

90

91
92
93
94
95
96
97

98

99

100

101

102
Table 307 describes class CIM_LogicalIdentity.

31.8.3 CIM_PhysicalElementLocation

Associates the physical package of the system to its location.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for the Location profile.

Table 308 describes class CIM_PhysicalElementLocation.

31.8.4 CIM_PhysicalPackage (Component)

A physical package for a component of the overall system. There may be multiple instances of a component
physical package. For certain component physical packages, this "generic" physical package may be the same as
physical packages defined in other component profiles (e.g., this physical package is the same instance as the
physical package defined in Disk Drive Lite. It is preferred that component physical packages are modeled in their
respective component profiles. However, the component physical package defined in this profile is intended for
components (e.g., non-Top Level Systems in the Multiple Computer System Profile) that do not model their
physical package.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 309 describes class CIM_PhysicalPackage (Component).

Table 307 - SMI Referenced Properties/Methods for CIM_LogicalIdentity

Properties Flags Requirement Description & Notes

SystemElement Mandatory A reference to the primary product information.

SameElement Mandatory A reference to a secondary product information.

Table 308 - SMI Referenced Properties/Methods for CIM_PhysicalElementLocation

Properties Flags Requirement Description & Notes

PhysicalLocation Mandatory The reference to the location of the system physical
package.

Element Mandatory The reference to the system physical package.

Table 309 - SMI Referenced Properties/Methods for CIM_PhysicalPackage (Component)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory
294

 Physical Package Package

103

104
105

106

107

108

109

110

111

112

113

114

115
31.8.5 CIM_PhysicalPackage (System)

The physical package for the overall system. There shall be only one instance of this class for an autonomous
profile (e.g., Array or Fabric).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 310 describes class CIM_PhysicalPackage (System).

31.8.6 CIM_Product (Component)

The product information for a physical package that is a component of the system.

Created By: Static
Modified By: Static
Deleted By: Static

ElementName Optional

Name Optional

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

Version Optional

PartNumber Optional

Table 310 - SMI Referenced Properties/Methods for CIM_PhysicalPackage (System)

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Tag Mandatory

ElementName Optional

Name Optional

Manufacturer Mandatory

Model Mandatory

SerialNumber Optional

Version Optional

PartNumber Optional

Table 309 - SMI Referenced Properties/Methods for CIM_PhysicalPackage (Component)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 295

Physical Package Package

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130
Requirement: Optional

Table 311 describes class CIM_Product (Component).

31.8.7 CIM_Product (System)

The product information for the physical package of the system.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 312 describes class CIM_Product (System).

31.8.8 CIM_ProductParentChild

If more than one product comprises a system, this association should be used to indicate the 'parent' product.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 311 - SMI Referenced Properties/Methods for CIM_Product (Component)

Properties Flags Requirement Description & Notes

Name Mandatory

IdentifyingNumber Mandatory

Vendor Mandatory

Version Mandatory

ElementName Mandatory

Table 312 - SMI Referenced Properties/Methods for CIM_Product (System)

Properties Flags Requirement Description & Notes

Name Mandatory

IdentifyingNumber Mandatory

Vendor Mandatory

Version Mandatory

ElementName Mandatory
296

 Physical Package Package

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147
148
Table 313 describes class CIM_ProductParentChild.

31.8.9 CIM_ProductPhysicalComponent (Component)

Associates a component physical package to its product information.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 314 describes class CIM_ProductPhysicalComponent (Component).

31.8.10 CIM_ProductPhysicalComponent (System)

Associates the system physical package to its product information.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 315 describes class CIM_ProductPhysicalComponent (System).

31.8.11 CIM_SystemPackaging (Component)

Associates a component system and its physical components. The ComputerSystemPackage subclass should be
used if the referenced system is subclassed as ComputerSystem.

Table 313 - SMI Referenced Properties/Methods for CIM_ProductParentChild

Properties Flags Requirement Description & Notes

Parent Mandatory A reference to the parent (System or Component) product.

Child Mandatory A reference to a component product.

Table 314 - SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent (Compo-
nent)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory A reference to the product information for a component of
the system.

PartComponent Mandatory A reference to the component physical package.

Table 315 - SMI Referenced Properties/Methods for CIM_ProductPhysicalComponent (System)

Properties Flags Requirement Description & Notes

GroupComponent Mandatory The reference to the product information for the system.

PartComponent Mandatory The reference to the system physical package.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 297

Physical Package Package

149

150

151

152

153

154

155
156

157

158

159

160

161
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 316 describes class CIM_SystemPackaging (Component).

31.8.12 CIM_SystemPackaging (System)

Associates the top level system and its physical package. The ComputerSystemPackage subclass should be used
if the referenced system is subclassed as ComputerSystem.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 317 describes class CIM_SystemPackaging (System).

STABLE

Table 316 - SMI Referenced Properties/Methods for CIM_SystemPackaging (Component)

Properties Flags Requirement Description & Notes

Dependent Mandatory The component system that has a physical package.

Antecedent Mandatory The reference to the PhysicalPackage of the component
system.

Table 317 - SMI Referenced Properties/Methods for CIM_SystemPackaging (System)

Properties Flags Requirement Description & Notes

Dependent Mandatory The system that has a physical package.

Antecedent Mandatory The reference to the PhysicalPackage of the top level
system.
298

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22
EXPERIMENTAL

Clause 32: Power Supply Profile

32.1 Synopsis
Profile Name: Power Supply (Component Profile)

Version: 1.0.1

Organization: SNIA

CIM Schema Version: 2.17.0

Table 318 describes the related profiles for Power Supply.

Specializes: DMTF Power Supply Profile

The SNIA Power Supply Profile specializes DSP1015: the DMTF Power Supply Profile by adding indications.

32.2 Description
The SNIA Power Supply Profile specializes the DMTF Power Supply Profile by adding indications. No other
changes are made to the DMTF profile.

32.3 Implementation
See DSP1015: the DMTF Power Supply Profile.

32.3.1 Health and Fault Management Consideration

None

32.3.2 Cascading Considerations

None

32.4 Methods
See DSP1015: the DMTF Power Supply Profile.

32.5 Use Cases
See DSP1015: the DMTF Power Supply Profile.

Table 318 - Related Profiles for Power Supply

Profile Name Organization Version Requirement Description

Physical Asset DMTF 1.0.0a Optional
SMI-S 1.6.0 Revision 4 SNIA Technical Position 299

Power Supply Profile

23

24
32.6 CIM Elements
Table 319 describes the CIM elements for Power Supply.

Table 319 - CIM Elements for Power Supply

Element Name Requirement Description

32.6.1 CIM_ElementCapabilities Conditional Conditional requirement: Support for
CIM_EnabledLogicalElementCapabilities.

32.6.2
CIM_EnabledLogicalElementCapabilities

Optional

32.6.3 CIM_IsSpare Optional

32.6.4 CIM_MemberOfCollection Conditional Conditional requirement: Support for Power
Supply redundancy.

32.6.5 CIM_OwningCollectionElement Conditional Conditional requirement: Support for Power
Supply redundancy.

32.6.6 CIM_PowerSupply Mandatory

32.6.7 CIM_RedundancySet Optional

32.6.8 CIM_SuppliesPower Optional

32.6.9 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_PowerSupply

Mandatory Creation of a PowerSupply instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_PowerSupply

Mandatory Deletion of a PowerSupply instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_PowerSupply AND
SourceInstance.CIM_PowerSupply::Operatio
nalStatus <>
PreviousInstance.CIM_PowerSupply::Operati
onalStatus

Mandatory CQL -Change of Operational Status of a
PowerSupply instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_PowerSupply AND
SourceInstance.CIM_PowerSupply::EnabledS
tate <>
PreviousInstance.CIM_PowerSupply::Enable
dState

Mandatory CQL -Change of EnabledState of a
PowerSupply instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Conditional Conditional requirement: Support for Power
Supply redundancy. CQL -Change of
redundancy status.
300

 Power Supply Profile

25

26
27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43
32.6.1 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_PowerSupply with CIM_EnabledLogicalElementCapabilities
that describes the capabilities of CIM_PowerSupply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for CIM_EnabledLogicalElementCapabilities.

Table 320 describes class CIM_ElementCapabilities.

32.6.2 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the power supply.

Requirement: Optional

Table 321 describes class CIM_EnabledLogicalElementCapabilities.

32.6.3 CIM_IsSpare

CIM_IsSpare is used to associate CIM_PowerSupply with CIM_RedundancySet that the CIM_PowerSupply is a
member of and where CIM_PowerSupply represents a spare power supply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 320 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Reference to CIM_PowerSupply.

Capabilities Mandatory Reference to CIM_EnabledLogicalElementCapabilities.

Table 321 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSup
ported

Mandatory Array that contains the supported requested states for the
instance of CIM_PowerSupply. Shall include 2 (Enabled), 3
(Disabled), 6 (Offline), or 11 (Reset).

ElementNameEditSu
pported

Mandatory

MaxElementNameLe
n

Conditional Conditional requirement: Support for Element Name
editing.Conditional on Support for Element Name editing.

ElementName Mandatory User-friendly name.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 301

Power Supply Profile

44

45

46
47

48

49

50

51

52

53

54
55
56

57

58

59

60

61
Table 322 describes class CIM_IsSpare.

32.6.4 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate CIM_PowerSupply with CIM_RedundancySet that the
CIM_PowerSupply is a member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Power Supply redundancy.

Table 323 describes class CIM_MemberOfCollection.

32.6.5 CIM_OwningCollectionElement

CIM_OwningCollectionElement is used to associate CIM_RedundancySet with CIM_ComputerSystem that the
CIM_RedundancySet is a member of. The instance of CIM_OwningCollectionElement is conditional on having
instantiation of the CIM_RedundancySet class.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Power Supply redundancy.

Table 324 describes class CIM_OwningCollectionElement.

Table 322 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory Shall be 0 (Unknown), 1 (Cold Standby), or 2 (Hot
Standby).

FailoverSupported Mandatory Shall be are 2 (Automatic), 3 (Manual) or 4 (Both Manual
and Automatic).

Antecedent Mandatory The RedundancySet.

Dependent Mandatory PowerSupply.

Table 323 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 324 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory

OwningElement Mandatory
302

 Power Supply Profile

62

63

64

65

66

67

68

69

70

71

72

73

74
32.6.6 CIM_PowerSupply

CIM_PowerSupply is used to represent the power supply.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 325 describes class CIM_PowerSupply.

32.6.7 CIM_RedundancySet

CIM_RedundancySet is used to represent the aggregation of redundant power supplies.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 325 - SMI Referenced Properties/Methods for CIM_PowerSupply

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

TotalOutputPower Mandatory Shall match 0 when the power supply's total output power
is unknown.

ElementName Mandatory

OperationalStatus Mandatory

HealthState Mandatory

EnabledState Mandatory Shall be 2 (Enabled), 3 (Disabled), 5 (Not Applicable) or 6
(Enabled but Offline).

RequestedState Mandatory SHall be 2 (Enabled), 3 (Disabled), 5 (No Change), 6
(Offline), 11 (Reset) or 12 (Not Applicable).

RequestStateChange
()

Conditional Conditional requirement: updating requested states.The
implementation shall support this method, but the method
may always return 'Not Supported.'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 303

Power Supply Profile

75

76

77
78

79

80

81

82

83

84

85
86

87

88

89

90
Table 326 describes class CIM_RedundancySet.

32.6.8 CIM_SuppliesPower

CIM_SuppliesPower is used to associate CIM_PowerSupply with CIM_ManagedSystemElement that the power
supply represented by the CIM_PowerSupply instance supplies power to.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 327 describes class CIM_SuppliesPower.

32.6.9 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_PowerSupply with CIM_ComputerSystem that the
CIM_PowerSupply is a member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 326 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory shall be formatted as a free formed string of variable length
(pattern ".+").

RedundancyStatus Mandatory

TypeOfSet Mandatory Shall be 2 (N+1), 3 (Load Balanced), 4 (Sparing) or 5
(Limited Sparing).

MinNumberNeeded Mandatory shall match 0 when the minimum number of power supplies
needed for the redundancy is unknown.

Failover() Optional

Table 327 - SMI Referenced Properties/Methods for CIM_SuppliesPower

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory Shall reference the instance of the subclass of
CIM_ManagedSystemElement representing element
receiving the power.
304

 Power Supply Profile

91
 Table 328 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 328 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 305

Power Supply Profile
306

 Fan Profile

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22
EXPERIMENTAL

Clause 33: Fan Profile

33.1 Synopsis
Profile Name: Fan (Component Profile)

Version: 1.0.1

Organization: SNIA

CIM Schema Version: 2.11.0

Table 329 describes the related profiles for Fan.

Specializes: DMTF Fan Profile

The SNIA Fan Profile specializes DSP1013: the DMTF Fan Profile by adding indications.

33.2 Description
The SNIA Fan Profile specializes the DMTF Fan Profile by adding indications. No other changes are made to the
DMTF Profile.

33.3 Implementation
See DSP1013: the DMTF Fan Profile.

33.3.1 Health and Fault Management Consideration

None

33.3.2 Cascading Considerations

None

33.4 Methods
See DSP1013: the DMTF Fan Profile.

33.5 Use Cases
See DSP1013: the DMTF Fan Profile.

Table 329 - Related Profiles for Fan

Profile Name Organization Version Requirement Description

Physical Asset DMTF 1.0.0a Optional

Sensors SNIA 1.0.0 Optional
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 307

Fan Profile

23

24
33.6 CIM Elements
Table 330 describes the CIM elements for Fan.

Table 330 - CIM Elements for Fan

Element Name Requirement Description

33.6.1 CIM_AssociatedCooling Optional

33.6.2 CIM_AssociatedSensor Optional

33.6.3 CIM_ElementCapabilities Conditional Conditional requirement: Support for
CIM_EnabledLogicalElementCapabilities.

33.6.4
CIM_EnabledLogicalElementCapabilities

Optional

33.6.5 CIM_Fan Mandatory

33.6.6 CIM_IsSpare Optional

33.6.7 CIM_MemberOfCollection Conditional Conditional requirement: Support for Fan
redundancy.

33.6.8 CIM_NumericSensor Optional

33.6.9 CIM_OwningCollectionElement Conditional Conditional requirement: Support for Fan
redundancy.

33.6.10 CIM_RedundancySet Optional

33.6.11 CIM_Sensor Optional

33.6.12 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_Fan

Mandatory Creation of a Fan instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_Fan

Mandatory CQL -Deletion of a Fan instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Fan AND
SourceInstance.CIM_Fan::OperationalStatus
<>
PreviousInstance.CIM_Fan::OperationalStatu
s

Mandatory CQL -Change of Operational Status of a Fan
instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Fan AND
SourceInstance.CIM_Fan::EnabledState <>
PreviousInstance.CIM_Fan::EnabledState

Mandatory CQL -Change of EnabledState of a Fan
instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_RedundancySet AND
SourceInstance.CIM_RedundancySet::Redun
dancyStatus <>
PreviousInstance.CIM_RedundancySet::Redu
ndancyStatus

Conditional Conditional requirement: Support for Fan
redundancy. CQL -Change of redundancy
status.
308

 Fan Profile

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39
33.6.1 CIM_AssociatedCooling

CIM_AssociatedCooling associates CIM_Fan with a subclass of CIM_ManagedSystemElement.

Requirement: Optional

Table 331 describes class CIM_AssociatedCooling.

33.6.2 CIM_AssociatedSensor

Requirement: Optional

Table 332 describes class CIM_AssociatedSensor.

33.6.3 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_Fan with the CIM_EnabledLogicalElementCapabilities
instance that describes the capabilities of the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for CIM_EnabledLogicalElementCapabilities.

Table 333 describes class CIM_ElementCapabilities.

Table 331 - SMI Referenced Properties/Methods for CIM_AssociatedCooling

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to CIM_Fan.

Dependent Mandatory Shall reference an instance of a subclass of
CIM_ManagedSystemElement for which the fan is
providing cooling.

Table 332 - SMI Referenced Properties/Methods for CIM_AssociatedSensor

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to CIM_Fan.

Antecedent Mandatory Reference to Sensor or NumericSensor.

Table 333 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Reference to CIM_Fan.

Capabilities Mandatory Reference to CIM_EnabledLogicalElementCapabilities.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 309

Fan Profile

40

41

42

43

44

45

46

47

48

49

50
33.6.4 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the Fan.

Requirement: Optional

Table 334 describes class CIM_EnabledLogicalElementCapabilities.

33.6.5 CIM_Fan

CIM_Fan is used to represent the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 335 describes class CIM_Fan.

Table 334 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSup
ported

N Mandatory Array that contains the supported requested states for the
instance of CIM_Fan. Shall be an empty array or contain
any combination of: 2 (Enabled), 3 (Disabled), or 11
(Reset).

ElementNameEditSu
pported

Mandatory

MaxElementNameLe
n

Conditional Conditional requirement: Support for Element Name
editing.Conditional on Support for Element Name editing.

Table 335 - SMI Referenced Properties/Methods for CIM_Fan

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

ElementName Mandatory

OperationalStatus Mandatory

HealthState Mandatory

EnabledState Mandatory

VariableSpeed Mandatory
310

 Fan Profile

51

52
53

54

55

56

57

58

59

60
61

62

63

64

65
33.6.6 CIM_IsSpare

CIM_IsSpare is used to associate CIM_Fan with CIM_RedundancySet that the CIM_Fan is a member of and
where CIM_Fan represents a spare Fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 336 describes class CIM_IsSpare.

33.6.7 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate CIM_Fan with CIM_RedundancySet that the CIM_Fan is a member
of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Fan redundancy.

DesiredSpeed Conditional Conditional requirement: Support for the SetSpeed method.

ActiveCooling Mandatory Shall have the value TRUE.

RequestedState Mandatory

SetSpeed() Conditional Conditional requirement: Support for the SetSpeed method.

RequestStateChange
()

Mandatory The implementation shall support this method, but the
method may always return 'Not Supported.'.

Table 336 - SMI Referenced Properties/Methods for CIM_IsSpare

Properties Flags Requirement Description & Notes

SpareStatus Mandatory SHall be 0 (Unknown) or 3 (Cold Standby).

FailoverSupported Mandatory SHall be 2 (Automatic), 3 (Manual) or 4 (Both Manual and
Automatic).

Antecedent Mandatory The RedundancySet.

Dependent Mandatory The Fan.

Table 335 - SMI Referenced Properties/Methods for CIM_Fan

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 311

Fan Profile

66

67

68

69

70

71

72
73
74

75

76

77

78

79
Table 337 describes class CIM_MemberOfCollection.

33.6.8 CIM_NumericSensor

The CIM_NumericSensor class is defined by the Sensors Profile.

Requirement: Optional

Table 338 describes class CIM_NumericSensor.

33.6.9 CIM_OwningCollectionElement

CIM_OwningCollectionElement is used to associate CIM_RedundancySet with CIM_ComputerSystem that the
CIM_RedundancySet is a member of. The instance of CIM_OwningCollectionElement is conditional on having
instantiation of the CIM_RedundancySet class.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for Fan redundancy.

Table 339 describes class CIM_OwningCollectionElement.

Table 337 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to RedundancySet.

Member Mandatory Reference to CIM_Fan.

Table 338 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

SensorType Mandatory Shall be set to 5 (Tachometer).

BaseUnits Mandatory Shalll be 19 (RPM).

RateUnits Mandatory Shall be 0 (None).

Table 339 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement

Properties Flags Requirement Description & Notes

OwnedElement Mandatory Reference to RedundancySet.

OwningElement Mandatory Reference to COmputerSystem in referencing profile.
312

 Fan Profile

80

81

82

83

84

85

86

87

88

89

90

91

92
33.6.10 CIM_RedundancySet

CIM_RedundancySet is used to represent the aggregation of redundant fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 340 describes class CIM_RedundancySet.

33.6.11 CIM_Sensor

The CIM_Sensor class is defined by the Sensors Profile.

Requirement: Optional

Table 341 describes class CIM_Sensor.

33.6.12 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_Fan with CIM_ComputerSystem that the CIM_Fan is a member of.

Table 340 - SMI Referenced Properties/Methods for CIM_RedundancySet

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory shall be formatted as a free formed string of variable length
(pattern ".+").

RedundancyStatus Mandatory Shall be 2 (Fully Redundant), 3 (Degraded Redundancy), 4
(Redundancy Lost) or 5 (Overall Failure).

TypeOfSet Mandatory Shall be 2 (N+1), 3 (Load Balanced), 4 (Sparing) or 5
(Limited Sparing).

MinNumberNeeded Mandatory Shall be 0 when the minimum number of fans needed for
the redundancy is unknown.

Failover() Optional

Table 341 - SMI Referenced Properties/Methods for CIM_Sensor

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

SensorType Mandatory Shall be set to 5 (Tachometer).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 313

Fan Profile

93

94

95

96

97
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 342 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 342 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
314

 Sensors Profile

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22
EXPERIMENTAL

Clause 34: Sensors Profile

34.1 Synopsis
Profile Name: Sensors (Component Profile)

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Related Profiles for Sensors: Not defined in this standard.

Specializes: DMTF Sensors Profile

The SNIA Sensors Profile specializes DSP1009: the DMTF Sensors Profile by adding indications.

34.2 Description
The SNIA Sensors Profile specializes the DMTF Sensors Profile by adding indications. No other changes are
made to the DMTF Profile.

34.3 Implementation
See DSP1009: the DMTF Sensors Profile.

34.3.1 Health and Fault Management Consideration

None

34.3.2 Cascading Considerations

None

34.4 Methods
See DSP1009: the DMTF Sensors Profile.

34.5 Use Cases
See DSP1009: the DMTF Sensors Profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 315

Sensors Profile

23

24
34.6 CIM Elements
Table 343 describes the CIM elements for Sensors.

Table 343 - CIM Elements for Sensors

Element Name Requirement Description

34.6.1 CIM_AssociatedSensor Optional

34.6.2 CIM_ElementCapabilities Conditional Conditional requirement:
EnabledLogicalElementCapabilities

34.6.3
CIM_EnabledLogicalElementCapabilities

Optional

34.6.4 CIM_NumericSensor Conditional Conditional requirement: Absence of Support
for CIM_Sensor.

34.6.5 CIM_Sensor Conditional Conditional requirement: Absence of Support
for CIM_NumericSensor.

34.6.6 CIM_SystemDevice Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_Sensor

Mandatory Creation of a Sensor instance.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_Sensor

Mandatory Deletion of a Sensor instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::OperationalStat
us <>
PreviousInstance.CIM_Sensor::OperationalSt
atus

Mandatory CQL -Change of Operational Status of a
Sensor instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::EnabledState
<>
PreviousInstance.CIM_Sensor::EnabledState

Mandatory CQL -Change of EnabledState of a Sensor
instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_Sensor
AND
SourceInstance.CIM_Sensor::CurrentState <>
PreviousInstance.CIM_Sensor::CurrentState

Mandatory CQL -Change of Current State of a Sensor
instance.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_NumericSensor AND
SourceInstance.CIM_Sensor::CurrentReading
<>
PreviousInstance.CIM_Sensor::CurrentReadi
ng

Mandatory CQL -Change of Current Reading of a Sensor
instance.
316

 Sensors Profile

25

26
27

28

29

30

31
32

33

34

35

36

37

38

39

40

41
34.6.1 CIM_AssociatedSensor

CIM_AssociatedSensor associates CIM_Sensor or CIM_NumericSensor with a subclass of
CIM_ManagedSystemElement.

Requirement: Optional

Table 344 describes class CIM_AssociatedSensor.

34.6.2 CIM_ElementCapabilities

CIM_ElementCapabilities is used to associate CIM_Sensor with the CIM_EnabledLogicalElementCapabilities
instance that describes the capabilities of the fan.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: null

Table 345 describes class CIM_ElementCapabilities.

34.6.3 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities represents the capabilities of the Fan.

Requirement: Optional

Table 346 describes class CIM_EnabledLogicalElementCapabilities.

Table 344 - SMI Referenced Properties/Methods for CIM_AssociatedSensor

Properties Flags Requirement Description & Notes

Antecedent Mandatory Shall be a reference to a specific instance of CIM_Sensor
or CIM_NumericSensor.

Dependent Mandatory Shall reference an instance of a subclass of
CIM_ManagedSystemElement for which the sensor is
monitoring.

Table 345 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory

Capabilities Mandatory

Table 346 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

RequestedStatesSup
ported

Mandatory Array that contains the supported requested states for the
instance of CIM_Sensor.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 317

Sensors Profile

42

43
44

45

46

47

48

49
34.6.4 CIM_NumericSensor

CIM_NumericSensor is used to represent an analog sensor. The CIM_NumericSensor class is mandatory when
the CIM_Sensor class is not implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Absence of Support for CIM_Sensor.

Table 347 describes class CIM_NumericSensor.

ElementNameEditSu
pported

Mandatory

MaxElementNameLe
n

Conditional Conditional requirement: EditSupportConditional on
Support for Element Name editing.

Table 347 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

BaseUnits Mandatory

UnitModifier Mandatory

RateUnits Mandatory

CurrentReading Mandatory

LowerThresholdNon
Critical

Conditional See DMTF Sensors Profile.

UpperThresholdNon
Critical

Conditional See DMTF Sensors Profile.

LowerThresholdCritic
al

Conditional See DMTF Sensors Profile.

UpperThresholdCritic
al

Conditional See DMTF Sensors Profile.

LowerThresholdFatal Conditional See DMTF Sensors Profile.

UpperThresholdFatal Conditional See DMTF Sensors Profile.

SupportedThresholds Mandatory See DMTF Sensors Profile.

Table 346 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes
318

 Sensors Profile

50

51
52

53

54

55

56

57
34.6.5 CIM_Sensor

CIM_Sensor is used to represent a discrete sensor. The CIM_Sensor class is mandatory if the
CIM_NumericSensor class is not implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Absence of Support for CIM_NumericSensor.

SettableThresholds Mandatory See DMTF Sensors Profile.

SensorType Mandatory

PossibleStates Mandatory

CurrentState Mandatory

ElementName Mandatory

OtherSensorTypeDe
scription

Conditional Conditional requirement: The OtherSensorTypeDescription
property shall be mandatory when the SensorType property
is set to a value of 1 (Other).The
OtherSensorTypeDescription property shall be formatted
as a free-formed string of variable length (pattern \.*\').'

EnabledState Mandatory

RequestedState Mandatory

OperationalStatus Mandatory

HealthState Mandatory

RequestStateChange
()

Conditional Conditional requirement: When a
CIM_EnabledLogicalElementCapabilities instance is
associated with the Central Instance and the
CIM_EnabledLogicalElementCapabilities.RequestedStates
Supported property is a non-empty array, sensor state
management shall be supported.

RestoreDefaultThres
holds()

Conditional Conditional requirement: The
CIM_NumericSensor.RestoreDefaultThresholds() method
shall be implemented and shall not return a value of 1
(Unsupported) when the
CIM_NumericSensor.SettableThresholds property is a non-
empty array.

Table 347 - SMI Referenced Properties/Methods for CIM_NumericSensor

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 319

Sensors Profile

58

59
60

61

62

63

64

65
Table 348 describes class CIM_Sensor.

34.6.6 CIM_SystemDevice

CIM_SystemDevice is used to associate CIM_Sensor with CIM_ComputerSystem that the CIM_Sensor is a
member of.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 348 - SMI Referenced Properties/Methods for CIM_Sensor

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

DeviceID Mandatory Key.

SensorType Mandatory

PossibleStates Mandatory See DMTF Sensors Profile.

CurrentState Mandatory See DMTF Sensors Profile.

ElementName Mandatory See DMTF Sensors Profile.

OtherSensorTypeDe
scription

Conditional Conditional requirement: The OtherSensorTypeDescription
property shall be mandatory when the SensorType property
is set to a value of 1 (Other).The
OtherSensorTypeDescription property shall be formatted
as a free-formed string of variable length (pattern \.*\').'See
DMTF Sensors Profile.

EnabledState Mandatory See DMTF Sensors Profile.

RequestedState Mandatory See DMTF Sensors Profile.

OperationalStatus Mandatory

HealthState Mandatory

RequestStateChange
()

Conditional Conditional requirement: When a
CIM_EnabledLogicalElementCapabilities instance is
associated with the Central Instance and the
CIM_EnabledLogicalElementCapabilities.RequestedStates
Supported property is a non-empty array, sensor state
management shall be supported.
320

 Sensors Profile
Table 349 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 349 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 321

Sensors Profile
322

1

2

3

4

5

6

7

8

9

EXPERIMENTAL

Clause 35: Base Server Profile

35.1 Synopsis
Profile Name: Base Server (Autonomous Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.20.0

Table 350 describes the related profiles for Base Server.

Specializes: DMTF Base Server 1.0.0

Central Class: CIM_ComputerSystem

Table 350 - Related Profiles for Base Server

Profile Name Organization Version Requirement Description

Fan DMTF TBD Optional See DSP1004 version 1.0.1, section 5

Physical Asset DMTF 1.0.0a Mandatory See DSP1004 version 1.0.1, section 5

Power Supply DMTF TBD Optional See DSP1004 version 1.0.1, section 5

Record Log DMTF 1.0.1 Optional See DSP1052 version 1.0.0, section 5

Sensors DMTF TBD Optional See DSP1052 version 1.0.0, section 5

Software Inventory DMTF TBD Optional See DSP1052 version 1.0.0, section 5

Software Update DMTF 1.0.0 Optional See DSP1052 version 1.0.0, section 5

Storage HBA SNIA 1.4.0 Optional Experimental.

Host Discovered
Resources

SNIA 1.6.0 Optional Experimental.

Disk Partition SNIA 1.6.0 Optional Experimental.

SCSI Multipath
Management

SNIA 1.6.0 Optional Experimental.

Host Hardware RAID
Controller

SNIA 1.3.0 Optional Experimental.

Storage Enclosure SNIA 1.3.0 Optional Experimental.

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102 version
1.0.0

Host Filesystem SNIA 1.6.0 Optional Experimental.
SMI-S 1.6.0 Revision 4 SNIA Technical Position 323

Base Server Profile

10

11

12

13
14

15

16

17

18

19

20
21
22
23
24
25

26

27

28

29
30

31

32

33

34

35

36

37

38
Scoping Class: CIM_ComputerSystem

The Base Server Profile models a customer server or storage system.

35.2 Description
The SNIA Base Server Profile models a customer server or storage system containing storage elements. This
profile may be used to scope one or more HBAs (or other storage elements).

This profile may represent either a physical system or a virtual system.

35.3 Implementation
See DSP1004, DMTF Base Server Profile for details on the model.

In a storage context, there are several related deployment options.

35.3.1 HBA Instrumentation

If an HBA vendor wishes to create HBA instrumentation that can be used with CIM instrumentation from a server
vendor, they would implement the component Storage HBA Profile and work with the server vendor(s) to assure it
integrates effectively with their autonomous server profile. If an HBA vendor wishes to deliver a free-standing
implementation that does not rely on server-vendor software, they could implement this profile along with the
Storage HBA Profile. Note that the HBA vendor could support both approaches and let a customer or installation
script determine which is most appropriate.

35.3.2 Host Hardware RAID Instrumentation

Host Hardware RAID vendors have the same deployment options as HBA vendors (see 35.3.1)

35.3.3 Storage Enclosure Instrumentation

In configurations where the Storage Enclosure Profile is not used with a single autonomous profile, the Base
Server may be used as the referencing profile for the Storage Enclosure and other component profiles.

35.3.4 Health and Fault Management Consideration

Not defined in this standard

35.3.5 Cascading Considerations

None

35.4 Methods
See DSP1004, DMTF Base Server Profile.

35.5 Use Cases
See DSP1004, DMTF Base Server Profile.
324

 Base Server Profile

39

40

41

42
43
44

45

46

47

48

49
50
51

52
35.6 CIM Elements
Table 351 describes the CIM elements for Base Server.

35.6.1 CIM_ComputerSystem

The hosting system for the Storage Elements. The class definition specializes the CIM_ComputerSystem definition
in the Base Server profile. Properties or methods not inherited are marked accordingly as '(overridden)' or '(added)'
in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Base Server', RegisteredOrganization set to 'SNIA', and
RegisteredVersion set to '1.6.0'.

Table 352 describes class CIM_ComputerSystem.

Table 351 - CIM Elements for Base Server

Element Name Requirement Description

35.6.1 CIM_ComputerSystem Mandatory The hosting system for the Storage Elements.
Associated to RegisteredProfile.

35.6.2 CIM_ComputerSystemPackage Mandatory DSP1004 version 1.0.1, section 10.2.

35.6.3 CIM_ElementCapabilities Optional See DSP1052 version 1.0.0, section 10.2.

35.6.4
CIM_EnabledLogicalElementCapabilities

Optional See DSP1052 version 1.0.0, section 10.3 and
DSP1004 version 1.0.1, section 10.2.

35.6.5 CIM_HostedService Optional See DSP1052 version 1.0.0, section 10.4.

35.6.6 CIM_PhysicalPackage Mandatory DSP1004 version 1.0.1, section 10.4 and
DSP1011 version 1.0.1, section 10.16.

35.6.7 CIM_ServiceAffectsElement Optional See DSP1052 version 1.0.0, section 10.5.

35.6.8 CIM_TimeService Optional Experimental. See DSP1052 version 1.0.0,
section 10.6.

Table 352 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes

CreationClassName Mandatory Key.

Name (overridden) Mandatory Unique identifier for the hosting system.

ElementName
(overridden)

Mandatory User friendly name.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 325

Base Server Profile

53

54
55
56

57

58

59

60
61

62
35.6.2 CIM_ComputerSystemPackage

One or more instances of CIM_ComputerSystemPackage associate the CIM_ComputerSystem instance with the
CIM_PhysicalPackage instances in which it resides. The constraints specified in this Table are in addition to those
specified in the Physical Asset Profile.

Requirement: Mandatory

Table 353 describes class CIM_ComputerSystemPackage.

35.6.3 CIM_ElementCapabilities

CIM_ElementCapabilities associates an instance of CIM_EnabledLogicalElementCapabilities with an instance of
CIM_ComputerSystem.

Requirement: Optional

OtherIdentifyingInfo
(overridden)

Mandatory

IdentifyingDescription
s

Optional See DSP1052 version 1.0.0, section 10.1.

Dedicated
(overridden)

Mandatory 0 (Not Dedicated).

OperationalStatus Mandatory See DSP1052 version 1.0.0, section 10.1.

HealthState Mandatory See DSP1052 version 1.0.0, section 10.1.

EnabledState Mandatory See DSP1052 version 1.0.0, section 10.1 and DSP1004
version 1.0.1, section 10.1.

RequestedState Mandatory See DSP1052 version 1.0.0, section 10.1 and DSP1004
version 1.0.1, section 10.1.

NameFormat (added) Mandatory

OtherDedicatedDesc
riptions (added)

Optional

RequestStateChange
()

Conditional Conditional requirement: The
CIM_EnabledLogicalElementCapabilities.RequestedStates
Supported property contains at least one value.See
DSP1052 version 1.0.0, section 10.1.

Table 353 - SMI Referenced Properties/Methods for CIM_ComputerSystemPackage

Properties Flags Requirement Description & Notes

Dependent Mandatory

Antecedent Mandatory

Table 352 - SMI Referenced Properties/Methods for CIM_ComputerSystem

Properties Flags Requirement Description & Notes
326

 Base Server Profile

63

64

65

66

67

68

69

70

71

72

73
74
75

76
Table 354 describes class CIM_ElementCapabilities.

35.6.4 CIM_EnabledLogicalElementCapabilities

CIM_EnabledLogicalElementCapabilities indicates support for managing the state of the system.

Requirement: Optional

Table 355 describes class CIM_EnabledLogicalElementCapabilities.

35.6.5 CIM_HostedService

CIM_HostedService relates the CIM_TimeService to its scoping CIM_ComputerSystem instance.

Requirement: Optional

Table 356 describes class CIM_HostedService.

35.6.6 CIM_PhysicalPackage

One or more instances of CIM_PhysicalPackage represent the physical packaging of the computer system. Other
than the existence of at least one instance of CIM_PhysicalPackage, this profile does not specify any constraints
for CIM_PhysicalPackage beyond those specified in the Physical Asset Profile.

Requirement: Mandatory

Table 354 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory This property shall be a reference to an instance of
CIM_ComputerSystem.

Capabilities Mandatory This property shall be a reference to the instance of
CIM_EnabledLogicalElementCapabilities.

Table 355 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

RequestedStatesSup
ported

Mandatory See DSP1052 version 1.0.0, section 10.3 and DSP1004
version 1.0.1, section 10.3.

ElementNameEditSu
pported

Mandatory See DSP1052 version 1.0.0, section 10.3.

MaxElementNameLe
n

Optional See DSP1052 version 1.0.0, section 10.3.

Table 356 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory This property shall reference the Central Instance.

Dependent Mandatory This property shall reference CIM_TimeService.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 327

Base Server Profile

77

78

79

80
Table 357 describes class CIM_PhysicalPackage.

35.6.7 CIM_ServiceAffectsElement

CIM_ServiceAffectsElement associates the CIM_TimeService instance with the Central Instance.

Requirement: Optional

Table 357 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

Tag Mandatory Key.

CreationClassName Mandatory Key.

PackageType Mandatory See DSP1011 version 1.0.1, section 10.16.

Manufacturer Conditional Conditional requirement: The
CIM_PhysicalAssetCapabilities.FRUInfoSupported has a
value of TRUE.See DSP1011 version 1.0.1, section 10.16.

Model Conditional Conditional requirement: The
CIM_PhysicalAssetCapabilities.FRUInfoSupported has a
value of TRUE.See DSP1011 version 1.0.1, section 10.16.

SerialNumber Conditional Conditional requirement: The
CIM_PhysicalAssetCapabilities.FRUInfoSupported has a
value of TRUE.See DSP1011 version 1.0.1, section 10.16.

PartNumber Conditional Conditional requirement: The
CIM_PhysicalAssetCapabilities.FRUInfoSupported has a
value of TRUE.See DSP1011 version 1.0.1, section 10.16.

SKU Conditional Conditional requirement: The
CIM_PhysicalAssetCapabilities.FRUInfoSupported has a
value of TRUE.See DSP1011 version 1.0.1, section 10.16.

VendorCompatibilityS
trings

Optional See DSP1011 version 1.0.1, section 10.16.

CanBeFRUed Optional This property should be implemented when the Physical
Element can be replaced in the field.

Version Optional The property shall be the hardware version.

Name Optional

ElementName Mandatory This property shall be formatted as a free-form string of
variable length.
328

 Base Server Profile

81

82

83

84

85
Table 358 describes class CIM_ServiceAffectsElement.

35.6.8 CIM_TimeService

Experimental. CIM_TimeService manages the current time on the system.

Requirement: Optional

Table 359 describes class CIM_TimeService.

EXPERIMENTAL

Table 358 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement

Properties Flags Requirement Description & Notes

ElementEffects Mandatory Matches 5 (Manages).

AffectedElement Mandatory This property shall be a reference to the Central Instance.

AffectingElement Mandatory This property shall be a reference to an instance of
CIM_TimeService.

Table 359 - SMI Referenced Properties/Methods for CIM_TimeService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

ElementName Mandatory See DSP1052 version 1.0.0, section 10.6.

ManageTime() Mandatory See DSP1052 version 1.0.0, section 10.6.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 329

Base Server Profile
330

1

2

3

4

5

6

7

8

9

10

11

12
13
14

15

16
17

18
EXPERIMENTAL

Clause 36: Media Access Device Profile

36.1 Synopsis
Profile Name: Media Access Device (Component Profile)

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.11.0

Table 360 describes the related profiles for Media Access Device.

The Media Access Device Profile models media access devices - such as tape and CD drives.

36.2 Description
The Media Access Device Profile models media access devices - such as tape and CD drives.

36.2.1 Location Indicator

The implementation may optionally support a drive location indicator (such as an LED) using
CIM_MediaAccessDevice.LocationIndicator. The client may set this to 2 (On) or 3 (Off)). If the implementation does
not support this feature, LocationIndicator shall have the value 4 (Not Supported).

36.2.2 Media Access Device Online/Offline

The drive may be started or stopped by setting the Starting and Stopping values in OperationalStatus using the
RequestStateChange method. Figure 49 shows Media Access Device Class information.

See Table 361.

Table 360 - Related Profiles for Media Access Device

Profile Name Organization Version Requirement Description

Software Inventory SNIA 1.0.0 Mandatory

Software Update DMTF 1.0.0 Optional

Indication SNIA 1.5.0 Optional
SMI-S 1.6.0 Revision 4 SNIA Technical Position 331

Media Access Device Profile

19

20

21

22

36.3 Implementation

36.3.1 Health and Fault Management Consideration

The MediaAccessDevice.OperationalStatus contains the overall status of the disk, summarized in Table 361.

Figure 49 - Media Access Device Class Diagram

Table 361 - OperationalStatus For MediaAccessDevice

Primary Operational Status Subsidiary Operational
Status

Description

2 “OK” Media Access Device is enabled.

5 “Predictive Failure” Media Access Device is functionality
nominally but is predicting a failure

6 “Error” Media Access Device is no longer
functioning.

8 “Starting” Media Access Device is becoming
enabled.

9 “Stopping” Media Access Device is being disabled.

10 “Stopped” Media Access Device is disabled.
332

 Media Access Device Profile

23

24

25

26
27
28
29

30

31

32

33

34

35

36
37
38

39
40

41

42

43

44
36.3.2 Cascading Considerations

Not defined in this standard.

36.3.3 Hot swap insertion or Removal of Drives

Insertion of a drive shall cause an InstCreation indication for the MediaAccessDevice instance. Similarly, hot-swap
removal shall cause an InstDelete indication. ProtocolEndpoint, PhysicalPackage, SoftwareInventory, and related
associations will also be created and deleted when a drive is inserted or removed, but no indications shall be
produced for these other classes.

36.4 Methods

36.4.1 Request State Change
uint32 RequestStateChange(

 [In] uint16 RequestedState,

 [Out] CIM_ConcreteJob REF Job,

 [In] datetime TimeoutPeriod)

The allowed state changes are indicated by the RequestedStatesSupported property of
EnabledLogicalElementCapabilities. A Job shall be returned if the operation takes longer than the TimeoutPeriod.
The Requested State of Offline makes a drives extents unavailable to the dependent volume.

The Job may represent a drive rebuild if the RequestedState of the drive is Offline and a failover shall be complete
before the offline operation can finish.

36.5 Use Cases
Not defined in this standard.

36.6 CIM Elements
Table 362 describes the CIM elements for Media Access Device.

Table 362 - CIM Elements for Media Access Device

Element Name Requirement Description

36.6.1
CIM_EnabledLogicalElementCapabilities

Mandatory

36.6.2 CIM_HostedAccessPoint Optional ComputerSystem to storage
ProtocolEndpoint.

36.6.3 CIM_MediaAccessDevice Mandatory Represents a tape or optical drive.

36.6.4 CIM_PhysicalPackage Optional The physical aspects of the drive. This is
required when modeling physical drives and
shall not be implemented for virtual drives in
virtual system environments.

36.6.5 CIM_ProtocolEndpoint Optional
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 333

Media Access Device Profile

45

46

47

48

49

50

51

52

53

54
36.6.1 CIM_EnabledLogicalElementCapabilities

Requirement: Mandatory

Table 363 describes class CIM_EnabledLogicalElementCapabilities.

36.6.2 CIM_HostedAccessPoint

ComputerSystem to storage ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 364 describes class CIM_HostedAccessPoint.

36.6.6 CIM_Realizes Mandatory Associates MediaAccessDevice and
PhysicalPackage.

36.6.7 CIM_SAPAvailableForElement Conditional Conditional requirement: Support for
ProtocolEndpoints. Associates
MediaAccessDevice to ProtocolEndpoint.

36.6.8 CIM_SystemDevice Mandatory ComputerSystem to MediaAccessDevice.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA
CIM_MediaAccessDevice

Optional MediaAccessDevice Creation. See36.3.3 Hot
swap insertion or Removal of Drives.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_MediaAccessDevice

Optional MediaAccessDevice Removal. See36.3.3 Hot
swap insertion or Removal of Drives.

Table 363 - SMI Referenced Properties/Methods for CIM_EnabledLogicalElementCapabilities

Properties Flags Requirement Description & Notes

RequestedStatesSup
ported

Mandatory Possible states that can be requested when using the
method RequestStateChange(). If RequestState and
RequestStateChange are not implemented then
RequestedStatesSupported would indicate none
supported.

Table 364 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 362 - CIM Elements for Media Access Device

Element Name Requirement Description
334

 Media Access Device Profile

55

56

57

58

59

60

61

62

63

64

65

66

67
36.6.3 CIM_MediaAccessDevice

Represents a tape or optical drive.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 365 describes class CIM_MediaAccessDevice.

36.6.4 CIM_PhysicalPackage

The physical aspects of the drive.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 365 - SMI Referenced Properties/Methods for CIM_MediaAccessDevice

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

DeviceID Mandatory

Name Mandatory

OperationalStatus Mandatory Shall be 2|5|6|8|10|11 (Okay or Predictive Failure or Error
or Starting or Stopping or Stopped).

LocationIndicator Mandatory

EnabledState Mandatory Possible values: 2 (Enabled - drive is Spun up and online),
3 (Disabled - drive is spun down, and offline), 4 (Shutting
down - drive is spinning down), 6 (Enabled but Offline -
drive is spun up but offline), 10 (Starting - drive is spinning
up).

RequestedState Optional Possible RequestedStates: 2 Enabled (Spin up drive if it
was spun down and Online the drive if it was offline), 4
(Shut down - spin down drive), 6 (Offline - offline drive).

RequestStateChange
()

Conditional Conditional requirement: Support for online/offline.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 335

Media Access Device Profile

68

69

70

71

72

73

74

75

76

77

78

79

80
Table 366 describes class CIM_PhysicalPackage.

36.6.5 CIM_ProtocolEndpoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 367 describes class CIM_ProtocolEndpoint.

36.6.6 CIM_Realizes

Associates MediaAccessDevice and PhysicalPackage.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 366 - SMI Referenced Properties/Methods for CIM_PhysicalPackage

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

Manufacturer Mandatory The name of the organization responsible for producing the
PhysicalElement.

Model Mandatory The name by which the PhysicalElement is generally
known.

Version Mandatory The version of the physical element - not necessarily the
same as a software/firmware version.

SerialNumber Mandatory

PartNumber Mandatory

Table 367 - SMI Referenced Properties/Methods for CIM_ProtocolEndpoint

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory
336

 Media Access Device Profile

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95
Table 368 describes class CIM_Realizes.

36.6.7 CIM_SAPAvailableForElement

Associates MediaAccessDevice to ProtocolEndpoint.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for ProtocolEndpoints.

Table 369 describes class CIM_SAPAvailableForElement.

36.6.8 CIM_SystemDevice

ComputerSystem to MediaAccessDevice.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 370 describes class CIM_SystemDevice.

EXPERIMENTAL

Table 368 - SMI Referenced Properties/Methods for CIM_Realizes

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 369 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 370 - SMI Referenced Properties/Methods for CIM_SystemDevice

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 337

Media Access Device Profile
338

1

2

3

4

5

6

7

8

9

10
11
12
13
14

15

16
17

18
19

20
21
EXPERIMENTAL

Clause 37: Storage Enclosure Profile

37.1 Synopsis

Profile Name: Storage Enclosure (Component Profile)

Version: 1.3.0

Organization: SNIA

CIM Schema Version: 2.15.0

Table 371 describes the related profiles for Storage Enclosure.

The Storage Enclosure Profile describes an enclosure that houses storage components.

37.2 Description
The Storage Enclosure Profile describes an enclosure that contains storage elements (e.g., disk or tape drives)
and enclosure elements (e.g., fans and power supplies). The logical aspects of the storage and enclosure
elements are defined in other profiles; this profile specializes the DMTF Physical Asset Profile adding
implementation details for storage enclosures. This profile supports enclosures with a single type of storage
component (such as an enclosure of disks) or a mixture of different components.

The following terms apply to this profile:

• storage elements are CIM logical classes that relate to storage - CIM_DiskDrive, CIM_ComputerSystem
(representing a disk array or switch), etc.

• enclosure elements are CIM logical elements that relate to enclosure service and baseboard management -
fans, power supplies, sensors, etc.

• physical elements are CIM physical classes that map to storage or enclosure elements, and perhaps physical
hardware with no logical mapping.

Table 371 - Related Profiles for Storage Enclosure

Profile Name Organization Version Requirement Description

Power Supply SNIA 1.0.1 Optional

Fan SNIA 1.0.1 Optional

Sensors SNIA 1.0.0 Optional

Disk Drive Lite SNIA 1.6.0 Optional

Media Access Device SNIA 1.0.0 Optional

Switch SNIA 1.6.0 Optional
SMI-S 1.6.0 Revision 4 SNIA Technical Position 339

Storage Enclosure Profile

22

23
24
25

26

27
28
29
30

31
32

33
34

35

36
37

38

39

40
41
42
43
44
45
46
47
37.2.1 Guidelines related to Referencing Profiles

The Storage Enclosure Profile is a component profile. The autonomous referencing profile may be Array, Storage
Virtualizer, or Host Hardware RAID controller. The following guidelines apply to how this profile is referenced by
other profiles:

37.2.1.1 Guideline 1 - enclosure elements dedicated to a single top-level system
If the components of the enclosure are all dedicated to a single top-level System, then the profile defining that
system shall be the referencing profile for the enclosure. All components (storage elements, enclosure elements,
physical elements) need to be dedicated. For example, if the enclosure is used by a disk array, the
CIM_ComputerSystem from the Array profile serves as the scoping instance for all the elements of the enclosure.

Note that the top-level system may be part of an autonomous profile that supports the SNIA Multiple Computer
System Profile.

Note that other autonomous profiles may be dedicated as a component of another autonomous profile. For
example, a Fibre Channel switch may share an enclosure with, and be dedicated as, a component of an Array.

37.2.1.2 Guideline 2 - enclosure elements shared by multiple top-level systems
If the elements of the enclosure support use by multiple top-level systems, then the referencing profile shall be the
base system profile.

Examples include a JBOD array access by multiple servers or multiple switch blades sharing an enclosure.

37.2.1.3 Guideline 3 - enclosure elements need not be scoped by the system as storage elements
CIM requires instantiation of all weak associations whenever the referenced elements are instantiated. For
example, every CIM_LogicalDevice instance shall be referenced by a CIM_SystemDevice association. But it is
possible to have devices scope to different systems associated to each other by non-weak associations. In
particular, when guideline 2 applies, enclosure elements scoped to the enclosure top-level system may be
associated to storage elements scoped to a different top-level system. For example, CIM_AssociatedCooling can
reference a CIM_Fan scoped to the enclosure system and a CIM_DiskDrive scoped to a server. In another
example, CIM_SuppliesPower references a CIM_PowerSupply scoped to an Array within an enclosure and a
CIM_ComputerSystem representing a switch.
340

 Storage Enclosure Profile

48
49

50

51

52
53

54

55
56

57

58

59

60

61
Figure 50 is an example of two arrays that each have their own enclosure but share cooling. The two array
enclosures are contained in an enclosure that provides a fan shared by the array elements.

37.2.2 Examples of Storage Enclosure Configurations

37.2.2.1 Enclosure Dedicated to a Disk Array
The referencing profile is Array. Disk Drive Lite is a mandatory component profile. The physical model for disks as
defined in 37.3.5.2 is mandatory.

37.2.2.2 Enclosure Dedicated to a RAID Host Controller
The referencing profile is the Host Hardware RAID Profile. Support for the Disk Drive Lite Profile is mandatory. The
physical model for disks as defined in 37.3.5.2 is mandatory.

37.2.2.3 Enclosure Dedicated to non-RAID Controllers on a Single Server
The referencing profile is the Base System Profile referencing the Storage HBA Profile (or the FC HBA Profile).

37.2.2.4 Enclosure Dedicated to non-RAID Controllers on Multiple Servers
Guideline 2 applies. The referencing profile is the base system profile.

Guideline 3 may apply.

Figure 50 - Enclosure with Two Arrays
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 341

Storage Enclosure Profile

62

63
64
65

66

67
68
69

70

71

72

73

74

75

76

77

78
79
80

81

82

83
84
85

86

87
88

89
90
91

92

93

94
95
96
97
98
99

100
37.2.2.5 FC Switch as a Component of an Array
The Array and FC Switch share an enclosure, but the FC Switch is functionally a sub-component of the array
receiving cooling and power from the enclosure. In this configuration, Array is the referencing profile to the Storage
Enclosure. Guideline 3 may apply;

37.2.2.6 Enclosure containing multiple FC Switches (Director)
The enclosure is a director class switch which contains one or more switches and other devices including a FCIP
Extenders and iSCSI Gateway. The referencing profile is the base system profile. Guideline 2 applies. Guideline 3
may apply.

37.3 Implementation

37.3.1 Health and Fault Management Consideration

Not defined in this standard.

37.3.2 Cascading Considerations

Not defined in this standard.

37.3.3 Enclosure Elements

37.3.3.1 Power Supplies
A storage enclosure may be modeled with one or more power supplies for device powering.

The CIM_SystemDevice association is used in the Power Supply Profile to connect the power supply to the
managed system. The CIM_SuppliesPower association may be used to represent device powering to other
enclosure elements of the top-level system as well as logical devices scoped to other systems.

37.3.3.2 Fans
A storage enclosure may be modeled with one or more fans for device cooling.

The CIM_SystemDevice association is used in the Fan Profile to connect the fan to the managed system. The
CIM_AssociatedCooling association may be used to represent device powering to other enclosure elements of the
top-level system as well as logical devices scoped to other systems.

37.3.3.3 Sensors
A storage enclosure may be modeled with one or more sensors for monitoring such factors as temperature or fan
speed.

The CIM_SystemDevice association is used in the Sensors Profile to connect the sensor to the managed system.
The CIM_AssociatedSensor association may be used to associate the sensor to other enclosure elements of the
top-level system as well as logical devices scoped to other systems.

37.3.4 Storage Elements

37.3.4.1 Considerations for Media Access Devices in a Storage Enclosure
A storage enclosure may contain devices such as disk drives or switches. Each media access device is described
by a corresponding device class as described in the corresponding profile. Each device may be associated to a
physical bay or slot. The physical model for a disk drive describes a CIM_MediaAccessDevice associated to
CIM_PhysicalPackage via CIM_Realizes, and CIM_Slot associated to the CIM_PhysicalPackage via
CIM_PackageInConnector. If the implementation also supports hierarchical packaging, the CIM_Slot shall be
associated to the CIM_PhysicalPackage realizing the referencing system or an enclosure nested in the system
CIM_PhysicalPackage.
342

 Storage Enclosure Profile

101

102
103
104

105

106
107
108
109

110

111
112
113
114

115

116
117
118
119

120

121
122

123

124
125
126
127

128

129
130
131
37.3.4.2 Disk Drive Considerations
If the implementation also supports the Disk Drive Lite Profile, the individual drives in the storage enclosure shall
be described by an instance of CIM_DiskDrive subclassed from CIM_MediaAccessDrive. CIM_PhysicalPackage
and CIM_Realizes from the Disk Drive Lite Profile shall provide the instances described in 37.3.4.1.

37.3.4.3 Media Access Devices and the Fan Profile
The Fan Profile describes fans used for device cooling and includes an AssociatedCooling association that
references a CIM_ManagedSystemElement. If the implementation supports both the Fan and Disk Drive Lite
Profiles, and utilizes the CIM_AssociatedCooling association, the CIM_AssociatedCooling association shall
reference an instance of CIM_DiskDrive or an instance of CIM_Chassis.

37.3.4.4 Media Access Devices and the Power Supply Profile
The Power Supply Profile describes power supplies used for device powering and includes a CIM_SuppliesPower
association that references a CIM_LogicalDevice. If the implementation supports both the Fan and Disk Drive Lite
Profiles, and utilizes the CIM_SuppliesPower association, the CIM_SuppliesPower association shall reference an
instance of CIM_DiskDrive or an instance of CIM_Chassis.

37.3.4.5 Configuration Reporting Service
The CIM_ConfigurationReportingService may be used to query for the CIM_MediaAccessDevice or
CIM_LogicalPort subclasses supported within the enclosure, the supported total count and the currently installed
count. In this way the total number of supported device slots, storage devices or connection ports may be retrieved.
See the service method definitions in 37.4.1.

37.3.5 Physical Assets

The physical representation of the storage enclosure is mandatory. The core frame of the storage enclosure is
described by CIM_Chassis.

37.3.5.1 Physical Package Hierarchy Considerations
A hierarchy of enclosures may be represented. The physical structure of a single enclosure, described by
CIM_Chassis, may be associated with a variety of enclosure components and media devices. Any number of
CIM_Packages may be used to group physical components. These packages may in turn be associated to one or
more CIM_Chassis instances. In this case the CIM_PackageInChassis association shall be used.

37.3.5.2 Disk Drive or Media Access Device
If the implementation models slots within the enclosure, CIM_Slot shall be used to describe the slot. The instance
of CIM_PhysicalPackage that describes the physical characteristics of the CIM_DiskDrive instance shall be
associated to CIM_Slot by the CIM_PackageInConnector association. If the instance of CIM_Slot is aggregated to
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 343

Storage Enclosure Profile

132
133

134

135

136

137
138
139

140

141

142

143

144

145

146

147
148
149

150

151
152
153

154
an instance of CIM_Chassis, the CIM_ConnectorOnPackage association shall be used. Figure 51 illustrates the
model.

37.4 Methods

37.4.1 Extrinsic Methods of the Profile

37.4.1.1 CIM_ConfigurationReportingService GetClassTypes
GetClassTypes is used to query for the supported or currently installed device classes contained in the enclosure
such as a CIM_DiskDrive or CIM_SASPort. Reporting of MediaAccessDevice derived classes directly contained
within the enclosure (Recursive = False) is mandatory. Reporting of LogicalPort derived classes is optional.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

The instrumentation shall support a Recusive parameter value of false.

The instrumentation shall accept a reference to the top-level ComputerSystem in the Target parameter.

37.4.1.2 CIM_ConfigurationReportingService GetUnitTypes
GetUnitTypes is used to query for the supported or currently installed type of devices contained in the enclosure.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

The instrumentation shall support a Recusive parameter value of false.

The parameter UnitTypes may be set to "Contained", "StorageMediaLocation", "Front Side" or "Back Side".
Support of the type "Contained" and "StorageMediaLocation" is mandatory. Support of "Front Side" or "Back Side"
is optional. Types "Front Side" or "Back Side" are used to query for the count of the respective LogicalPorts.

37.4.1.3 CIM_ConfigurationReportingService ReportCapacity
ReportCapacity is used after GetClassTypes or GetUnitTypes is issued to find what subclasses and types are
available in the enclosure, the ReportCapacity can be used to request the total supported or currently installed
storage device slot count or data connection ports for the enclosure.

The instrumentation shall support InquiryType parameter values of 2 (Supports) and 3 (Installed).

Figure 51 - Model for Disk in Enclosure
344

 Storage Enclosure Profile

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174
The instrumentation shall support a Recusive parameter value of false.

37.4.2 Intrinsic Methods of this Profile

The profile supports read methods and association traversal. Specifically, the list of intrinsic operations supported

are as follows:

• GetInstance

• Associators

• AssociatorNames

• References

• ReferenceNames

• EnumerateInstances

• EnumerateInstanceNames

37.5 Use Cases

37.6 CIM Elements
Table 372 describes the CIM elements for Storage Enclosure.

37.6.1 CIM_ConfigurationReportingService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 373 describes class CIM_ConfigurationReportingService.

Table 372 - CIM Elements for Storage Enclosure

Element Name Requirement Description

37.6.1 CIM_ConfigurationReportingService Mandatory

37.6.2 CIM_HostedService Mandatory Associates the
CIM_ConfigurationReportingService to the
System in the referencing profile.

Table 373 - SMI Referenced Properties/Methods for CIM_ConfigurationReportingService

Properties Flags Requirement Description & Notes

ElementName Mandatory

Name Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 345

Storage Enclosure Profile

175

176

177

178

179

180

181
37.6.2 CIM_HostedService

Associates the CIM_ConfigurationReportingService to the System in the referencing profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 374 describes class CIM_HostedService.

EXPERIMENTAL

CreationClassName Mandatory

GetClassTypes() Mandatory

GetUnitTypes() Mandatory

ReportCapacity() Mandatory

Table 374 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The reference to the System.

Dependent Mandatory The reference to the Service.

Table 373 - SMI Referenced Properties/Methods for CIM_ConfigurationReportingService

Properties Flags Requirement Description & Notes
346

 Software Subprofile

1

2

3

4
5

6
7

8

9

10

11

12

13
STABLE

Clause 38: Software Subprofile

38.1 Description
The Software Profile models software or firmware installed on a computer system.

Information on the installed software is given using the SoftwareIdentity class. This is linked to the system using a
InstalledSoftwareIdentity association.

Software information may be associated with the “top” level ComputerSystem (if all components are using the
same software) or a component ComputerSystem if the software loaded can vary by processor.

Firmware is modeled as SoftwareIdentity. InstalledSoftwareIdentity is used for firmware associated with a System.

Figure 52 contains the instance diagram for the Software Profile.

38.2 Health and Fault Management Considerations
Not defined in this standard.

38.3 Cascading Considerations
Not defined in this standard.

Figure 52 - Software Instance Diagram
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 347

Software Subprofile

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
38.4 Supported Subprofiles, and Packages
None

38.5 Methods of the Profile
None

38.6 Client Considerations and Recipes
None

38.7 Registered Name and Version
Software version 1.4.0 (Component Profile)

38.8 CIM Elements
Table 375 describes the CIM elements for Software.

38.8.1 CIM_InstalledSoftwareIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 376 describes class CIM_InstalledSoftwareIdentity.

38.8.2 CIM_SoftwareIdentity

Created By: Static
Modified By: Static

Table 375 - CIM Elements for Software

Element Name Requirement Description

38.8.1 CIM_InstalledSoftwareIdentity Mandatory

38.8.2 CIM_SoftwareIdentity Mandatory

Table 376 - SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Properties Flags Requirement Description & Notes

System Mandatory

InstalledSoftware Mandatory
348

 Software Subprofile

33

34

35
Deleted By: Static
Requirement: Mandatory

Table 377 describes class CIM_SoftwareIdentity.

STABLE

Table 377 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

VersionString Mandatory

Manufacturer Mandatory

BuildNumber Optional

MajorVersion Optional

RevisionNumber Optional

MinorVersion Optional
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 349

Software Subprofile
350

1

2

3

4

5

6

7

8

9

10

11
12

13

14
15

16

17
18

19
20

21

22
23

24

25
EXPERIMENTAL

Clause 39: Software Inventory Profile

39.1 Synopsis
Profile Name: Software Inventory (Component Profile)

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.15.0

Table 378 describes the related profiles for Software Inventory.

Specializes: DMTF Software Inventory Profile 1.0.0

Central Class: CIM_SoftwareIdentity

Scoping Class: a CIM_System in a referencing autonomous profile

The Software Inventory Profile models installed and available software and firmware. The SNIA version specializes
the DMTF profile in order to add indications.

39.2 Description
The Software Inventory Profile models installed and available software and firmware. The SNIA version specializes
the DMTF profile in order to add indications.

39.2.1 Relationship to the SMI-S Software Profile

SMI-S defined a similar profile, the Software Subprofile (see Clause 38: "Software Subprofile"). There are several
differences between the two profiles:

• The Software Subprofile is limited to modeling software/firmware associated to a system and makes no
provision for software/firmware associated to other elements (drives, ports,...)

• The DMTF Software Inventory Profile provides additional functionality:

• software that is available on the system, but not installed - allowing the ability to model software/firmware
that has been downloaded, but not activated.

• collections of SoftwareIdentity instances

• locations (such as URLS) associated with SoftwareIdentity instances

Table 378 - Related Profiles for Software Inventory

Profile Name Organization Version Requirement Description

Indication SNIA 1.5.0 Mandatory
SMI-S 1.6.0 Revision 4 SNIA Technical Position 351

Software Inventory Profile

26
27

28
29
30
31
32
33

34

35

36

37
38
39

40

41

42
43

44
45

46

47

48

49

50

51

52

53
Also note that supporting this profile in SMI-S allows us to utilize the DMTF profiles which in turn use the Software
Inventory Profile.

Note that although both profiles use InstalledSoftwareIdentity, the semantics are different. In the SMI-S Software
Subprofile, InstalledSoftwareIdentity indicates that the software is both available and installed on the system. In the
DMTF Software Inventory Profile, InstalledSoftwareIdentity indicates that the software is available (downloaded) on
the system, and ElementSoftwareIdentity indicates that the software is active for the referenced element. ALso
note that Software Inventory Profile has requirements for version properties beyond those in the SNIA Software
Subprofile.

39.3 Implementation
See DSP1023, DMTF Software Inventory Profile.

39.3.1 Software Installation and Update

The CIM interface for Software Updates is described in the DMTF Software Update Profile (DSP1025). As a side
effect of installation or updates, the inventory of software identities modeled in this profile is modified. This
specialization adds indication filters:

• InstCreation of SoftwareIdentity represents a newly available software element (or new version)

• InstDeletion of SoftwareIdentity represents the deletion of an inactive SoftwareIdentity

• InstAlert with a Standard Message is used when a software (or firmware) version is updated “in-place” without
installing a separate software/firmware package

• InstModification of ElementSoftwareIdentity.ElementSoftwareStatus (see 7.4.1.1 in DSP1023, DMTF Software
Inventory Profile)

39.3.2 Health and Fault Management Consideration

None

39.3.3 Cascading Considerations

None

39.4 Methods
See DSP1023, DMTF Software Inventory Profile.

39.5 Use Cases
See DSP1023, DMTF Software Inventory Profile.
352

 Software Inventory Profile

54

55

56

57
58

59
39.6 CIM Elements
Table 379 describes the CIM elements for Software Inventory.

39.6.1 CIM_ElementSoftwareIdentity

CIM_ElementSoftwareIdentity is used to associate an instance of CIM_ManagedElement and an instance of
CIM_SoftwareIdentity when the instance of CIM_ManagedElement is instrumented.

Requirement: Optional

Table 379 - CIM Elements for Software Inventory

Element Name Requirement Description

39.6.1 CIM_ElementSoftwareIdentity Optional

39.6.2 CIM_HostedAccessPoint Optional

39.6.3 CIM_HostedCollection Conditional Conditional requirement: Support for
collection of SoftwareIdentity instances.

39.6.4 CIM_InstalledSoftwareIdentity Optional

39.6.5 CIM_MemberOfCollection Conditional Conditional requirement: Support for
collection of SoftwareIdentity instances.

39.6.6 CIM_OrderedComponent Optional

39.6.7 CIM_OrderedDependency Optional

39.6.8 CIM_SAPAvailableForElement Conditional Conditional requirement: Support for
SoftwareIdentityResource instances.

39.6.9 CIM_SoftwareIdentity Mandatory

39.6.10 CIM_SoftwareIdentityResource Optional

39.6.11 CIM_SystemSpecificCollection Optional

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Creation of a SoftwareIdentity. See 39.3.1
Software Installation and Update.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_SoftwareIdentity

Mandatory Delete of a SoftwareIdentity. See 39.3.1
Software Installation and Update.

SELECT * FROM CIM_AlertIndication
WHERE OwningEntity=SNIA and
MessageID=\Core1\''

Mandatory In-place update of Software (or Firmware).
See 39.3.1 Software Installation and Update.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_SoftwareIdentity AND
SourceInstance.CIM_SoftwareIdentity::Eleme
ntSoftwareStatus <>
PreviousInstance.CIM_SoftwareIdentity::Elem
entSoftwareStatus

Optional CQL -Change in ElementSoftwareStatus
property of SoftwareIdentity. See 39.3.1
Software Installation and Update.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 353

Software Inventory Profile

60

61

62
63

64

65

66

67
68
69

70

71

72

73
74
75

76

77

78
Table 380 describes class CIM_ElementSoftwareIdentity.

39.6.2 CIM_HostedAccessPoint

CIM_HostedAccessPoint is used to associate CIM_System and CIM_SoftwareIdentityResource when an instance
of CIM_SoftwareIdentityResource is instrumented.

Requirement: Optional

Table 381 describes class CIM_HostedAccessPoint.

39.6.3 CIM_HostedCollection

CIM_HostedCollection is used to associate CIM_System and CIM_SystemSpecificCollection.
CIM_HostedCollection is conditional and shall be implemented when an instance of CIM_SystemSpecificCollection
is instrumented.

Requirement: Support for collection of SoftwareIdentity instances.

Table 382 describes class CIM_HostedCollection.

39.6.4 CIM_InstalledSoftwareIdentity

CIM_InstalledSoftwareIdentity is used to associate an instance of CIM_System and an instance of
CIM_SoftwareIdentity. CIM_InstalledSoftwareIdentity is conditional and shall be implemented when Installed
Software is modeled.

Created By: Static
Modified By: Static
Deleted By: Static

Table 380 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity

Properties Flags Requirement Description & Notes

ElementSoftwareStat
us

Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 381 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 382 - SMI Referenced Properties/Methods for CIM_HostedCollection

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
354

 Software Inventory Profile

79

80

81

82
83
84

85

86

87

88
89
90

91

92

93

94
95

96
Requirement: Optional

Table 383 describes class CIM_InstalledSoftwareIdentity.

39.6.5 CIM_MemberOfCollection

CIM_MemberOfCollection is used to associate an instance of CIM_SystemSpecificCollection and an instance of
CIM_SoftwareIdentity. CIM_MemberOfCollection is conditional and shall be implemented when an instance of
CIM_SystemSpecificCollection is instrumented.

Requirement: Support for collection of SoftwareIdentity instances.

Table 384 describes class CIM_MemberOfCollection.

39.6.6 CIM_OrderedComponent

CIM_OrderedComponent is used to associate an instance of CIM_SoftwareIdentity that represents a Software
Bundle and an instance of CIM_SoftwareIdentity that represents one of the discrete software images contained in
the Software Bundle.

Requirement: Optional

Table 385 describes class CIM_OrderedComponent.

39.6.7 CIM_OrderedDependency

CIM_OrderedDependency is used to associate an instance of CIM_SoftwareIdentity that represents an Installation
Dependency and an instance of CIM_SoftwareIdentity for which the Installation Dependencies are represented.

Requirement: Optional

Table 383 - SMI Referenced Properties/Methods for CIM_InstalledSoftwareIdentity

Properties Flags Requirement Description & Notes

System Mandatory

InstalledSoftware Mandatory

Table 384 - SMI Referenced Properties/Methods for CIM_MemberOfCollection

Properties Flags Requirement Description & Notes

Collection Mandatory

Member Mandatory

Table 385 - SMI Referenced Properties/Methods for CIM_OrderedComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory

PartComponent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 355

Software Inventory Profile

97

98

99
100
101

102

103

104

105

106

107

108

109

110
Table 386 describes class CIM_OrderedDependency.

39.6.8 CIM_SAPAvailableForElement

CIM_SAPAvailableForElement is used to associate CIM_SoftwareIdentityResource and CIM_SoftwareIdentity.
CIM_SAPAvailableForElement is conditional and shall be implemented when the location information of
CIM_SoftwareIdentity is represented.

Requirement: Support for SoftwareIdentityResource instances.

Table 387 describes class CIM_SAPAvailableForElement.

39.6.9 CIM_SoftwareIdentity

CIM_SoftwareIdentity is used to represent either Installed Software or Available Software.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 388 describes class CIM_SoftwareIdentity.

Table 386 - SMI Referenced Properties/Methods for CIM_OrderedDependency

Properties Flags Requirement Description & Notes

AssignedSequence Mandatory

Antecedent Mandatory

Dependent Mandatory

Table 387 - SMI Referenced Properties/Methods for CIM_SAPAvailableForElement

Properties Flags Requirement Description & Notes

AvailableSAP Mandatory

ManagedElement Mandatory

Table 388 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

InstanceID Mandatory

IsEntity Mandatory

VersionString Optional

BuildNumber Optional

MajorVersion Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.

MinorVersion Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.
356

 Software Inventory Profile

111

112
113

114

115

116

117

118

119
39.6.10 CIM_SoftwareIdentityResource

CIM_SoftwareIdentityResource is used to represent the location of a Software Identity, which could be used as
input to the software installation service.

Requirement: Optional

Table 389 describes class CIM_SoftwareIdentityResource.

39.6.11 CIM_SystemSpecificCollection

CIM_SystemSpecificCollection is used to represent a collection of Available Software.

Requirement: Optional

Table 390 describes class CIM_SystemSpecificCollection.

EXPERIMENTAL

RevisionNumber Conditional Conditional requirement: No Support for
SoftwareIdentity.VersionString.

TargetOSTypes Optional

Table 389 - SMI Referenced Properties/Methods for CIM_SoftwareIdentityResource

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

InfoFormat Mandatory

AccessInfo Mandatory

ResourceType Optional

Table 390 - SMI Referenced Properties/Methods for CIM_SystemSpecificCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

Table 388 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 357

Software Inventory Profile
358

 Server Profile

1

2

3

4
5

6
7

8
9

10

11
12

13
14
15
16

17
18

19
20
21

22
23
STABLE

Clause 40: Server Profile

40.1 Description

40.1.1 Model Overview

A CIM Server is anything that supports WBEM protocols. The Server Profile is mandatory for all compliant SMI-S
servers.

The object manager part of the model, shown in Figure 53, defines the capabilities of a CIM object manager based
on the communication mechanisms that it supports.

The namespace model of the Server Profile describes the namespaces managed by the object manager and the
type information contained within the namespace. The main information provided in the namespace part of the
model is the namespace itself and its association to the ObjectManager.

The InteropNamespace refers to the first namespace found in the InteropSchemaNamespace attribute of the SLP
Template.

A Server is modeled as a System with a HostedService association to an ObjectManager. The ObjectManager is
subclassed from Service. Implementations shall support an ElementConformsToProfile association referencing the
RegisteredProfile for the Server Profile and referencing the ObjectManager (rather than CIM_System as is
common in other profiles).

It is mandatory that all namespaces supported by the Server be identified (the Namespace class) and associated
to the ObjectManager via the NamespaceInManager association.

The communication protocols supported by the ObjectManager should also be identified. Specifically, the
CIMXMLCommunicationMechanism shall be present for standard communication support for clients. This class is
associated to the ObjectManager via the CommMechanismForManager association.

The Profile Registration Profile describes the set of classes and associations deal with profiles supported by the
ObjectManager. The Profile Registration Profile is required by the Server Profile.

Figure 53 - Server Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 359

24

25
26

27
28
29

30
31
32

33
34

35

36

37

38

39

40

41

42

43
44

45
46

47

48

49

50
51
52

53

54
55
56
57

58

59
60
40.1.2 Use of model fields to Populate the SLP template

The data used to populate the SLP template for advertising SMI-S profiles is found in the CIM Server profile. The
SLP template fields are populated as follows:

template-url-syntax: =string
The following quotation is from the “WBEM SLP Template v1.0.0.
http://www.dmtf.org/standards/wbem/wbem.1.0.en

“The template-url-syntax MUST be the WBEM URI Mapping of the location of one service access point
offered by the WBEM Server over TCP transport. This attribute must provide sufficient addressing
information so that the WBEM Server can be addressed directly using the URL.

The WBEM URI Mapping is defined in the WBEM URI Mapping Specification 1.0.0 (DSP0207). Example:
(template-url-syntax=https://localhost:5989)”

service-hi-name: ObjectManager.ElementName

service-hi-description: ObjectManager.Description

service-id: ObjectManager.Name

CommunicationMechanism: ObjectManagerCommunicationMechanism.CommunicationMechanism

OtherCommunicationMechanism: ObjectManagerCommunicationMechanism.OtherCommunicationMechanism

InteropSchemaNamespace: Namespace.Name for the InteropNamespace

ProtocolVersion: ObjectManagerCommunicationMechanism.Version

MultipleOperationsSupported: ObjectManagerCommunicationMechanism.MultipleOperationsSupported

AuthenticationMechanismSupported:
ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported

OtherAuthenticationDescription:
ObjectManagerCommunicationMechanism.AuthenticationMechanismDescriptions

Namespace: Namespace.Name for each Namespace instance supported

Classinfo: Namespace.Classinfo for each Namespace instance

RegisteredProfilesSupported:

A list of profiles supported by the CIM providers running in this CIM Server. Each entry is this list is separate by a
comma and consists of two or three sub-fields, separated by colons. If an entry refers to a supported profile defined
in a RegisteredProfile (and not RegisteredSubProfile) instance, the format shall be

Organization:Name

where organization is the name of the organization that defined the profile (e.g., SNIA or DMTF) and Name is the
name of the profile. Note that this first format applies to autonomous or component profiles defined using
RegisteredProfile. If an entry refers to a supported subprofile defined in a RegisteredSubProfile instance, the
format shall be

Organization:Name:Subprofile-Name

where organization is the name of the organization that defined the profile (e.g., SNIA or DMTF), Name is the
name of the profile, and Subprofile-Name is the name of the subprofile.
360

 Server Profile

61
62
63

64
65

66
67

68
69
70
71

72

73
74

75

76

77

78

79

80

81

82
For either format, Organization shall be identical to the RegisteredOrganization attribute in the appropriate
RegisteredProfile instance. For the first format, Name shall be identical to the RegisteredName attribute in the
appropriate RegisteredProfile instance. For the second format:

• Subprofile-Name shall be identical to the RegisteredName attribute in the appropriate RegisteredSubProfile
instance

• Name shall be identical to the RegisteredName attribute in the RegisteredProfile referenced by the
RegisteredSubProfile

Implementations are required to include an entry for each supported autonomous profile. Implementations are
required to include an entry for a component profile if the component profile definition in this standard states that
the component profile shall be advertised via SLP. It is recommended that other subprofiles and component
profiles be excluded from this list to minimize the size of the SLP template.

40.1.3 Support for Indications

An implementation of the Server Profile may optionally support an indication reporting that the Object Manager was
started.

40.1.4 Security Background

See Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4, Security (Clause 12:)

40.2 Health and Fault Management
Not defined in this standard.

40.3 Cascading Considerations
Not defined in this standard.

40.4 Supported Subprofiles and Packages
Table 391 describes the supported profiles for Server.

Table 391 - Supported Profiles for Server

Profile Name Organization Version Requirement Description

Object Manager
Adapter

SNIA 1.3.0 Optional

Experimental
Indication

SNIA 1.5.0 Optional

Profile Registration SNIA 1.5.0 Mandatory

Launch In Context DMTF 1.0.0 Optional Experimental. See DSP1102, version
1.0.0

Indication SNIA 1.5.0 Support for
at least one
is mandatory.

Deprecated. See the SNIA Indications
Profile

Indications SNIA 1.6.0 Experimental.

Indications DMTF 1.2.0 Experimental. See DSP1054, version
1.2.0
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 361

83

84
85
86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122
40.5 Methods of the Profile
The implementation may support ObjectManager.StopService. If implemented, this method shall shut down the
CIM object manager. The method returns an integer value of 0 if the service was successfully stopped, 1 if the
request is not supported, and any other number to indicate an error.

40.6 Client Considerations and Recipes

40.6.1 Segregate a SAN Device Type
// DESCRIPTION

// A management application wishes to manage a particular type of SAN

// device, but not other devices. So the management application needs to

// isolate the particular CIM Servers that support the type of device it

// wants to manage.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there are one or more Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#DirectoryEntries [] is an array of directory entry Structures.

// The structure matches the “wbem” SLP Template (see ‘Standard

// WBEM Service Type Templates).

// 6.Assume that the device is #DesiredProfile and the device is an

// SMI-S device (a SNIA defined profile)

// Step 1: Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList, // The Previous Responders list

service:directory-agent // Service type

“DEFAULT”, // The scope

NULL, // The predicate

NULL) // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)

#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)
362

 Server Profile

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client

// has reached a UA configured CONFIG_RETRY_MAX seconds.

// Step 4: Unicast a Service Request to each of the DAs specifying a

// query predicate to select CIM Servers that support SNIA

// #DesiredDevice profiles and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#DAPRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope

“RegisteredProfilesSupported=SNIA:”+#DesiredProfile+”*”,

 // The predicate

NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (

Count, // count of URLs

#SAPRList[])

}

// Step 5: Next retrieve the attributes of each advertisement

For #i in #ServiceList[] // for each url in list

{

AttrRqst (

#SAPRList, // The Previous Responders list

#ServiceList[#i],// a url from #ServiceList[]

“DEFAULT”, // The scope

NULL, // Tag list. NULL means return all

// attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (#attr-list)

}

// Step 7: Correlate the responses to the Service Request on unique

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM

// Server. At this point, the client has a list of CIM Servers that

// claim to support SNIA #DesiredProfile profiles.

40.7 Registered Name and Version
Server version 1.6.0 (Autonomous Profile)
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 363

161

162

163

164
165

166

167
40.8 CIM Elements
Table 392 describes the CIM elements for Server.

40.8.1 CIM_CIMXMLCommunicationMechanism

Deprecated. SMI-S 2.0 will use the superclass: CIM_ObjectManagerCommunicationMechanism. Represents CIM-
XML Support.

Created By: Static
Modified By: Static

Table 392 - CIM Elements for Server

Element Name Requirement Description

40.8.1
CIM_CIMXMLCommunicationMechanism

Mandatory Deprecated. SMI-S 2.0 will use the
superclass:
CIM_ObjectManagerCommunicationMechani
sm. Represents CIM-XML Support.

40.8.2 CIM_CommMechanismForManager Mandatory This associates the ObjectManager and the
communication classes it supports.

40.8.3 CIM_HostedAccessPoint Mandatory This associates the communication
mechanisms with the hosting System.

40.8.4 CIM_HostedService Mandatory Connects the ObjectManager to the System
that is hosting the ObjectManager.

40.8.5 CIM_Namespace Mandatory This is a namespace within the Object
Manager.

40.8.6 CIM_NamespaceInManager Mandatory This associates the namespace to the
ObjectManager.

40.8.7 CIM_ObjectManager Mandatory This is the Object Manager service of the CIM
Server. Associated to RegisteredProfile.

40.8.8
CIM_ObjectManagerCommunicationMechani
sm

Optional Instantiate to show optionalal support for WS-
Man.

40.8.9 CIM_System Mandatory The System that is hosting the Object
Manager (CIM Server).

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ObjectManager AND
SourceInstance.Started <>
PreviousInstance.Started

Optional Deprecated WQL -Start of object manager.
See Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0
Rev 4 40.1.3 Support for Indications.

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA
CIM_ObjectManager AND
SourceInstance.CIM_ObjectManager::Started
<>
PreviousInstance.CIM_ObjectManager::Starte
d

Optional CQL -Start of object manager. See Storage
Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 40.1.3 Support
for Indications.
364

 Server Profile

168

169

170

171

172

173

174

175
Deleted By: Static
Requirement: Mandatory

Table 393 describes class CIM_CIMXMLCommunicationMechanism.

40.8.2 CIM_CommMechanismForManager

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 393 - SMI Referenced Properties/Methods for CIM_CIMXMLCommunicationMechanism

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory

CommunicationMech
anism

Mandatory Shall be 2 (CIM-XML).

Version Mandatory The 'CIM Operations over HTTP' version supported by the
server.

CIMValidated Mandatory

FunctionalProfilesSu
pported

Mandatory

MultipleOperationsSu
pported

Mandatory

AuthenticationMecha
nismsSupported

Mandatory

OperationalStatus Mandatory Should be 0 (Unknown), 2 (Okay), or 10 (Stopped).

StatusDescriptions Optional
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 365

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192
Table 394 describes class CIM_CommMechanismForManager.

40.8.3 CIM_HostedAccessPoint

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 395 describes class CIM_HostedAccessPoint.

40.8.4 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 396 describes class CIM_HostedService.

40.8.5 CIM_Namespace

Created By: Static
Modified By: Static
Deleted By: Static

Table 394 - SMI Referenced Properties/Methods for CIM_CommMechanismForManager

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to CommunicationMechanism.

Antecedent Mandatory Reference to ObjectManager.

Table 395 - SMI Referenced Properties/Methods for CIM_HostedAccessPoint

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to CommuicationMechanism.

Antecedent Mandatory Reference to CIM_System.

Table 396 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to CIM_ObjectManager.

Antecedent Mandatory Reference to CIM_System.
366

 Server Profile

193

194

195

196

197

198

199

200

201
Requirement: Mandatory

Table 397 describes class CIM_Namespace.

40.8.6 CIM_NamespaceInManager

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 398 describes class CIM_NamespaceInManager.

40.8.7 CIM_ObjectManager

Table 397 - SMI Referenced Properties/Methods for CIM_Namespace

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ObjectManagerCreati
onClassName

Mandatory

ObjectManagerName Mandatory

CreationClassName Mandatory

Name Mandatory

ClassType Mandatory Should be 2 (CIM) for either CIM_ and SNIA_ classes.

DescriptionOfClassT
ype

Conditional Conditional requirement: CIM_Namespace.Namespace
having value 1 (Other).

ClassInfo Optional Deprecated. Deprecated in the MOF, but required for 1.0
compatibility. Required only if the CIMOM is hosting profiles
that were part of SMI-S 1.0.x.

DescriptionOfClassIn
fo

Optional Deprecated. Deprecated in the MOF, but mandatory for 1.0
compatibility. Mandatory if ClassInfo is set to 'Other' and if
the CIMOM is hosting profiles that were part of SMI-S 1.0.x.

Table 398 - SMI Referenced Properties/Methods for CIM_NamespaceInManager

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to CIM_Namespace.

Antecedent Mandatory Reference to CIM_ObjectManager.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 367

202

203

204

205

206
207
208

209

210

211

212

213

214

215
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Shall be associated to RegisteredProfile using ElementConformsToProfile association. The RegisteredProfile
instance shall have RegisteredName set to 'Server', RegisteredOrganization set to 'SNIA', and RegisteredVersion
set to '1.6.0'.

Table 399 describes class CIM_ObjectManager.

40.8.8 CIM_ObjectManagerCommunicationMechanism

Instantiate to show optionalal support for WS-Man.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 399 - SMI Referenced Properties/Methods for CIM_ObjectManager

Properties Flags Requirement Description & Notes

Name Mandatory

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

ElementName Mandatory The name (make and model) of the server for human
interfaces. For example, "ACME CIM Server".

Description Mandatory The name (make and model) and version of the server for
human interfaces. For example, "ACME CIM Server
version 2.2".

OperationalStatus Mandatory Should be 0 (Unknown), 2 (Okay), or 10 (Stopped).

Started Mandatory

StopService() Optional This method shall shut down the CIM object manager. See
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 The implementation may
support ObjectManager.StopService. If implemented, this
method shall shut down the CIM object manager. The
method returns an integer value of 0 if the service was
successfully stopped, 1 if the request is not supported, and
any other number to indicate an error..
368

 Server Profile

216

217

218

219

220

221

222
Table 400 describes class CIM_ObjectManagerCommunicationMechanism.

40.8.9 CIM_System

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 401 describes class CIM_System.

Table 400 - SMI Referenced Properties/Methods for
CIM_ObjectManagerCommunicationMechanism

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory

CommunicationMech
anism

Mandatory Shall be 4 (WS Management).

FunctionalProfilesSu
pported

Mandatory Shall be 0 (Unknown).

MultipleOperationsSu
pported

Mandatory Shall be false.

AuthenticationMecha
nismsSupported

Mandatory

OperationalStatus Mandatory Should be 0 (Unknown), 2 (Okay), or 10 (Stopped).

StatusDescriptions Optional

FunctionalProfileDes
criptions

Optional

Table 401 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes

CreationClassName Mandatory

NameFormat Mandatory Shall be either 'IP', 'WWN', or 'Other'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 369

STABLE

Name Mandatory If NameFormat is 'IP', Name shall be a valid Ipv4, Ipv6, or
fully qualified domain name. If NameFormat, is 'WWN',
Name shall be formatted as 16 unseparated upper case
hex digits.

Description Mandatory

ElementName Mandatory

OperationalStatus Mandatory Should be 0 (Unknown), 2 (Okay), or 10 (Stopped).

Table 401 - SMI Referenced Properties/Methods for CIM_System

Properties Flags Requirement Description & Notes
370

1

2

3

4

5

6

7

8

9
10

11

12
13

14

15

16

17

18

19

20

21
22
23
STABLE

Clause 41: Profile Registration Profile

41.1 Synopsis
Profile Name: Profile Registration

Version: 1.0.0

Organization: SNIA

CIM Schema Version: 2.12.0

Specializes: DMTF Profile Registration 1.0.0

No included profiles are defined in this standard.

Profile Registration Profile models the profiles registered in the object manager and the associations between
registration classes and the domain classes implementing the profile.

41.2 Description
The SNIA Profile Registration Profile specializes the DMTF Profile Registration Profile adding the following
classes:

• CIM_RegisteredSubProfile (subclass of CIM_RegisteredProfile)

• CIM_SubProfileRequiresProfile (subclass of CIM_ReferencedProfile)

• CIM_SoftwareIdentity

• CIM_ElementSoftwareIdentity

• CIM_Product

• CIM_ProductSoftwareComponent

41.3 Implementation
In DMTF profiles, the term ‘component profile’ is used similarly to the way ‘subprofile’ was used in SMI-S 1.0.x and
1.1.x; and the term ‘autonomous profile’ is used similarly to the way ‘profile’ was used in SMI-S 1.0.x and 1.1.x.
SNIA implementations may use the SNIA 1.0.x/1.1.x approach with the RegisteredSubProfile and
SMI-S 1.6.0 Revision 4 SNIA Technical Position 371

Profile Registration Profile

24
25

26
27
28
29
30
31
32

33
34

35
36

37
38

39
40
41
42
43
44

45

46

47
48
49
50

51
52
53
SubProfileRequiresProfile subclasses) or the DMTF approach using RegisteredProfile for component profiles and
ReferencedProfile. Figure 54 shows the Profile Registration Model.

SMI-S clients should use the superclasses (RegisteredProfile and ReferencedProfile) in CIM operations to assure
that implementations conforming to either SMI-S or DMTF profiles are discovered. ReferencedProfile associates
two instances of RegisteredProfile. The DMTF Profile Registration Profile describes how the Antecedent and
Dependent references should be used when one profile includes another in its supported/referenced profile list.
Implementations are inconsistent in the use of these references and clients should be prepared for either
approach; one technique to achieve this would be to specify NULL for Role and RemoteRole in Associator or
AssociatorName operations.

The Scoping Class methodology defined in the DMTF Profile Registration Profile shall be implemented. The
Central Class methodology may be implemented.

For each Profile instance, the supported component profiles should be identified via the SubprofileRequiresProfile
or ReferencedProfile association. Subprofiles are modeled using RegisteredSubProfile (or ReferencedProfile).

Instances of RegisteredProfile, RegisteredSubProfile, SubProfileRequiresProfile, and ReferencedProfile are in the
Interop namespace. The ManagedElement is in the implementation namespace.

For implementations conforming to SMI-S 1.0.x or 1.1.x, all RegisteredProfile/RegisteredSubprofile instances
associated via SubProfileRequiresProfile shall have the version number of the SMI-S standard for the
RegisteredVersion property. For implementations conforming to SMI-S 1.2.x or later, the RegisteredVersion
property of associated RegisteredProfile/RegisteredSubprofile instances may have different values; these values
shall be the same as those published in the Registered Name and Version subclause of the profiles. The version of
the standard shall be expressed using the SMI-S RegisteredProfile (see 41.3.3 "The SMI-S Registered Profile").

RegisteredProfile instances are required for all SMI-S profiles, including those named as Subprofiles or Packages.

41.3.1 ElementConformsToProfile Association

In addition, the ElementConformsToProfile association ties the RegisteredProfile for SMI-S autonomous profiles to
scoping managed elements (typically ComputerSystems); these are the “top-level” objects defined in SMI-S
autonomous profiles. Implementations shall support an ElementConformsToProfile association from at least one
RegisteredProfile instance to the scoping instance.

A single ManagedElement may have zero or more ElementConformsToProfile associations to RegisteredProfiles.
Regardless of the number of associated RegisteredProfiles, the ManagedElement represents one set of resources.
So for example, consider a ManagedElement that is a System that supports both the Array and Storage Virtualizer

l

Figure 54 - Profile Registration Model
372

 Profile Registration Profile

54
55
56

57

58
59
60
61

62
63
64
65

66
67
68
69
70
71

72

73
74
75
76

77
78
79
80
81
profiles. If one asks for the total amount of mapped capacity, the answer applies to both Array and Virtualizer and is
not additive. See B.6 "Rules for Combining (Autonomous) Profiles" in Storage Management Technical
Specification, Part 1 Common Architecture, 1.6.0 Rev 4.

41.3.2 Associations between Autonomous and Component Profile

The DMTF Profile Registration Profile requires the RegisteredProfile instances representing a profile and its
supported profiles be associated via ReferencedProfile (which may be subclassed as SubProfileRequiresProfile).
SMI-S has the additional requirement, that all supported profiles (whether supported directly or indirectly), are
associated directly to the “top-level” autonomous profile.

For example, as shown in Figure 55, the Array Profile supports the Disk Sparing Subprofile which supports the Job
Control. SMI-S requires both of these component profiles to be directly attached to the Array Profile instance, even
though Job Control is actually a component profile of Disk Sparing. DMTF Profile Registration Profile also requires
a ReferencedProfile association between the RegisteredProfiles for Disk Sparing and Job Control.

Each RegisteredProfile instance referenced by ElementConformsToProfile may have a set of supported profiles
with RegisteredProfile instances associated using ReferencedProfile or SubProfileRequiresProfile. Typically the
RegisteredProfile associated via ElementConformsToProfile is for an autonomous profile and the supported
profiles are component profiles. If there are multiple ElementConformsToProfile associations between a single
RegisteredProfile instance and multiple domain instances, the referenced domain implementations shall support all
the profiles supported by the RegisteredProfile.

41.3.3 The SMI-S Registered Profile

SMI-S conformant implementations shall provide a technique that allows clients to determine which standard the
implementation conforms to. This requirement is different for RegisteredProfile instances representing an profile
from SMI-S versions before 1.2.0, which are required to use the standard’s version number (e.g., 1.0.3 or 1.1.0) in
the RegisteredVersion property of each RegisteredProfile (or RegisteredSubprofile) instance.

Each RegisteredProfile instance representing a profile from SMI-S version 1.2.0 or later shall also be associated to
a RegisteredProfile instance holding the SMI-S version number, as shown in Figure 56. The version number
(RegisteredVersion) of SMI-S profiles may or may not be the same as the version number of the SMI-S Registered
Profile. The RegisteredProfile instances are associated using ElementConformsToProfile where the
RegisteredProfile representing SMI storage profiles (e.g., Array, Switch) is referenced from the ManagedElement

Figure 55 - Associations between RegisteredProfile instances
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 373

Profile Registration Profile

82
83

84
85
86

87

88
89
90
91
92

93

94
95
role of the association. Figure 56 depicts the RegisteredProfile representing the SMI-S standard on the left, and
RegisteredProfiles representing autonomous and component storage profiles in the middle.

SMI-S class diagrams generally do not include the names of roles on associations. The requirements of roles
(ConformantStandard and ManagedElement) of ElementConformsToProfile seemed critical to understand this
model, so they are added to Figure 56. The role names are under the ends of the ElementConformsToProfile lines.

41.3.3.1 Provider Versions
Each RegisteredProfile and RegisteredSubprofile instance (from the Profile Registration Profile, except the SMI-S
Profile) shall be associated to one (or more) SoftwareIdentity instances containing information about the software
packages required to deploy the instrumentation (including providers). These are associated using
ElementSoftwareIdentity. SoftwareIdentity instance may optionally be associated to Product instances
representing a software product. The model for Provider Versions is depicted in Figure 57.

41.3.3.2 Abstract Profile and Profile Registration
When profiles are defined for specialization, they may be defined as abstract and include this text in the Synopsis
subclause:

Figure 56 - Model for SMI-S Registered Profile

Figure 57 - Model for Provider Versions
374

 Profile Registration Profile

96
97

98
99

100

101
102
103
104

105
106
107

108

109

110

111

112

113

114

115

116
117
118
119
120
121

122
123
124

125
126
127
128
129

130
131
132
133
134
This abstract profile specification shall not be directly implemented; implementations shall be based on a
profile specification that specializes the requirements of this profile.

RegisteredProfile instances shall not be instantiated for abstract profiles. Information about abstract profiles shall
not be included in the SLP template.

41.3.3.3 Indications
The Profile Registration Profile supports optional indications for the creation and deletion of RegisteredProfile
instances. These indications apply to autonomous and component profiles. The indications filters are defined in
terms of the RegisteredProfile class and should be triggered for RegisteredSubprofile as well asRegisteredProfile
instances. Indications should also be triggered for creation or deletion of the SMI-S profile.

These indications will sent to subscribers when profiles are added and removed from the CIM server. They might
be added due to updates, new functionality, or enabling licensed features. If an implementation supports dynamic
creation or removal of profiles, then these indications should be supported.

41.3.4 Health and Fault Management Consideration

None

41.3.5 Cascading Considerations

None

41.4 Methods
None

41.5 Use Cases

41.5.1 Using the CIM Server Model to Determine SNIA Profiles Supported

All SNIA profiles require the implementation of the Server Profile as part of the CIM Server. This allows a client to
determine which SNIA profiles are supported by the a proxy, embedded or general purpose SMI-S Server. SMI-S
clients can use SLP to search for services that support SNIA profiles. Indeed, a client may restrict its search to
specific types of SNIA profiles. The client would get a response for each CIM Server service that supports a SNIA
profile. From the responses, the client should use the “service-id” to determine the unique CIM Servers it is dealing
with.

For each CIM Server, the client can determine the types of entities supported by inspecting the
RegisteredProfilesSupported attribute returned for the SLP entries. This identifies the types of entities (e.g.,
devices) supported by the CIM Server.

The client may determine more detail on the support for the profiles by going to the service advertised for the CIM
Server and inspecting the RegisteredProfiles maintained in the server profile. This would be done by enumerating
RegisteredProfiles and RegisteredSubprofiles within the interop namespace. By inspection of the actual profile
instances, the client can determine the SNIA version (RegisteredVersion) of profile, associated namespaces and
associated managed elements (e.g., systems).

From the RegisteredProfiles within the namespace of the ObjectManager, a client can determine other supported
profiles by following the ReferencedProfile association (or its subclass SubProfileRequiresProfile). This returns a
set of RegisteredProfile (or RegisteredSubProfile) instances that represent profiles supported by the specific
autonomous profile instance. See individual profile descriptions in this specification for the specific list of
“supported profiles”. For a given profile instance there may be zero, one or many supported profiles.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 375

Profile Registration Profile

135

136

137

138

139

140
141
142

143

144

145
146

147
148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174
41.5.2 Recipe Assumptions

For discovery recipes, the following are assumed:

a) A top-level object (class instance) exists for each profile, and

b) the client knows what the top level object is.

The top-level object for each of the SMI-S profiles are:

• ComputerSystem: For Array, Storage (Media) Libraries, Virtualizers, Switches, and HBAs. This is the top-level
ComputerSystem instance for the profile (not the component ComputerSystem or the member
ComputerSystem);

• AdminDomain: For Fabric and HostDiscoveredResources;

• ObjectManager: For Server.

The top-level object (class instance) is associated to the RegisteredProfile instance for the profile via the
ElementConformsToProfile association.

Note: Other ManagedElement instances may be associated to the RegisteredProfile, but the meaning and
behavior of such associations are not defined by SMI-S and are not mandatory.

41.5.3 Find Servers Supporting a Given Profile
// DESCRIPTION

// A management application wishes to find all CIM Servers on a

// particular subnet that support one or more SMI-S profiles.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume CIM Servers have advertised their services (SrvReg)

// 2.Assume there may (or may not) be Directory Agents in the subnet

// 3.Assume no security on SLP discovery

// 4.#DirectoryList[] is an array of directory URLs

// 5.#ServiceList[] is an array of service agent URLs

// 6.#DirectoryEntries [] is an array of directory entry Structures.

// The structure matches the wbem SLP Template (see Clause 5,

// section 10).

// Step 1: Set the Previous Responders List to the Null String.

#PRList = ““

// Step 2: Multicast a Service Request for a Directory Server Service.

// This is to find Directory Agents in the subnet.

//

SrvRqst (

#PRList, // The Previous Responders list

“service:directory-agent” // Service type

“DEFAULT”, // The scope

NULL, // The predicate

NULL) // SLP SPI (security token)

// Step 3: Listen for Response from Directory Agent(s)
376

 Profile Registration Profile

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216
#DirectoryList[] = DAAdvert (

BootTimestamp, // Time of last reboot of DA

URL, // The URL of the DA

ScopeList,// The scopes supported by the DA

AttrList,// The DA Attributes

SLP SPI List,// SLP SPI (SPIs the DA can verify)

Authentication Block)

// Iterate on Steps 2 & 3, until a response has been received or the client has

// reached a UA configured CONFIG_RETRY_MAX seconds. If no DA if found,

// proceed to step 4. If a DA is found, proceed to step 7.

// Step 4: Set the Previous Responders List to the Null String.

#SAPRList = ““

// Step 5: Multicast a Service Request for Service Agent Services. This

// is to find Service Agents in the subnet that are not advertised

// in a Directory.

SrvRqst (

#SAPRList, // The Previous Responders list

“service:service-agent” // Service type

“DEFAULT”, // The scope

“(Service-type=WBEM)”, // The predicate

NULL) // SLP SPI (security token)

// Step 6: Listen for Response from Service Agent(s)

#SAList[] = SAAdvert (

URL, // The URL of the SA

ScopeList,// The scopes supported by the SA

AttrList,// The SA Attributes

Authentication Block)

// Iterate on Steps 5 & 6, until a response has been received or the client has

// reached a UA configured CONFIG_RETRY_MAX seconds. If no SA if found,

// Then record an error. There are NO WBEM SAs. Otherwise proceed to

// Step 8.

//Step 7: Unicast a Service Request to each of the DAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #DirectoryList[]

{

SrvRqst (

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope

RegisteredProfilesSupported=”SNIA:*” // The predicate

NULL) // SLP SPI (security token)
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 377

Profile Registration Profile

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259
#ServiceList [#j] = SrvRply (

Count, // count of URLs

URL for each SA returned)

}

Go to Step 9.

//Step 8: Unicast a Service Request to each of the SAs specifying

// a query predicate to select CIM Servers that support SNIA profiles

// and listen for responses.

for #j in #SAList[]

{

SrvRqst (

#PRList, // The Previous Responders list

“service:wbem”, // Service type

“DEFAULT”, // The scope

RegisteredProfilesSupported=”SNIA:*”, // The predicate

NULL) // SLP SPI (security token)

#ServiceList [#j] = SrvRply (

Count, // count of URLs

URL for each SA returned)

}

// Step 9: Next retrieve the attributes of each advertisement

For #i in #ServiceList[] // for each url in list

{

AttrRqst (

#PRList, // The Previous Responders list

#ServiceList[#i],// a url from #ServiceList[]

“DEFAULT”, // The scope

NULL, // Tag list. NULL means return all attributes

NULL) // SLP SPI (security token)

#DirectoryEntries [#i] = AttrRply (attr-list)

}

// Step 10: Correlate responses to the Service Request on unique

// “service-id” to determine unique CIM Servers. The client will get

// multiple responses (one for each access point) for each CIM

// Server. At this point, the client has a list of CIM Servers that

// claim to support SNIA profiles.

41.5.4 Enumerate Profiles Supported by a Given CIM Server
// DESCRIPTION

// A management application wishes to determine the Profiles supported by

// a particular CIM Server.
378

 Profile Registration Profile

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299
//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client only wants to know the “top level” profiles

// supported by the CIM Server

// 2.Assume the client has used SLP to find the CIM Servers and has a

// #DirectoryEntries [] structure

// 3.This recipe describes the operations for one of the entries in

// the #DirectoryEntries [] structure.

// 4. Assume the index into #DirectoryEntries[] for the CIM Server of

// interest is #i.

// Step 1: Get the server url for the CIM Server.

#ServerName = #DirectoryEntries[#i].service-id

// Step 2: Get the Interop Namespace for the CIM Server.

#Inamespace = #DirectoryEntries[#i].InteropSchemaNamespace[1]

// Step 3: Establish a connection to the CIM Server with

// #INameSpace. Note that the WBEM operations throughout the remainder

// of this recipe are performed with this client handle.

<Make client connection to this server using the interop namespace>

// Step 4: Get the names of all the RegisteredProfiles in the

// Interop Namespace

#ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”,

TRUE, TRUE, FALSE, FALSE,

[“RegisteredName”])

// Step 5: Determine which RegisteredProfiles are autonomous.

// Subprofiles (aka component profiles) are associated to autonomous

// profiles via SubProfileRequiresProfile or its superclass,

// ReferencedProfile. The autonomous profile is refered to

// as the ‘referencing profile’ and the component/sub profile

// is referred the referenced profile. There may be more than

// two tiers, so profile may be both referenced and referencing.

// In practice, component or sub profiles would only be registered

// when their referencing autonomous profile(s) are registered, so

// any profile not referenced by another profile is autonomous.

#k = 0;

for #i in #ProfileName[i] { // walk all profiles

 $ReferencingProfiles->[] = Associators(#ProfileName[i]->,

 CIM_ReferencedProfile”, “CIM_RegisteredProfile”, “Dependent”,

 “Antecedent”, FALSE, FALSE, NULL);

 if ($ReferencingProfiles[] != null && $ReferencingProfiles[].length > 0) {

 // if the profile is not referenced by another profile,
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 379

Profile Registration Profile

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338
 // add it to the list of autonomous profiles

 #Autonomous[#k+1]=#ProfileName[#i]

 }

}

// #Autonomous[] now holds the autonomous RegisteredProfiles

41.5.5 Identify the ManagedElement Defined by a Profile
// DESCRIPTION

// A management application wishes to determine the ManagedElement that

// is defined by a particular Profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.Assume the client has located the profile and has its object path

// ($RegisteredProfile->)

// Step 1: Determine the ManagedElement (System) by traversing the

// ElementConformsToProfile association from the RegisteredProfile

// that is the top level Profile that applies to the System

$ManagedElement->[] = AssociatorNames (

$RegisteredProfile->,

“CIM_ElementConformsToProfile”,

“CIM_System”,

NULL,

NULL)

// Step 2: The object name of more than one System may be contained

// in the array returned. Examine the contents of $ManagedElement[]

// and save the name of the System of interest as $Name.

// NOTE: “Top level” object for each profile will be returned.

// To accommodate other potential ManagedElements, then it may

// be necessary need to throw out the ones that are not top level objects.

// NOTE: The object path for the ManagedElement may be in a Namespace

// that is different than the Interop Namespace. As a result, if the

// client wishes to actually access the ManagedElement, the client

// may get the namespace from the REF to the element:

#NameSpace=$Name.getNameSpace()

41.5.6 Determine the SNIA Version of a Profile
// DESCRIPTION

// A management application wishes to determine the SNIA version

// that a particular Profile supports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION
380

 Profile Registration Profile

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379
// 1.Assume the client only wants to know version information

// for a SNIA profile

// 2.Assume the client has already found the profile and has the

// $RegisteredProfile-> reference

// Step 1: Get the Instance of the Profile name.

$Profile = GetInstance($RegisteredProfile->)

// Step 2: Look for an associated RegisteredProfile representing the

// SMI-S specification. This usage of RegisteredProfile was added in

// SMI-S 1.2.0, if none are found, then assume the implementation

// supports SMI-S 1.0.x or 1.1.x where the version of the profile

// matched the version of the specification. The use of ManagedElement

// and ConfomantStandard as the Role and ResultRoles asure that the

// returned list is restricted to RegisteredProfiles for SMI-S spec and

// does not include domain elements.

$SpecRegisteredProfiles->[] = Associators (

 $RegisteredProfile->,

 “CIM_ElementConformsToProfile”,

 “CIM_RegisteredProfile”,

 ManagedElement,

 ConformantStandard,

 false,

 false,

 [“RegisteredVersion”])

if ($SpecRegisteredProfiles[] == null ||

 $SpecRegsisteredProfiles[].length == 0) {

 // no RegisteredProfile for specs were found; assume the

 // version of the profile is the spec version.

 #SNIAVersion = $Profile.RegisteredVersion

} else {

 // At least one $SpecRegisteredProfile was returned; an implmentation may

 // conform to multiple spec versions

 <Sort $SpecRegisteredProfile[] in reversed order of VersionNumbers>

 // The most recent supported SMI-S version is in element 0

 #SNIAVersion = $SpecRegisteredProfiles[0].RegisteredVersion

}

41.5.7 Find all Profiles on a Server
// DESCRIPTION

// A management application wishes to list all the SNIA profiles and

// their related profiles for a specific CIM Server.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 381

Profile Registration Profile

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405
// 1.Assume the client has already discovered the CIM Servers that

// support SNIA profiles

// Step 1: Get the names of all the RegisteredProfiles and their names

// in the Interop Namespace

$ProfileName[] = EnumerateInstances(“CIM_RegisteredProfile”

 true, true, false, false, {“RegisteredName”})

// Step 2: Get the ObjectName for the Profiles

for #i in #ProfileName[] {

 $Profile->[#i]=$Name.getObjectPath(#ProfileName[#i])

}

// Step 3: Get the (sub)profiles associated to the profiles.

// Since ReferencedProfile is the superclass for

// SubProfileRequiresProfile and RegisteredProfile is the

// supclass for RegsisteredSubProfile, this algorithm finds

// subprofiles and componement profiles referenced by a

// profile.

for #i in $ProfileName[]

{

 $Subprofile[] = Associators(

 $ProfileName[#j].getObjectPath(),

 “CIM_ReferencedProfile”,

 “CIM_RegisteredProfile”,

 NULL, NULL, false, false, NULL)

}

41.6 CIM Elements
Table 402 describes the CIM elements for Profile Registration.

Table 402 - CIM Elements for Profile Registration

Element Name Requirement Description

41.6.1 CIM_ElementConformsToProfile
(Associates Domain object (e.g. System) to
RegisteredProfile)

Mandatory Ties managed elements (e.g., Systems
representing devices) to the registered profile
that applies.

41.6.2 CIM_ElementConformsToProfile
(Associates RegisteredProfiles for SMI-S and
domain profiles)

Mandatory Associates RegisteredProfiles for SMI-S and
domain profiles.

41.6.3 CIM_ElementSoftwareIdentity (Profile
and SW identity)

Mandatory Associates a domain RegisteredProfile and
SoftwareIdentity instances.

41.6.4 CIM_ElementSoftwareIdentity
(Subprofile and SW identity)

Conditional Conditional requirement: Support for
instances of RegisteredSubprofile. Associates
the subprofile and SoftwareIdentity instances.
382

 Profile Registration Profile

406

407
408

409

410

411

412

413
414
41.6.1 CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to RegisteredProfile)

The CIM_ElementConformsToProfile ties managed elements (e.g., Systems representing devices) to the
registered profile that applies.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 403 describes class CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to
RegisteredProfile).

41.6.5 CIM_Product Optional Represents a software product aggregating
SoftwareIdentity instances with provider
versions.

41.6.6 CIM_ProductSoftwareComponent Optional Associates Product and SoftwareIdentity.

41.6.7 CIM_ReferencedProfile Optional Associates referenced profiles using the
DMTF Profile Registration profile.

41.6.8 CIM_RegisteredProfile (Domain
Registered Profile)

Mandatory An object representing a domain (e.g. Array or
Switch) profile.

41.6.9 CIM_RegisteredProfile (The SMI-S
Registered Profile)

Mandatory A registered profile that provides the version
of the SMI-S standard.

41.6.10 CIM_RegisteredSubProfile Optional Specialization of RegisteredProfile for legacy
SMI-S subprofiles.

41.6.11 CIM_SoftwareIdentity Mandatory A representation of some bundle of providers
and supporting software that shares a version
number.

41.6.12 CIM_SubProfileRequiresProfile Optional Specialization of ReferencedProfile
referencing a SubProfile.

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_RegisteredProfile

Optional Creation of a registered profile instance. See
41.3.3.3 Indications.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_RegisteredProfile

Optional Deletion of a registered profile instance. See
41.3.3.3 Indications.

Table 403 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates
Domain object (e.g. System) to RegisteredProfile)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A element implementing a profile (e.g., top-level system).

ConformantStandard Mandatory RegisteredProfile instance describing the domain profile.

Table 402 - CIM Elements for Profile Registration

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 383

Profile Registration Profile

415

416

417

418

419

420

421
422

423

424

425

426

427

428

429

430

431

432

433
41.6.2 CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain profiles)

Associates RegisteredProfiles for SMI-S and domain profiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 404 describes class CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain
profiles).

41.6.3 CIM_ElementSoftwareIdentity (Profile and SW identity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 405 describes class CIM_ElementSoftwareIdentity (Profile and SW identity).

41.6.4 CIM_ElementSoftwareIdentity (Subprofile and SW identity)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for instances of RegisteredSubprofile.

Table 404 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Associates
RegisteredProfiles for SMI-S and domain profiles)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The RegisteredProfile representing the domain profile.

ConformantStandard Mandatory The SMI-S RegisteredProfile.

Table 405 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Profile and SW
identity)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to SoftwareIdentity.

Dependent Mandatory Reference to domain RegisteredProfile.
384

 Profile Registration Profile

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449
Table 406 describes class CIM_ElementSoftwareIdentity (Subprofile and SW identity).

41.6.5 CIM_Product

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 407 describes class CIM_Product.

41.6.6 CIM_ProductSoftwareComponent

Associates Product and SoftwareIdentity.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 408 describes class CIM_ProductSoftwareComponent.

41.6.7 CIM_ReferencedProfile

Associates referenced profiles using the DMTF Profile Registration profile.

Table 406 - SMI Referenced Properties/Methods for CIM_ElementSoftwareIdentity (Subprofile and
SW identity)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Reference to Software Identity.

Dependent Mandatory Reference to RegisteredSubProfile.

Table 407 - SMI Referenced Properties/Methods for CIM_Product

Properties Flags Requirement Description & Notes

Name Mandatory Commonly used product name.

IdentifyingNumber Mandatory Software serial number.

Vendor Mandatory Product supplier.

Version Mandatory Product version information.

Table 408 - SMI Referenced Properties/Methods for CIM_ProductSoftwareComponent

Properties Flags Requirement Description & Notes

GroupComponent Mandatory Reference to Product.

PartComponent Mandatory Reference to SoftwareIdentity.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 385

Profile Registration Profile

450

451

452

453

454

455

456

457

458

459

460
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 409 describes class CIM_ReferencedProfile.

41.6.8 CIM_RegisteredProfile (Domain Registered Profile)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 410 describes class CIM_RegisteredProfile (Domain Registered Profile).

Table 409 - SMI Referenced Properties/Methods for CIM_ReferencedProfile

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory

Table 410 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Domain Registered
Profile)

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the profile instance.

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
Profile. For SMI-S profiles, this would be SNIA. For DMTF
profiles, this would be DMTF.

OtherRegisteredOrga
nization

Conditional Conditional requirement: CIM_RegisteredProfile requires
the OtherRegisteredOrganization property be populated if
the RegisteredOrganization property has a value of 1
(\Other\').'Mandatory if RegisteredOrganization is 1
('Other').

RegisteredName Mandatory This is the name assigned by the organization that created
the profile.

RegisteredVersion Mandatory This is the version number assigned by the organization
that defined the Profile.
386

 Profile Registration Profile

461

462

463

464

465

466

467

468

469

470

471
41.6.9 CIM_RegisteredProfile (The SMI-S Registered Profile)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 411 describes class CIM_RegisteredProfile (The SMI-S Registered Profile).

41.6.10 CIM_RegisteredSubProfile

Specialization of RegisteredProfile for legacy SMI-S subprofiles.

Created By: Static
Modified By: Static
Deleted By: Static

AdvertiseTypes N Mandatory Defines the advertisement of this profile. If the property is
null then no advertisement is defined. A value of 1 is used
to indicate 'other' and a 3 is used to indicate 'SLP'.

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\').'This
shall not be NULL if 1 ('Other') is identified in
AdvertiseType.

Table 411 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (The SMI-S Registered
Profile)

Properties Flags Requirement Description & Notes

InstanceID Mandatory A unique value for the profile instance.

RegisteredOrganizati
on

Mandatory Shall be 11 (SNIA).

RegisteredName Mandatory Shall be 'SMI-S'.

RegisteredVersion Mandatory The version number of the SMI specification the associated
profiles conform to.

AdvertiseTypes Mandatory Should be 2 (Not Advertised) or 3 (SLP). 2 is
recommended to avoid increasing size of SLP template.

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\').'This
shall not be NULL if 'Other' is identified in AdvertiseType.

Table 410 - SMI Referenced Properties/Methods for CIM_RegisteredProfile (Domain Registered
Profile)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 387

Profile Registration Profile

472

473

474

475

476

477

478

479
Requirement: Optional

Table 412 describes class CIM_RegisteredSubProfile.

41.6.11 CIM_SoftwareIdentity

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 413 describes class CIM_SoftwareIdentity.

Table 412 - SMI Referenced Properties/Methods for CIM_RegisteredSubProfile

Properties Flags Requirement Description & Notes

InstanceID Mandatory This is a unique value for the subprofile instance.

RegisteredOrganizati
on

Mandatory This is the official name of the organization that created the
subprofile. For SMI-S profiles, this would be 11 ('SNIA').

OtherRegisteredOrga
nization

Conditional Conditional requirement: CIM_RegisteredProfile requires
the OtherRegisteredOrganization property be populated if
the RegisteredOrganization property has a value of 1
(\Other\').'Mandatory if RegisteredOrganization is 1
('Other').

RegisteredName Mandatory This is the name assigned by the organization that created
the subprofile.

RegisteredVersion Mandatory This is the version number assigned by the organization
that defined the subprofile.

AdvertiseTypes N Mandatory Should be 2 (Not Advertised) for subprofiles.

AdvertiseTypeDescri
ptions

Conditional Conditional requirement: CIM_RegisteredProfile requires
the AdvertiseTypeDescriptions property be populated if the
AdvertiseTypes property has a value of 1 (\Other\').'This
shall not be NULL if 1 ('Other') is identified in
AdvertiseType.

Table 413 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes

Name Mandatory A user-friendly name for the instrumentation software.

InstanceID Mandatory

VersionString Mandatory

Manufacturer Mandatory The name of the company associated with the
instrumentation software.
388

 Profile Registration Profile

480

481

482

483

484

485

486
41.6.12 CIM_SubProfileRequiresProfile

Specialization of ReferencedProfile referencing a SubProfile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 414 describes class CIM_SubProfileRequiresProfile.

STABLE

Classifications Mandatory

ClassificationDescript
ions

Conditional Conditional requirement: CIM_SoftwareIdentity requires the
ClassificationDescriptions property be populated if the
Classifications property has a value of 1
(\Other\').'Mandatory if Classifications is set to 1 ('Other').

Table 414 - SMI Referenced Properties/Methods for CIM_SubProfileRequiresProfile

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to a RegisteredSubProfile.

Antecedent Mandatory Reference to a RegisteredProfile.

Table 413 - SMI Referenced Properties/Methods for CIM_SoftwareIdentity

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 389

Profile Registration Profile
390

 Indication Profile

1

2
3

4

5
6

7
8
9

10
11
12
DEPRECATED

Clause 42: Indication Profile

This profile is being deprecated in favor of the SNIA specialization of the DMTF Indications Profile version 1.2.0
(See Clause 50: Indications Profile).

42.1 Description
The Indication Profile is a component profile of the Server Profile. It may also be a component profile of any other
profile (e.g., Array Profile).

Refer to individual profile definitions to see whether or not the Indication Profile is mandatory. Figure 58 illustrates
the structure of profiles, the Indication Profile and indication instances implied by an Array’s support for the
Indication Profile.

Indication filters are defined in the context of the namespace in which they are implemented. In Figure 58, this is
shown as the implementation namespace. The indication filters shall be defined in two places: The Interop
namespace and the namespace where the indications are intended to originate.

Figure 58 - Indication Profile and Namespaces
SMI-S 1.6.0 Revision 4 SNIA Technical Position 391

Indication Profile

13
14
15
16

17
18
19
20
21
22

23
24
25
26
27

28
29
30
31
32
33
34

35
36
37
38
39
40

41

42
43
44

45
46
47
48
DEPRECATED

For the Filters defined in the InteropNamespace, the SourceNamespace property shall be filled out to indicate the
implementation namespace where the indications are to originate. For the IndicationFilters defined in the
implementation namespace, this property may be null (indicating the indications originate in the implementation
namespace of the array).

DEPRECATED

EXPERIMENTAL

The SourceNamespaces property of an IndicationFilter indicates the list of namespaces from which indications for
the Filter query are to originate (e.g., the implementation namespace for the device). For any filter, the
SourceNamespaces property should be populated. For the Filters in the InteropNamespace, the Namespaces
properties would indicate the implementation namespaces that support the indications defined by the filter. For
filters defined in the implementation Namespace, the filters should contain the Implementation Namespace (as one
of its source namespaces).

EXPERIMENTAL

The IndicationFilters may be populated by the Provider (or they may be created by a client). In either case, they are
created in both the Interop Namespace and the implementation namespace of the array. The
ListenerDestinationCIMXML class shall be in the Interop Namespace and may also be in the implementation
namespace. And there would be two instantiations of the IndicationSubscription association: one in the Interop
Namespace and one in the implementation namespace.

SMI-S profile implementations that support indications shall support either the use of “predefined” indications
filters, “client defined” indication filters or both. In the case of an implementation that supports “predefined” filters,
the SMI-S Server would populate its model with indication filters that it supports. SMI-S Clients would select the
indication filters to which they wish to subscribe from the list supplied by the SMI-S Server (enumeration of
IndicationFilters in the appropriate namespace). In the case of an implementation that supports “client defined”
filters, the SMI-S Server shall support filter creation (and deletion) by clients and it shall support creation of at least
the filters defined by the profile.

Creation of an IndicationFilter will cause the creation of instances in both the InteropNamespace and the
implementation namespace. ListenerDestinationCIMXML instances should be created in the InteropNamespace,
but may also be created in the implementation namespace (for SMI-S 1.0.x compatibility reasons). If a
ListenerDestinationCIMXML instance is created in the implementation namespace, a duplicate instance will be
instantiated in the InteropNamespace. However, if a ListenerDestinationCIMXML is created in the
InteropNamespace, it may not be created in the implementation namespace.

Note: An implementation may support both “predefined” filters and “Client Defined” filters.

SMI-S Clients would subscribe to the indications for the events to which they wish to be notified. They would also
supply an address (Indication listener) in which the indications are to be sent. SMI-S Clients shall use the subclass
ListenerDestinationCIMXML when creating subscriptions.

In any given implementation Indication Filters are scoped by NameSpace. That is, a subscription to the change of
operational status for a ComputerSystem can result in reporting of any change of operational status for ANY
ComputerSystem managed within a Namespace. A client should inspect any indication to see if it is for an element
that it manages.
392

 Indication Profile

49
50

51
52
53
54
55
56
57

58

59
60

61

62
63
64
65

66
67

68
69

70

71

72
73
A vendor implementation may support additional indication filters beyond those identified in a profile specification,
but all the filters identified in SMI-S shall be supported as specified by the profile.

Note: Indication filters may correspond to optional or conditional features in a profile. When a provider
supports an optional or conditional feature, the indications corresponding to the feature may be
conditional on the feature. This means that the provider shall supply the filters or shall allow a client to
define the filters. But optional indications that correspond to the feature need not be supported.
Indications corresponding to the filter shall be generated by the provider when a corresponding event
occurs. On the other hand, if a profile implementation does not support a component profile that defines
mandatory indications, then the profile implementation does not need to support those indications.

EXPERIMENTAL

42.1.1 IndicationFilter Names

IndicationFilters have a Name property. The value of the Name property in instances defined by referencing
profiles should be formatted as defined by the following ABNF rule:

OrgID ":" RegisteredName ":" UniqueID

Where OrgID identify the business entity owning the referencing profile. OrgID shall include a copyrighted,
trademarked, or otherwise unique name that is owned by that business entity or that is a registered ID assigned to
that business entity by a recognized global authority. In addition, to ensure uniqueness, OrgID shall not contain a
colon (:).

For referencing profiles owned by the SNIA, OrgID should match "SNIA" for IndicationFilters defined by the
standard. For client defined IndicationFilters, the OrgID should identify the client (application) organization.

The RegisteredName should be the registered name of the referencing profile, as defined by the value of its
CIM_RegisteredProfile.RegisteredName property.

The UniqueID should uniquely identify the instance within the referencing profile.

EXPERIMENTAL

42.1.2 Basic Indication Classes and Association

Figure 59 illustrates the classes used in support of indications. Any given profile implementation may not include all
of these classes. But they would at least support IndicationFilters (possibly predefined),
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 393

Indication Profile

74
75

76
77
78
79

80
81
82
83

84
85

86

87

88
89
90
ListenerDestinationsCIMXML and IndicationSubscriptions. The actual types of indications supported can vary by
profile (see 42.8 "CIM Elements" to determine the types of indications supported).

Clients request indications to be sent to them by subscribing to the indication filters. Subscriptions are stored in the
SMI-S Server. A Subscription is expressed by the creation of a IndicationSubscription association instance that
references an IndicationFilter (a filter) instance, and an ListenerDestination (for the handler of the indications)
instance. A Filter contains the query that selects an indication class or classes.

SMI-S Servers that support SMI-S profiles that provide CIM indications support shall populate their models with the
filters as defined by the profile(s) or allow clients to create the filters that are defined for the profile(s). Additional
filters may also be created by indication consumers (e.g., SMI-S Clients), but this is not mandatory with SMI-S. The
client would create these filters using CreateInstance intrinsic method.

The query property of the IndicationFilter is a string that specifies which indications are to be delivered to the client.
There is also a query language property that defines the language of the query string. Example query strings are:

“SELECT * FROM AlertIndication”

“SELECT * FROM InstModification WHERE SourceInstance ISA ComputerSystem”

AlertIndication and InstModification are types of indications. The first query says to deliver all alert type indications
to the client, and the second query says to deliver all instance modification indications to the client, where the
instance being modified is a ComputerSystem (or any subclass thereof).

Figure 59 - Indication Profile Instance Diagram
394

 Indication Profile

91
92

93
94
95

96
97

98
99

100
101
102

103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118

119

120

121
122

123

124

125

126

127

128
129
130
See Annex C (normative) Indication Filter Strings in Storage Management Technical Specification, Part 1 Common
Architecture, 1.6.0 Rev 4 for information on the use of indications filter strings.

A ListenerDestination specifies the means of delivering indications to the client. The subclass
ListenerDestinationCIMXML provides for XML encoded indications to be sent to a specific URL, which is specified
as a property of that class.

When a client receives an indication, it will receive some information with the indication, and then it may need to do
additional queries to determine all of the consequences of the event.

Note: To avoid multiple calls to get additional data for an indication, profile designers (or clients, for client
defined filters) should consider more elaborate Queries for Filters to return more information.

The instances of AlertIndications, InstCreation, InstDeletion and InstModification are temporary. They exist until
they are delivered to the subscribing clients. The ListenerDestinationCIMXML, IndicationFilter and
IndicationSubscription instance are permanent. That is, they persist until action is taken by client to delete them.

One final note on the indications supported. InstModification may or may not require the PreviousInstance property.
A profile may be designed to require it or not. If the SMI-S profile defines an IndicationFilter on InstModification it
shall specify whether or not PreviousInstance is required. It may always be recommended. If a profile defines
PreviousInstance as optional, then an implementation may provide a previous instance (or not). However, if the
SMI-S profile defines an IndicationFilter on InstModification with PreviousInstance required, then all
implementations shall implement the PreviousInstance property.

42.1.3 Life Cycle Indications

A life cycle indication is used to convey changes in the model. It is represented by a subclass of InstIndication. Life
cycle indications are concerned only with the creation, modification, or deletion of CIM Instances. The indication is
a CIM class whose properties contain copies of CIM Instances that have been created, modified, or deleted
(InstCreation, InstDeletion, InstModification). As such, life cycle indications can only report on classes that are
supported. Profile designers use life cycle indications as means where clients can monitor for significant changes
in a particular data model. The significant changes to the model are a reflection of changes in the managed
element the CIM instance(s) represents. An event like component overheat is likely to affected several
components. Therefore, in many cases the scope of the event can be observed through the telemetry
communicated through life cycle indications.

The mandatory properties of a life cycle indication are:

• IndicationTime - The time and date of creation of the Indication.

• SourceInstance - A copy of the instance that changed to generate the Indication. SourceInstance contains the
current values of the properties selected by the Indication Filter's Query.

• SourceInstanceModelPath - The Model Path of the SourceInstance.

In addition, the following properties are recommended, but not mandatory:

• IndicationIdentifier - An identifier for the Indication that may be used for correlated indications.

• CorrelatedIndications - IndicationIdentifiers whose notifications are correlated with this one.

In addition, for InstModification indications, the PreviousInstance property may be provided:

• PreviousInstance - A copy of the 'previous' instance whose change generated the Indication. PreviousInstance
contains 'older' values of an instance's properties (as compared to SourceInstance), selected by the
IndicationFilter's Query.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 395

Indication Profile

131

132
133
134
135
136

137
138
139
140
141
142

143

144

145
146
147
148

149
150

151
152
153

154
155
156

157
158

159
160

161

162
163

164

165

166
167

168

169

170

171
42.1.4 AlertIndications

An alert indication is another type of indication but with a different purpose. Alert Indications are used to drawn
attention of subscribing client applications to the occurrence of an event. Alert Indication may describe aspects of
an event. The event's characteristics may or may not be wholly or partially represented in the data model (as
expressed through CIM). An Alert Indication is represented by a subclass of AlertIndication. The alert indication
itself is considered a change in the instrumentation's model.

An alert indication describes the category, severity, and event specifics. However, the event specifics may not be
understandable by an SMI-S Client. A standard message can convey the event specifics in a manner defined by
SMI-S or another related standard. (See Storage Management Technical Specification, Part 1 Common
Architecture, 1.6.0 Rev 4 Clause 8: Standard Messages.) The interpretation for the alert indication is either
contained within a standard message registry that is referenced by a profile, or defined by the profile to be
produced for some reason and identifiable in some manner.

The mandatory properties of an AlertIndication are:

• IndicationTime - The time and date of creation of the Indication.

• AlertingManagedElement - The identifying information of the entity (i.e., the instance) for which this Indication
is generated. The property contains the path of an instance, encoded as a string parameter - if the instance is
modeled in the CIM Schema. If not a CIM instance, the property contains some identifying string that names
the entity for which the Alert is generated.

• AlertingElementFormat - The format of the AlertingManagedElement property is interpretable based upon the
value of this property. Values are defined as: “Unknown”, “Other”, “CIMObjectPath”

• AlertType - This is an integer property that is a value map. The values supported are: “Other”,
“Communications Alert”, “Quality of Service Alert”, “Processing Error”, “Device Alert”, “Environmental Alert”,
“Model Change”, “Security Alert”

• PerceivedSeverity - An enumerated value that describes the severity of the Alert Indication from the notifier's
point of view. This is an integer property that is a value map. The values supported are: “Unknown”, “Other”,
“Information”, “Degraded/Warning”, “Minor”, “Major”, “Critical”, “Fatal/Non Recoverable”.

• ProbableCause - This is an integer property that is a value map. There are many values that may be set (refer
to the MOF for details).

• SystemCreationClassName - The scoping System's CreationClassName for the Provider generating this
Indication.

• SystemName - The scoping System's Name for the Provider generating this Indication.

The SystemName would typically be the same that for a system in the Implementation Namespace (unless
the Indication is an indication generated for Server Profile).

• ProviderName - The name of the Provider generating this Indication.

In addition, the following properties are recommended, but not mandatory:

• IndicationIdentifier - An identifier for the Indication that can be used for identification when correlating
Indications (see 42.1.6.2 “Indication Identification”).

• CorrelatedIndications[] - IndicationIdentifiers whose notifications are correlated with this one.

• Description - A short description of the Indication.

• OtherAlertType - This property is mandatory if the AlertType is 1 (for “other”).

• OtherSeverity - This property is mandatory if the PerceivedSeverity is 1 (for “other”)
396

 Indication Profile

172

173
174

175
176
177

178

179

180

181
182
183

184

185
186
187
188
189
190

191
192
193

194
195
196

197

198

199
200
201
202

203

204

205

206

207
208
209
• ProbableCauseDescription - Provides additional information related to the ProbableCause.

• EventID - An instrumentation or provider specific value that describes the underlying \”real-world\” event
represented by the Indication.

• OwningEntity - A string that uniquely identifies the entity that owns the definition of the format of the Message.
For messages owned by the SNIA, this shall be encoded as ‘SNIA’. However, for SMI-S, not all messages
need be owned by SNIA.

• MessageID - A string that uniquely identifies, within the scope of the OwningEntity, the format of the Message.

• Message - The formatted message (including the MessageArguments).

• MessageArguments - An array of strings that contain the dynamic content of the message.

For descriptions of how these properties should be encoded, see the profile for specific alert indications that are
supported. For encoding of the OwningEntity, MessageID, Message, and MessageArguments of SNIA messages,
see section 8.3 in the Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4.

42.1.5 Indication Delivery

Acceptance of a subscription, represented by an instance of the IndicationSubscription association between an
instance of IndicationFilter and an instance of ListenerDestination, is a contract between the SMI-S Server and
SMI-S Client that requires that the SMI-S Server shall produce indications when the conditions described by the
associated indication filter are present. The SMI-S Server may not be able to deliver the indication for other
reasons like authentication failures or network connectivity failures, but the SMI-S Server shall attempt to deliver
the indication.

In some cases, the Client (ListenerDestination) may not be available when an event occurs that requires delivery to
the client. In such cases, the CIM Server should attempt delivery to the listener destination 3 times. If the delivery
cannot be made within 3 attempts, the indication may be considered delivered.

If the ListenerDestinationCIMXML.PersistenceType is set to "3" (transient), the IndicationSubscription may be
deleted after 3 attempts that fail. If the ListenerDestinationCIMXML.PersistenceType is set to "2" (permanent) the
IndicationSubscription shall be retained.

42.1.6 Instrumentation Requirements

42.1.6.1 General Instrumentation Considerations
A SMI-S Server may allow a client to create indications filters. If the SMI-S Server does not support this option,
then the server shall send a return code indicating a request to create an instance of a filter is unsupported. This
allows the provider to inform clients which types of indications the provider supports. For example, a provider that
does not support SNMPTrapAlertIndications shall return unsupported for an indications filter create request.

42.1.6.2 Indication Identification
Not defined in this version of the Indication Profile.

42.1.6.3 SMI-S Dedicated Server Considerations
The dedicated server should supply more detailed queries as described in the profile sections.

A standard implementation of indications requires the server to accept client requests to create
ListenerDestinations. The dedicated server implementation uses the Instance Manipulation functional group in
addition to Basic Read.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 397

Indication Profile

210

211
212
213

214
215

216
217

218

219
220
221

222
223

224

225
226

227

228
229

230
231
232
233

234

235
236
237
238

239

240

241
242
243

244
245
246
42.1.6.4 Additional Indications
Most Indication Filters defined in the “CIM Elements” section of the specification are mandatory. However, a profile
may also document additional Indication Filters as optional filters. A client can determine whether or not
“additional” indication filters are supported by one of two techniques:

1) Enumerating Predefined Indication Filters – this will return all the indication filters that have been predefined
by the provider for the Namespace.

2) CreateInstance of the desired “additional” Indication Filter – if the “additional” indication filter is supported, the
CreateInstance will succeed.

42.1.6.5 Support for Query Languages
For versions of the standard prior to 1.3.0, CQL had not been approved as a standard and was treated as
recommended and experimental. For those early versions, WQL (also referred to as the SMI-S query Language)
was the non-experimental query language.

For versions of the standard starting at 1.3.0, CQL is mandatory for newly defined indication filters; WQL
alternatives shall not be defined in the standard.

DEPRECATED

Support for the SMI-S 1.0.x Query Language is being deprecated.

DEPRECATED

See Annex C (normative) Indication Filter Strings in Storage Management Technical Specification, Part 1 Common
Architecture, 1.6.0 Rev 4 for information on the use of indications filter strings.

42.1.6.6 Timing of Delivery of Indications
There are no standards for how quickly an implementation shall deliver an indication. All reasonable attempts
should be made by the implementation to deliver all indications at the CIM Server’s earliest convenience.

There are also no standard guidelines on how long or how many attempts should be made to deliver an indication.
As a general guideline an implementation should make at least 3 attempts to deliver an indication before giving up
trying to deliver the indication. Similarly, delivery of indications should allow at least 30 seconds to elapse before
giving up trying to deliver the indication. The intent is to allow sufficient time to allow any network problems to clear.

42.1.6.7 Handling of Indication Storms
Occasionally an event may occur that causes many indication filters to evaluate to true (an trigger many
indications). This situation is referred to as an “indication storm.” These can be very expensive and degrade the
performance of the environment. To contain the impact of this an implementation can employ the following
technique:

• use the RepeatNotificationPolicy (and related properties) of the IndicationSubscription.

42.1.6.7.1 Use of RepeatNotificationPolicy
The RepeatNotificationPolicy property defines the desired behavior for handling Indications that report the
occurrence of the same underlying event (e.g., the disk is still generating I/O errors and has not yet been repaired).
For SMI-S, this is extended to include multiple indications that are generated from a single IndicationFilter.

The related properties are RepeatNotificationCount, RepeatNotificationInterval, and RepeatNotificationGap. The
defined semantics for these properties depend on the value of RepeatNotificationPolicy, but values for these
properties shall be set if the property is defined for the selected policy.
398

 Indication Profile

247
248

249
250
251
252
253

254
255
256
257
258
259
260

261
262
263

264
265

266

267

268

269
270
271
272

273

274

275

276
277
278
279
280

281
282
283
284

285
286
287
288
289
If the value of RepeatNotificationPolicy is 2 (None), then the client will receive all indications. Special processing of
repeat Indications shall not be performed.

If the value is 3 (Suppress) the first RepeatNotificationCount Indications, describing the same event, shall be sent
and all subsequent Indications for this event suppressed for the remainder of the time interval
RepeatNotificationInterval. A new interval starts when the next Indication for this event is received. That is, all
indications after the first ‘n’ (where ‘n’ is defined by the RepeatNotificationCount) are not sent (within the
RepeatNotificationInterval time).

If the value of RepeatNotificationPolicy is 4 (Delay), then indications are collected and notification is only sent after
a certain number of events happen (as defined by RepeatNotificationCount) or the time interval
(RepeatNotificationInterval) lapses. When an event happens, the Indication shall be suppressed if, including this
Indication, RepeatNotificationCount or fewer Indications for this event have been received during the prior time
interval defined by RepeatNotificationInterval. If this Indication is the RepeatNotificationCount + 1 Indication, this
Indication shall be sent and all subsequent Indications for this event ignored until the RepeatNotificationGap has
elapsed. A RepeatNotificationInterval may not overlap a RepeatNotificationGap time interval.

For SMI-S, a single indication filter that identifies a change in OperationalStatus on StorageVolumes would be
subjected to the RepeatNotificationPolicy, even though the repeat notifications may be from multiple
StorageVolumes.

The RepeatNotificationPolicy can vary by implementation (or even IndicationFilter). However, it shall be specified
on any subscription. The valid values for an SMI-S implementation are:

• 2 (None),

• 3 (Suppress), or

• 4 (Delay)

An SMI-S profile may restrict this further for any given indication filter, but it cannot expand this to other policies
without breaking interoperability. For example, a profile might restrict InstCreation filters for ComputerSystems to
“None” and restrict InstModification filters on StorageVolume to “Suppress” or “Delay.” But an SMI-S profile shall
not define “unknown” as a valid SMI-S setting for the RepeatNotificationPolicy.

Note: RepeatNotificationPolicy set to 2 “none” is compatible with SMI-S 1.0.

42.1.6.8 Clarification of indication generation

42.1.6.8.1 General Requirements
To minimize the use of stale object references by WBEM Clients, a WBEM Server shall generate instance deletion
indications, where defined as mandatory profile elements, whenever a MSE instance is removed while the WBEM
Server is operational. The indication shall be generated for all causes of removal, which include but are not limited
to, explicit WBEM instance manipulation by some WBEM Client, internal implementation of the WBEM Server
outside the scope of SMI-S, and a side effect of invoking some WBEM extrinsic method.

A WBEM Server should generate instance deletion indications, where defined as mandatory profile elements,
whenever a MSE instance that was present before a failure of the device or application is no longer present when
the device or application recovers from the failure. Note: SMI-S already requires WBEM Servers to persist WBEM
Client subscription for indications.

A WBEM Server shall generate instance creation indications, where defined as mandatory profile elements,
whenever a MSE instance is created while the WBEM Server is operational. A WBEM Server shall also generate
instance creation indications, where defined as mandatory profile elements, whenever a MSE instance that was
not present before a failure of the device or application is present when the device or application recovers from the
failure.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 399

Indication Profile

290
291
292
293

294

295

296
297
298
299
300
301

302

303
304
305

306
307

308
309
310

311

312
313

314
315
316

317
318

319
320
321

322

323

324
325

326
327
328
329

330
331
Almost universally in SMI-S profiles, all MSE's can be linked by association back to a specific “top-level” MSE. In
most profiles this is either a ComputerSystem or a AdminDomain. A WBEM Server that is providing information on
multiple devices will have multiple MSE instances, one for each of the devices. The behavior of WBEM Operations
in the face of a failure of the device or applications differs.

42.1.6.8.2 Definition of “failed” MSE
A MSE instance is defined to be failed if any of the following conditions hold:

1) Failure status are contained in the OperationalStatus attribute, when present, and OperationalStatus array
does not contain “OK”

2) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, Reference-
Names WBEM Operations might return meaningless or no information for any mandatory profile element.
OperationalStatus when present in the class will have meaningful data and will have a failure status. Explicit
values for “unknown” or “undetermined” are completely meaningful when defined for a profile element.

3) WBEM extrinsic operations that ERR_FAILED may indicate that this instance is failed.

4) CIM Instances that were returned before the failure of the MSE might not be returned after the failure. Indica-
tions representing the OperationalStatus change to a failure status were produced for the this 'top-level' CIM
Instance or 'top-level' parent CIM Instance. The combination of these two situations define failure in this case

A MSE with an OperationalStatus of “Lost Communications” or “No Contact” obviously shall be considered failed
because no WBEM operations can succeed.

An OperationalStatus of “Starting”, “Stopping”, or “Stopped” does not mandate failure. The detailed behavior of the
MSE with regard to the conditions given above, determines whether these status's indicate failure. The WBEM
Client should be warned of a possible failure scenario when receiving these status.

42.1.6.8.3 Minimal function for failed MSEs
Any failed instance represented by any WBEM Server shall support the following functionality. If the WBEM Server
is not able to support the functionality on a failed instance, it shall delete the instance.

1) EnumerateInstances, EnumerateInstanceNames, Associators, AssociatorNames, References, and Referer-
enceNames WBEM Operations that include the failed instance as part of the return set will complete without
error. The Key and the OperationalStatus attributes, when present, shall be properly provided.

2) When a GetInstance WBEM Operation is attempted on the failed instance, CIM_ERR_FAILED shall be
returned with a message describing or indicating the failure of the device or application.

3) Failed instance names shall be returned from WBEM Operations that return Object Names. Failed instances
shall be returned for WBEM Operations that return Instances but only the keys and OperationalStatus, when
present, are mandatory.

4) Method invocations on failed MSEs will fail with the CIM_ERR_FAILED error.

42.1.6.8.4 Isolation of failed top-level MSE's
For efficiency and consistency of navigation, a WBEM Client should not be able to retrieve false or meaningless
information from the WBEM Server about a MSE instance.

A WBEM Server can take one of two actions in the Failed MSE case and top-level MSE instances. It shall set the
OperationalStatus on the top-level MSE instance to reflect the failed state and forward the related CIM Indications
as required. It may also remove all directly or indirectly associated instances, generating the corresponding
indications.

A WBEM Client shall be prepared to deal with a WBEM Object CIM_ERR_NOT_FOUND error, indicating the use
of a stale object reference not avoided by timely receipt and processing of an instance deletion indication. A WBEM
400

 Indication Profile

332
333

334

335

336

337

338
339

340

341

342

343
344

345

346

347

348

349

350

351

352

353

354

355
Client shall also consider the OperationalStatus of any MSE for which OperationalStatus is a mandatory profile
element before treating the other attributes and associations of the instance as meaningful.

42.1.6.9 HTTP Security
Not defined in this version of the specification.

42.2 Health and Fault Management Considerations

42.2.1 Elements Reporting Health

The Indication Profile has no classes that report health information. However, indications are a means available for
reporting changes in health status.

42.2.2 Health State Transformations and Dependencies

No Indications class have OperationalStatus or HealthState properties.

42.2.3 Standard Errors Produced

All manipulation of Indication classes and associations are done using intrinsic methods. The errors produced are
those listed for intrinsic methods.

42.2.4 Cause and effect associations

Cause and effect associations are defined as part of the Health and Fault Management Package.

EXPERIMENTAL

42.2.5 Indication Correlation

Not defined in this version of the specification.

EXPERIMENTAL

42.3 Cascading Considerations
Not Applicable.

42.4 Supported Profiles, Subprofiles and Packages
Related Profiles for Indication: Not defined in this standard.

42.5 Methods of the Profile

42.5.1 Extrinsic Methods of the Profile

No extrinsics are specified on the Indication Profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 401

Indication Profile

356

357
358
359
360
361
362

363

364

365

366

367

368
369

370
371
372
373

374
375
376

377
378

379

380
42.5.2 Intrinsic Methods of the Profile

The Indication Profile is mostly populated by providers and is accessible to clients using basic read and association
traversal. However, there are two constructs that would be created by Clients. These are the
ListenerDestinationCIMXML and the IndicationSubscription. In addition, a client may be able to create an
IndicationFilter. In addition to being able to create them, client may delete them (except “pre-defined” filters which
cannot be deleted), and a client may modify any IndicationFilter that was client created. These functions are
performed using the intrinsics:

Table 415 shows Indication Profile methods that cause Instance Creation, Deletion or Modification.

CreateInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

EXPERIMENTAL

An implementation should populate all fields (scheme, hostname, port number, namespace, key) in object path for
the instance being created.

The host name portion shall be set to a valid, client-resolvable host name (i.e., DNS) or IPv4 or IPv6 address.
Internal names (e.g., /etc/hosts) are not valid. If hot name, then must be FQDN (not a short name). This implies the
provider shall be configured as a valid DNS client to use host names and cannot rely on an administratively defined
name.

If an implementation supports CreateInstance on IndicationFilters or ListenerDestinations, the implementation
should allow NULL to be specified for key properties. If key properties are passed in on the CreateInstance, the
implementation may ignore the keys.

For IndicationFilters and ListenerDestinations, if the client supplies an ElementName, the implementation shall
persist the property for later use by the client.

For IndicationFilters the Query strings are case sensitive and the implementation shall preserve case.

EXPERIMENTAL

Table 415 - Indication Profile Methods that cause Instance Creation, Deletion or Modification

Method CreatedInstances Deleted Instances Modified
Instances

CreateInstance ListenerDestinationCIMXML N/A N/A

CreateInstance IndicationSubscription N/A N/A

CreateInstance IndicationFilter N/A N/A

DeleteInstance N/A ListenerDestinationCIMXML N/A

DeleteInstance N/A IndicationSubscription N/A

DeleteInstance N/A IndicationFilter N/A

ModifyInstance N/A N/A IndicationFilter
402

 Indication Profile

381
382

383
384

385
386
387

388
389
390
391
392

393
394
395
396

397
398
399

400
401
402

403
404
405
406

407
408
409
410

411
412

413

414

415

416

417

418
419

420
421
422
423
424
425
If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path), created by the CIM Server.

Note that for CreateInstance of an IndicationSubscription requires that the ListenerDestinationCIMXML instance
and the IndicationFilter exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

Note that a ListenerDestinationCIMXML instance should be created in the Interop namespace. However, they may
be created in a “Source” namespace. If the client creates a ListenerDestinationCIMXML instance in a “Source”
namespace, then a duplicate ListenerDestinationCIMXML instance shall be created in the Interop Namespace, if it
does not already exist in the Interop Namespace.

Note: The inverse is not true. If the client creates the ListenerDestinationCIMXML instance in the Interop
Namespace, no instance will be created in other namespaces (there is nothing that would indicate
which namespaces would be the Source namespaces).

IndicationFilters may be created in either the Interop Namespace or an implementation namespace in which the
indications are to originate. In either case, the Client only needs to create one instance (and providers will
automatically create the corresponding instance in the other namespaces).

Note: If a client attempts to create an IndicationFilter that already exists (has the same key fields), but other
properties are different, then the request will fail. If the Client attempts to create an IndicationFilter that
has identical properties to an existing IndicationFilter instance, it will succeed and CreateInstance need
not treat the instance as a separate instance.

When a client creates an IndicationSubscription the client only needs to create a subscription to one of the
IndicationFilters (the provider will automatically generate the corresponding subscription to the other filter
instance). Even though there are two instance of the IndicationFilter created (and two instances of the subscription)
duplicate indications will not be sent to the ListenerDestination.

Indeed, in general, redundant subscriptions need not produce duplicate indications (that is, if the same listener
subscribes to two filters that are equivalent, then an implementation need not produce two indications).

DeleteInstance - for ListenerDestinationCIMXML, IndicationSubscription and IndicationFilter

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified Instance (ListenerDestinationCIMXML, IndicationSubscription or IndicationFilter) shall
have been removed by the CIM Server.

The deletion of a ListenerDestinationCIMXML or an IndicationFilter instance will cause the automatic deletion of
any associated IndicationSubscription instances. Deletion of an IndicationSubscription will not cause the deletion
of any corresponding ListenerDestinationCIMXML or IndicationFilter instances. For example, the deletion of an
instance may cause the automatic deletion of all associations that reference that instance. Or the deletion of an
instance may cause the automatic deletion of instances (and their associations) that have a Min(1) relationship to
that instance.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 403

Indication Profile

426
427
428

429
430
431
432
433

434
435
436
437

438
439
440

441
442

443
444
445
446
447
448

449
450
451
452
453

454
455
456
457

458

459

460

461
If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace),
CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does not exist in the specified
namespace), CIM_ERR_FAILED (some other unspecified error occurred).

DEPRECATED

Note: Deleting the instance of an IndicationFilter in the Interop Namespace will cause the corresponding
IndicationFilter in the “SourceNamespace” to also be deleted (and vice versa). Deletion of an indication
filter will also cause all subscriptions to that filter to be deleted. However, deletion of a filter will not
cause the deletion of any listener destination.

Note: Deleting the instance of an IndicationSubscription in the InteropNamespace will cause the
corresponding IndicationSubscription in the “SourceNamespace” to also be deleted (and vice versa).
However, deleting a subscription will not delete filters or listener destinations.

Note: Deleting the instance of ListenerDestinationCIMXML in either the InteropNamespace or the “source”
namespace will cause the corresponding instance (if one exists) to be deleted.

DEPRECATED

EXPERIMENTAL

Note: Deleting the instance of an IndicationFilter in the Interop Namespace will cause the corresponding
IndicationFilters in the "SourceNamespaces" to also be deleted. Deletion of an IndicationFilter in one of
the SourceNamespaces will not cause the deletion of the IndicationFilter in the InteropNamespace,
unless it is the "last entry" in SourceNamespaces of the IndicationFilter in the InteropNamespace.
Deletion of an indication filter will also cause all subscriptions to that filter to be deleted. Deletion of a
filter will not cause the deletion of any listener destination.

Note: Deleting the instance of an IndicationSubscription in the InteropNamespace will cause the
corresponding IndicationSubscription in the "SourceNamespaces" to also be deleted. Deletion of an
IndicationSubscription in a source namespace will not affect IndicationSubscriptions to filters in the
Interop namespace (or other implementation namespaces). Deleting a subscription will not delete filters
or listener destinations.

Note: Deleting the instance of ListenerDestinationCIMXML in the InteropNamespace will cause the
corresponding instance (if one exists) to be deleted. Deleting an instance of
ListenerDestinationCIMXML in any "source" namespace will not affect the corresponding instance in
the InteropNamespace to be deleted.

EXPERIMENTAL

ModifyInstance - for IndicationFilters

void ModifyInstance (
 [IN] <namedInstance> ModifiedInstance,

 [IN, Optional, NULL] string propertyList[] = NULL
404

 Indication Profile

462

463
464

465
466

467

468
469
470

471
472
473
474
475

476
477

478

479

480
481
482
483
484

485

486
487
488
489
490

491

492
493

494

495

496
)

The ModifiedInstance input parameter identifies the name of the Instance to be modified, and defines the set of
changes to be made to the current Instance definition.

The only Property that may be specified in the PropertyList input parameter is the Query property. Modification of
all other properties is not specified by SMI-S.

If successful, the specified Instance shall have been updated by the CIM Server.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_NOT_FOUND (the CIM Instance does not exist), CIM_ERR_FAILED (some other unspecified error
occurred)

EXPERIMENTAL

Note: Modifying the SourceNamespaces property of an IndicationFilter is not defined in this version of the
specification. The results may vary depending on the implementation.

EXPERIMENTAL

42.6 Client Considerations and Recipes

42.6.1 Use of Profile Specific Recipes

This profile only defines the interfaces for creating indication filters, listener destinations and subscriptions to
receive indications. For information related to indications defined by profiles, that information is document in the
CIM Elements tables for the profile in question. For example, Array indications are documented in the CIM
Elements table in the Array Profile (see Storage Management Technical Specification, Part 3 Block Devices, 1.6.0
Rev 4, 4.8 “CIM Elements”).

42.6.2 General Client Considerations

The indication filters that a client subscribes to are either “predefined” and populated by the profile, or they are
created by the client. If the profile supports “predefined” indication filters the client can find them via an
enumeration. If the client cannot find the filter it is looking for, it may attempt to create the desired indication filter. If
this fails, the client should fall back to creating a filter exactly as it exists in SMI-S. This shall work. The “predefined”
indication filters in this specification shall be populated in the profile or it shall be possible to create it.

42.6.3 Discovery of Implementation variations

A client will need to discovery the variations that are allowed in SMI-S profile implementations. A profile
implementation has the following degrees of variability:

• Client defined IndicationFilters, pre-defined IndicationFilters or both

• InstModification, with or without PreviousInstance

• Additional Indications
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 405

Indication Profile

497
498
499
500

501
502
503

504
505
506
507

508
509
510
511

512

513
514
515

516

517
518
519

520
521
522
523

524
525

526

527
528

529

530

531

532

533

534

535
To determine if an implementation supports Client Defined filters, the client should attempt to create an SMI-S
specified filter. If it succeeds, the implementation supports client defined filters. At this point, the client can attempt
to create a filter of its own choice or making (e.g., using the client’s desired query). If it fails, this means the
implementation does not support an indication based on the query used.

If the attempt to create an SMI-S specified indication filter fails, this means client defined queries are not supported.
At this point, the client should look for pre-defined filters. This can be done by enumerating filters in the namespace
of the profile the client wishes to monitor.

An implementation may (or may not) support PreviousInstance, when the SMI-S specification for the profile
identifies InstModification as the indication filter and PreviousInstance is identified as optional. If a client wishes to
determine whether or not the implementation actually supports PreviousInstance, it can only tell by receiving an
InstModification indication.

Additional Indications are IndicationFilters that are supported by the implementation, but not mandatory with SMI-
S. If the implementation supports pre-defined Filters, these can easily be discovered in the enumeration of
IndicationFilters. If the implementation does not support pre-defined filters, then the only way a client can discover
these is through trial and error (or specific knowledge of the implementation).

42.6.4 Client Defined Filters

Clients need to avoid Filters that generate excessive events. Subscriptions to a general-purpose Server should be
specific to the provider – for example “select * from CompanyCorp_InstCreation” rather than “select * from
CIM_InstCreation”.

EXPERIMENTAL

42.6.5 Creation of IndicationFilter and ListenerDestination Instances

If an implementation populates scheme, hostname, and port in object path, the client should not change anything.
If not, the client should accept namespace (and everything to the right) from the implementation and populate
scheme, hostname, and port.

When creating IndicationFilters or ListenerDestination instances, clients should be prepared for CIM Servers
expecting no key properties to be set and also be prepared for CIM Servers expecting all key properties to be set
and valid. If key properties are specified, clients should be aware that the CIM Server may change the keys as
specified in the CreateInstance request.

The recommended use of ElementName in these classes is that it is set by client to allow client to easily find
instances in later client operations.

42.6.6 Creation of IndicationSubscription Instances

When creating IndicationSubscriptions, a client shall provide the references to the IndicationFilter and the
ListenerDestination. But the client should not populate properties that it does not explicitly need set.

EXPERIMENTAL

42.6.7 Determine if the indication subscription requested already exists
// DESCRIPTION

// Determine if the indication subscription requested already exists. If

// not, then attempt to create the indication subscription passed in. If

// the CIM Server does not support the addition of indication, then the

// CIM Client will need to poll for these instance changes. This recipes
406

 Indication Profile

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578
// does not handle the issue of providing the target URL for indications.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

// 2.The list of filters of interest has been previously built in the

// #filters[] array. Each element is this array is the WQL filter itself

// FUNCTION: createIndication

sub createIndication ($Filter)

{

try {

<create indications as per SMIS specification>

} catch(CIM_ERROR_NOT_SUPPORTED) {

<setup this class of instances to be polled for>

}

}

// MAIN

$ExistingInstances[] = EnumerateInstances(#SomeNameSpace, “CIM_IndicationFilter”)

for #i in $ExistingInstances

{

for #j in #filters

{

if(!compare($ExistingInstances[#j].Query, #filters[#j])

{

&createIndiciation(#filters[#j])

}

}

}

42.6.8 Listenable Instance Notification
// DESCRIPTION

// Create an indication subscription for every indication that is

// required by the profile.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

42.6.9 Life Cycle Event Subscription Description
// DESCRIPTION

// Create an indication subscription for the operational status for a

// computer systems defined within a given CIM agent and namespace. This

// subscription will only be made in those CIM agents that have SAN
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 407

Indication Profile

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620
// devices or applications of interest defined in them. The client will

// have to determine once having received the indication, whether the

// computer system related to this indication (AlertingManagedElement

// attribute) is of interest. This recipe does not handle the target URL

// for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ComputerSystem

 AND SourceInstance.OperationalStatus[0] <>

 PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

42.6.10 Subscription for alert indications
// DESCRIPTION

// Create an indication subscription for the alert indications defined

// within a given CIM agent and namespace. This subscription will only be

// made in those CIM agents that have SAN devices or applications of

// interest defined in them. The client will have to determine once having

// received the indication, whether the computer system related to this

// indication (AlertingManagedElement attribute) is of interest. Each

// specific alert indication will have also specific handling required

// for it by the CIM Client.

// NOTE: This recipe does not handle the target URL for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_AlertIndication”

@{Determine if Indications already exist or have to be created} #filter

42.6.11 Listenable Interface Modification Notification
// DESCRIPTION

// Create an indication subscription for every indication

// that isrequired by the profile

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1.The namespace of interest has previously been identified and

// defined in the #SomeNameSpace variable

#filters[] = <array of SMIS filters for the target profile>

@{Determine if Indications already exist or have to be created} #filters

42.6.12 Subscribe for Lifecycle Events where OperationalStatus Changes
// DESCRIPTION

// Create an indication subscription for the operational status for a
408

 Indication Profile

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639
// computer systems defined within a given CIM agent and namespace. This

// subscription will only be made in those CIM agents that have SAN

// devices or applications of interest defined in them. The client will

// have to determine once having received the indication, whether the

// computer system related to this indication (AlertingManagedElement

// attribute) is of interest. This recipe does not handle the target URL

// for the indication.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTIONS

// None

#filter[0] = “SELECT * FROM CIM_InstModification

 WHERE SourceInstance ISA CIM_ComputerSystem

 AND SourceInstance.OperationalStatus[0] <>

 PreviousInstance.OperationalStatus[0]”

@{Determine if Indications already exist or have to be created} #filter

42.7 Registered Name and Version
Indication version 1.5.0 (Component Profile)

42.8 CIM Elements
Table 416 describes the CIM elements for Indication.

Table 416 - CIM Elements for Indication

Element Name Requirement Description

42.8.1 CIM_AlertIndication Optional This Indication is used to capture events that
occur in the profile, but may not be related to a
specific part of the model.

42.8.2 CIM_IndicationFilter (client defined) Optional This is for 'client defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

42.8.3 CIM_IndicationFilter (pre-defined) Optional This is for 'pre-defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

42.8.4 CIM_IndicationSubscription Mandatory This association defines a subscription to a
specific IndicationFilter instance by a specific
indication handler (as represented by a
ListenerDestinationCIMXML instance).

42.8.5 CIM_InstCreation Optional CIM_InstCreation is an indication of the
creation of a CIM instance. It would be
generated when an instance of the
SourceInstance class is created (either
explicitly or implicitly).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 409

Indication Profile

640

641
642

643

644

645

646

647

648
42.8.1 CIM_AlertIndication

A CIM_AlertIndication is a specialized type of CIM_Indication that contains information about the severity, cause,
recommended actions and other data of a real world event.

CIM_AlertIndication is subclassed from CIM_ProcessIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 417 describes class CIM_AlertIndication.

42.8.6 CIM_InstDeletion Optional CIM_InstDeletion is an indication of the
Deletion of a CIM instance. It would be
generated when an instance of the
SourceInstance class is deleted from the
model (either explicitly or implicitly).

42.8.7 CIM_InstModification Optional CIM_InstModification is an indication of the
modification or change to a CIM instance. It
would be generated when an instance of the
SourceInstance class is modified or changed
(either explicitly or implicitly).

42.8.8 CIM_ListenerDestinationCIMXML
(Indication Handler)

Mandatory A CIM_ListenerDestinationCIMXML describes
the destination for CIM Export Messages to be
delivered via CIM-XML.
ListenerDestinationCIMXML is subclassed
from ListenerDestination.

Table 417 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes

IndicationIdentifier Optional An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime N Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

Description Optional A free form text description.

AlertingManagedEle
ment

Mandatory The identifying information of the entity for which this
Indication is generated.

AlertingElementForm
at

Mandatory Valid SMI-S values are 0|1|2 ('Unknown' | 'Other' |
'CIMObjectPath').

Table 416 - CIM Elements for Indication

Element Name Requirement Description
410

 Indication Profile

649

650
651
42.8.2 CIM_IndicationFilter (client defined)

CIM_IndicationFilter instances that are 'client defined' are IndicationFilters that are be created by a client using
CreateInstance. If a profile implementation can support client defined IndicationFilters, the implementation would

AlertType Mandatory This shall be 1|2|3|4|5|6|7|8 ('Other' | 'Communications
Alert' | 'Quality of Service Alert' | 'Processing Error' | 'Device
Alert' | 'Environmental Alert' | 'Model Change' | 'Security
Alert').

OtherAlertType Optional

PerceivedSeverity Mandatory This shall be 0|1|2|3|4|5|6|7 ('Unknown', 'Other' |
'Information' | 'Degraded/Warning' | 'Minor' | 'Major' |
'Critical' | 'Fatal/NonRecoverable').

OtherSeverity Optional

ProbableCause Mandatory Many possible values in a value map. See MOF.

ProbableCauseDescr
iption

Optional

EventID Optional

SystemCreationClas
sName

Mandatory

SystemName Mandatory The scoping System's Name for the Provider generating
this Indication.

The SystemName would typically be the name of the
system that generates the indication.

ProviderName Mandatory

OwningEntity N Optional A string that uniquely identifies the entity that owns the
definition of the format of the Message.

MessageID N Optional A string that uniquely identifies, within the scope of the
OwningEntity, the format of the Message.

Message N Optional The formatted message (including the
MessageArguments).

MessageArguments N Optional An array of strings that contain the dynamic content of the
message.

OtherAlertingElement
Format

N Optional Not Specified in this version of the Profile.

Trending N Optional Not Specified in this version of the Profile.

RecommendedAction
s

N Optional Not Specified in this version of the Profile.

EventTime N Optional Not Specified in this version of the Profile.

Table 417 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 411

Indication Profile

652
653
654

655

656

657

658

659

660

661

662
663
support 'client defined' IndicationFilter instances. The implementation shall support 'client defined' filters that are
defined by SMI-S profile as mandatory, but may also support additional filters supported by the implementation
(See QueryCapabilities).

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 418 describes class CIM_IndicationFilter (client defined).

42.8.3 CIM_IndicationFilter (pre-defined)

CIM_IndicationFilter instances that are 'pre-defined' are IndicationFilters that are populated automatically by the
profile provider. If a profile implementation cannot support client defined IndicationFilters, the implementation can

Table 418 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This should take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 42.1.1 IndicationFilter Names.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Mandatory This should be all the namespaces where the indications
may originate.

Query Mandatory A string that specifies (in QueryLanguage terms) which
indications are to be delivered to the ListenerDestinations.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName Optional A Client Defined user friendly string that identifies the
Indication Filter.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
412

 Indication Profile

664
665

666

667

668

669

670

671

672

673

674
populate its model with 'pre-defined' IndicationFilter instances. 'Pre-defined' filters shall include those that are
required by the profile, but may also contain additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 419 describes class CIM_IndicationFilter (pre-defined).

42.8.4 CIM_IndicationSubscription

A CIM_IndicationSubscription is not subclassed from anything.

Created By: CreateInstance

Table 419 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This should take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 42.1.1 IndicationFilter Names.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Mandatory This should be all the namespaces where the indications
may originate.

Query Mandatory A string that specifies (in QueryLanguage terms) which
indications are to be delivered to the ListenerDestinations.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional SMI-S does not specify this property for pre-defined
IndicationFilters.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 413

Indication Profile

675

676

677

678
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 420 describes class CIM_IndicationSubscription.

Table 420 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes

RepeatNotificationPo
licy

Mandatory SMI-S supports a restricted set of values.

This shall be 2|3|4 ('None' | 'Suppress' | 'Delay').

RepeatNotificationInt
erval

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

RepeatNotificationGa
p

Optional Mandatory if the RepeatNotificationPolicy is 'Delay'.

RepeatNotificationCo
unt

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

LastIndicationIdentifi
er

Optional The IndicationIdentifier of the last indication produced for
this subscription regardless if that indication were
delivered.

LastIndicationProduc
tionDateTime

Optional The date and time of the production of the last indication
produced for this subscription regardless if that indication
were delivered.

OnFatalErrorPolicy N Optional Not Specified in this version of the Profile.

OtherOnFatalErrorPo
licy

N Optional Not Specified in this version of the Profile.

FailureTriggerTimeInt
erval

N Optional Not Specified in this version of the Profile.

SubscriptionState N Optional Not Specified in this version of the Profile.

OtherSubscriptionSta
te

N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

SubscriptionDuration N Optional Not Specified in this version of the Profile.

SubscriptionStartTim
e

N Optional Not Specified in this version of the Profile.

SubscriptionTimeRe
maining

N Optional Not Specified in this version of the Profile.

OtherRepeatNotificati
onPolicy

N Optional Not Specified in this version of the Profile.

AlertOnStateChange N Optional Not Specified in this version of the Profile.
414

 Indication Profile

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693
42.8.5 CIM_InstCreation

CIM_InstCreation notifies a handler when a new instance (of a class defined in the Filter QueryString) is created.

CIM_InstCreation is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 421 describes class CIM_InstCreation.

42.8.6 CIM_InstDeletion

CIM_InstDeletion notifies a handler when a new instance (of a class defined in the Filter QueryString) is deleted.

CIM_InstDeletion is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Filter Mandatory

Handler Mandatory

Table 421 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes

IndicationIdentifier Optional An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

Table 420 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 415

Indication Profile

694

695

696
697
698

699

700

701

702

703

704
Table 422 describes class CIM_InstDeletion.

42.8.7 CIM_InstModification

CIM_InstModification notifies a handler when a new instance (of a class defined in the Filter QueryString) is
modified or changed. To avoid undue effort on Providers, the select list (in the query filter) for this indication should
only call for properties that are needed.

CIM_InstModification is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 423 describes class CIM_InstModification.

Table 422 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes

IndicationIdentifier Optional An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

Table 423 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes

IndicationIdentifier Optional An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.
416

 Indication Profile

705

706

707

708

709

710

711
42.8.8 CIM_ListenerDestinationCIMXML (Indication Handler)

CIM_ListenerDestinationCIMXML is subclassed from CIM_ListenerDestination.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 424 describes class CIM_ListenerDestinationCIMXML (Indication Handler).

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PreviousInstance Optional A copy of the 'previous' instance whose change generated
the Indication. PreviousInstance contains 'older' values of
an instance's properties (as compared to SourceInstance),
selected by the IndicationFilter's Query.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

Table 424 - SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication
Handler)

Properties Flags Requirement Description & Notes

ElementName Mandatory A client defined user friendly string that identifies the
CIMXML Listener destination.

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PersistenceType Mandatory For SMI-S, this shall be 2|3 ('permanent' | 'transient').

Destination Mandatory The destination URL to which CIM-XML Export Messages
are to be delivered. The scheme prefix shall be consistent
with the DMTF CIM-XML specifications.If a scheme prefix
is not specified, the scheme \http:\'shallbeassumed.'

Caption N Optional Not Specified in this version of the Profile.

Table 423 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 417

Indication Profile
DEPRECATED

Description N Optional Not Specified in this version of the Profile.

OtherPersistenceTyp
e

N Optional Not Specified in this version of the Profile.

Table 424 - SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication
Handler)

Properties Flags Requirement Description & Notes
418

 Experimental Indication Profile

1

2
3

4

5
6

7

8

9

10

11

12

13

14

15

16
DEPRECATED

Clause 43: Experimental Indication Profile

This profile is being deprecated in favor of the SNIA specialization of the DMTF Indications Profile version 1.2.0
(See Clause 50: Indications Profile).

43.1 Description
The Experimental Indication Profile supports the Indication Profile and extends it with the following experimental
content:

• Client Certificates for securing indications delivery

• Use of a Typed WBEM URI for identifying the AlertingManagedElement

• Scheme for encoding of the IndicationIdentifier

• The use of CQL as the Query Language for IndicationFilters

• Use of Bellwether events to control indication storms

• Use of batching to control indication storms

• Use and encoding of CorrelatedIndications

• Semi-fixed Client Specific Indications

• Filter Collections (both predefined and client defined)

• Indication Configuration Service (extrinsic methods)
SMI-S 1.6.0 Revision 4 SNIA Technical Position 419

Experimental Indication Profile

17

18

19

20

21
22

23
24
43.1.1 Basic Indication Classes and Association

Figure 60 illustrates the classes used in support of indications.

43.1.2 AlertingManagedElement encoding in AlertIndication Instances

When encoding the mandatory property “AlertingManagedElement” of an AlertIndication the following rules apply:

• If the element in question is modeled by the profile implementation, then the format for this property should
be as a Typed WBEM URI as defined in DSP0207.

• If the element in question is not modeled by the profile implementation, then the encoding for this property
should be as meaningful to clients as possible

Figure 60 - Indication Profile Instance Diagram
420

 Experimental Indication Profile

25

26

27
28
29
30

31
32
33

34
35

36
37
38
39
40
41

42
43
44
45

46
47
48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
43.1.3 Instrumentation Requirements

EXPERIMENTAL

43.1.3.1 Indication Identification
Indications are identified through the IndicationIdentifier property. An indication can be correlated to previously
produced indications through the use of the CorrelatedIndication property. Generally, the identity of the indication is
only meaningful as a correlatable ID within the CorrelatedIndication property or in its relevancy to the
LastIndicationIdentifier property in the IndicationSubscription class.

The LastIndicationIdentifier property on the IndicationSubscription association should record the identity of the last
indication produced for the combination of IndicationFilter and IndicationDestination that the association instance
represents.

Note: The LastIndicationIdentifier property will become mandatory in a future release of SMI-S as WBEM
infrastructures are enhanced to support the property.

The client can determine if it did get delivery of any indication destined for it by comparing the last indication it
received, or the last indication it received for a particular indication subscription, with the LastIndicationIdentifier. It
is important for clients to be able to determine if there are interruptions in the indication telemetry. Confidence in the
indication delivery combined with the ability to determine the extent of the failure to receive indications, provides
clients with a mechanism to gauge appropriately the response to the failures and avoid having to flush state and
explore the SMI-S Server's model again.

Note: In future release of SMI-S, the modeling of the health of the indication delivery system or service will help
clients determine if there are problems in the configuration of the subscription and related credentials, or in the
indication delivery configuration of the SMI-S Server. This design will require the logging of the errors produced in
the delivery of the indications.

The naming algorithm for the IndicationIdentifier property, shown in Figure 61, includes the population of the two
subcomponents of the property, OrgID and LocalID, as separated by a colon ":". The OrgID shall contain a
registered trademark for the developer of the implementation producing the indication. The LocalID shall contain
the combination of the CIM Object Name of the IndicationFilter that produced the Indication, production sequence
number, and a delivery sequence number. These sequence numbers are in the form of an unsigned integer. These
three elements within the LocalID are separated by a hash "#". The omission of the Handler key property of the
indication subscription, which is the object name of the indication destination, means that the client should assume
that the indication was correctly delivered to it.

The production sequence number is a count of all indications produced by this SMI-S implementation. The
sequence shall be unique by device or application instrumented through SMI-S. The production sequence number
shall not be unique by indication filter, but instead shall represent the count of indications produced for this device
or application. Any gaps in the production sequence number represent indications that were produced but were not
delivered because there is no indications subscribers or a SMI-S Client did not receive the indication because it
was not subscribed to it.

The delivery sequence number range shall be unique and independent by indication subscription. The delivery
sequence number reported shall increase by one and only one with every indication produced for that subscription.
In other words, this delivery sequence number can be viewed as a count of indications produced for a particular
indication subscription. Any gaps in the delivery sequence number represent indications that were produced for a
particular destination (e.g., a SMI-S Client) but were not delivered for some reason. Since an SMI-S Server, the

Figure 61 - Anatomy of IndicationIdentifier
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 421

Experimental Indication Profile

65
66
67

68
69
70
71

72
73
74
75
76
77

78

79
80
81

82

83

84

85

86
87
88
89
90

91
92
93

94
95
96
97
98

99
100
101
102
103

104
105
106
107
infrastructure, is normally in charge of forwarding indications delivered to it by CIM Providers, it is best able to able
to produce this sequence number. SMI-S Servers should produce this sequence number, but may omit it if
unsupported by the CIM Server.

It is recommend that the sequence numbers have a 16-bit range. It other words, the sequence numbers should
start at 1 and iterate to 65,536. The implementation may use a larger range, like 1 to 262,144, and should do so if
there is a possibility that 65,536 indications per a given indication subscription can be produced within a twenty-
four hour period. Regardless, the maximum sequence number shall be a power of two.

The implementation may roll-over the sequence number and start again at one. The requirement that the sequence
number shall be a power of two allows a client to determine what the maximum the sequence could be, like 65,536,
in order to determine if the last sequence number received for an indication subscription, e.g., 65,533, is the last
one it should have received. Clients can not be certain how many indications were missed when the sequence
number rolls over given the unknown frequency of indication production and the unknown maximum value of the
sequence.

Conformance to the indication identifier naming algorithm is mandatory.

However, an indicator that many indications for a given subscription may have been missed is contained in the
LastIndicationProductionDateTime property. The difference between now and the date and time value of
LastIndicationProductionDateTime is significant, then the possibility exists.

EXPERIMENTAL

43.1.3.2 Handling of Indication Storms
To contain the impact of indication storms an implementation can employ additional techniques:

• Use of Bellwether events (if they are defined by the profile)

43.1.3.2.1 Use of Bellwether Events
There are many state changes in the model for a device or application that results in changes in many CIM
instances. For example, the addition of a device or application representation to a CIMOM should result in creation
indications for every single member instance of that device or application. The activation of a ZoneSet from one of
the member Switches in a fabric should result to indication listeners on another Switch's namespace creation
indications for every instance of the new ZoneSet.

The worse case risk is that several of this type of situation may occur simultaneously and result in network storms
and the sudden saturation of the LAN. Additionally, the use of computing resources of the device or application
producing the indication or client receiving the indications may be unacceptably high.

Indications provide the most value when they are used by a client as a mechanism to pick a significant or small
number of changes in CIMOMs of interest. In order to capture a wide variety of changes, any of which may be
pertinent to the client application, the client is likely to create many indication subscriptions and keep them all
active simultaneously. This approach is not problematic because the number of management related changes to
any device or application in the network is usually very small.

As mentioned previously, there are several potential situations where an excessive number of indications can be
produced, thereby potentially overloading the network, originating CIMOM, and receiving client's resources.
There is no need to occur such a risk because it is likely that the client is not going to be interested in all things at
all times. The interest of the client in instance changes usually follows the needs of the current users of that client
application.

Bellwether indications are used by SMI-S designers and individual implementation to signal many instance
changes with one event. A client can assume that some previously defined graph of associated CIM instances
are affected when it receives a bellwether indication. It can then choose, if warranted, to fetch all or some of these
instances. This design prevent the previously mentioned adverse side effects.
422

 Experimental Indication Profile

108

109
110
111
112
113

114
115

116
117
118
119

120
121
122

123

124
125
126
127
128
129
130
131
132
133

134

135

136

137
138
139
140

141

142
143

144
145

146
147

148
149
150
Some rules being considered are:

• When a device or application is added to a namespace and there are indication subscription that cover some
or all of the graph of instances added by side effect of the addition, then only a create indication is produced for
the top level object for the device or application, like ComputerSystem, provided that there is an indication
subscription for changes in the top-level object. Similarly, if a device or application is deleted in the same
situation, then only a delete indication will be produced.

• Bellwether indication are mandatory if they exist in SMI-S and will be easily identified as being bellwether
events.

• The classes associated to the bellwether indication will be part of the definition of the indication. The client
can assume that instances of these classes will have been affected and can choose to harvest that data.
The implementation is not required to produce instances of every class listed as per the requirements
defined elsewhere in SMI-S.

• SMI-S Designer's are encouraged to define bellwether indications, which can be of any class of indication, for
major state changes of a model. In the previous examples, the device creation could be a life cycle
indication where changes in ZoneSet change may be best communicated by an Alert Indication.

43.1.3.2.2 Bellwether Indications for ComputerSystem
It is important to not overload a SMI-S client when device or applications are added or removed from CIM Object
Managers. The addition or removal of the representation of a device or application is attributed to the creation or
deletion of a top-level computer system instance. This overloading would arise from a SMI-S Agent sending
creation or deletion indications to every indication destination for all component or dependent instances to the top-
level computer system. For this profile, when a top-level computer system instance is created in the model, the
SMI-S agent shall not produce indications for indication subscriptions, on indications that do not reference the top-
level computer system, that would otherwise receive InstCreation indications. Likewise, for this profile, when a top-
level computer system is deleted from the model, the SMI-S agent shall not produce indications for indication
subscriptions, on indications that do not reference the top-level computer system, that would otherwise receive
InstDeletion indications.

43.1.4 Semi-Fixed Client Specific Indication Filters

Semi-fixed Client specific IndicationFilters extend the support for indications in the following classes:

• SNIA_IndicationFilterTemplate

This class mirrors the CIM_IndicationFilter, but the Query property supports a query with the string
'SUBSTITUTION_STRING' included in a CQL query. This is a template that may be used by a client
application to create an instance of CIM_IndicationFilter with a client application supplied string in place of
the string 'SUBSTITUTION_STRING'.

• SNIA_IndicationConfigurationCapabilities (and the SupportedFeatures property)

The SupportedFeatures property of SNIA_IndicationConfigurationCapabilities includes the value ‘7’
(“Semi-fixed IndicationFilters”) that indicates semi-fixed IndicationFilters are supported.

When an implementation sets this enumeration, the implementation shall support creation (CreateInstance) of
IndicationFilters that follow a pattern that includes substitution strings as defined in the

SNIA_IndicationFilterTemplate Query property. The client is allowed to replace the substitution string with any
simple expression (including constants).

Semi-fixed IndicationFilterTemplates are documented in this standard with the substitution string identified with the
string ‘SUBSTITUTION_STRING’ in the Query property. For example, the following Query values would indicate a
Semi-fixed IndicationFilterTemplate:
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 423

Experimental Indication Profile

151
152
153

154

155
156
157

158
159
160

161

162
163

164

165
166
167
168

169
170
171
172

173
174

175

176

177

178
179
180
181

182
183
184
185

186

187
188
189
SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) = OBJECTPATH(‘SUBSTITUTION_STRING’)

or

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus = ‘SUBSTITUTION_STRING’

When a semi-fixed IndicationFilterTemplate is defined in this standard, the description column for the CIM Element
for the Indication will identify valid substitutions or will reference an implementation section that identifies the valid
values.

43.1.4.1 Naming Conventions for IndicationFilterTemplates and IndicationFilters
Both IndicationFilters and IndicationFilterTemplates have a Name property. The value of the Name property shall
be formatted as defined by the following ABNF rule:

OrgID ":" RegisteredName ":" UniqueID

Where OrgID identify the business entity owning the referencing profile. OrgID shall include a copyrighted,
trademarked, or otherwise unique name that is owned by that business entity or that is a registered ID assigned to
that business entity by a recognized global authority. In addition, to ensure uniqueness, OrgID shall not contain a
colon (:).

For referencing profiles owned by the SNIA, OrgID shall match "SNIA" for IndicationFilterTemplates defined by the
standard. For vendor unique IndicationFilterTemplates, the OrgID should be a unique name for the vendor. For
client defined IndicationFilters that are based on IndicationFilterTemplates, the OrgID should identify the client
(application) organization.

The RegisteredName shall be the registered name of the referencing profile, as defined by the value of its
CIM_RegisteredProfile.RegisteredName property.

The UniqueID shall uniquely identify the instance within the referencing profile.

43.1.5 Filter Collections

The standard supports two types of filter collections:

• Predefined Filter Collections - The predefined filter collections augments the Indication Profile support for
predefined indication filters and indication filter templates by collecting them into a structure of collections (one
per profile) that are hosted on the top level system of the autonomous profile. This provides a convenient
means of finding an implementations support for predefined filters.

• Client Defined Filter Collections - The client defined filter collections are collections that are defined by
applications of the standard. Client defined filter collections may include predefined and/or client defined
indication filters and allow the application to collect a set of related indication filters to which the application
wishes to subscribe.

43.1.5.1 Predefined Filter Collections
Predefined filter collections are an optional feature of the standard. Support would be indicated via the
IndicationConfigurationCapabilities (see section 43.1.6) in the SupportedFeatures property. If the
SupportedFeatures array includes the value ‘5’ it means the implementation supports predefined filter collections.
424

 Experimental Indication Profile

190

191
192

193

194
195
196
197
198

199
200
201
202
203
204
205
206

207
Figure 62 illustrates the classes associated with predefined FilterCollection support.

Support for predefined filter collections includes instantiations of the following classes and associations to the
model:

• FilterCollection (Predefined)

A predefined FilterCollection collects a set of predefined IndicationFilters. The primary purpose of a
predefined FilterCollection is for an implementation to declare the IndicationFilters that it supports.
Minimally this should include all IndicationFilters that are defined as mandatory for the profile. However, it
may also include optional, conditional or vendor extension IndicationFilters supported by the
implementation.

One predefined FilterCollection is defined for each profile supported by the implementation. The
FilterCollections are organized in a 2 level hierarchy. The top most FilterCollection is the FilterCollection for
the autonomous profile. The name of the FilterCollection (CollectionName property) is of the form
“SNIA:<profile name>. In Figure 62 the autonomous profile is an Array profile. In addition to collecting
predefined IndicationFilters of the autonomous profile, the top level FilterCollection would also collect
FilterCollections for each of the component profiles supported by the in implementation. In Figure 62 the
component profile FilterCollection shown is for the Block Services Package (CollectionName =
“SNIA:Block Services”).

• HostedCollection

Figure 62 - Predefined Filter Collections
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 425

Experimental Indication Profile

208
209

210

211
212
213

214
215
216

217
218
219

220

221
222
223

224

225
226
227
228
This associates each filter collection with the top level system for which the collection applies (e.g., the top
level system of the autonomous profile).

• FilterCollectionSubscription

This associates (subscribes) a ListenerDestination (Handler) to a FilterCollection (collection). All indication
filters in the collection will be reported to the ListenerDestination (without the need for individual
subscriptions on the indication filters).

Note: A FilterCollectionSubscription will not return any indications for any
IndicationFilterTemplates in a pre-defined FilterCollection. Templates are only used for
creation of client defined IndicationFilters.

A client may subscribe to the collection of indications rather than subscribing to each individual filter in the
collection. However, a client might prefer to form its own collection of filters that it wants to subscribe to
(see section 43.1.5.2).

• MemberOfCollection

This associates predefined IndicationFilters and predefined component FilterCollections to the
FilterCollections in which they belong. MemberOfCollection associations are static and established by the
implementation.

43.1.5.2 Client Defined Filter Collections
Client defined filter collections are an optional feature of the standard. Support would be indicated via the
IndicationConfigurationCapabilities (see section 43.1.6) in the SupportedFeatures property. If the
SupportedFeatures array includes the value ‘6’ it means the implementation supports client defined filter
collections.
426

 Experimental Indication Profile

229

230

231

232
233
234
235

236
237
238

239
240
241
242
243
244
Figure 63 illustrates the classes associated with client defined FilterCollection support.

Support for client defined filter collections includes support of the following classes and associations to the model:

• FilterCollection (Client Defined)

A client defined FilterCollection collects a set of IndicationFilters (or other FilterCollections). The primary
purpose of a client defined FilterCollection is to allow a client to establish a set of indication filters in which
it wishes to subscribe to as a group. The indication filters collected may be either client defined or
predefined. They may include any IndicationFilters supported by the implementation.

Unlike predefined FilterCollections client defined FilterCollections may be organized for the convenience of
the client application. The FilterCollections may be organized in a hierarchy of any number of levels and a
any one FilterCollection need not correspond to a profile.

The name of the FilterCollection (CollectionName property) is of the form “<OrgID:<Unique Name>. In
Figure 63 a top level collection is defined with a lower level FilterCollection. The <OrgID> component
should be a company indicator (e.g., stock ticker). The <Unique Name> part of the name should uniquely
identify the collection within that company. It may be desirable to make the <Unique Name> part of the
CollectionName a compound construction (e.g., <Product Name:Name within Product>). But all that this
standard dictates is that the <OrgID> cannot be “SNIA”.

Figure 63 - Client Defined Filter Collections
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 427

Experimental Indication Profile

245
246

247

248
249

250

251
252
253

254
255

256

257
258
259

260

261
262

263
A set of methods for creating and maintaining client defined FilterCollections are provided by the
IndicationConfigurationService (see section 43.1.6).

• HostedCollection

This associates each filter collection with the top level system for which the collection applies (e.g., the top
level system of the autonomous profile).

• FilterCollectionSubscription

This associates (subscribes) a ListenerDestination (Handler) to a FilterCollection (collection). All indication
filters in the collection will be reported to the ListenerDestination (without the need for individual
subscriptions on the indication filters.

A client may subscribe to the collection of indications rather than subscribing to each individual filter in the
collection.

• MemberOfCollection

This associates IndicationFilters (predefined or client defined) and other FilterCollections (client defined or
predefined) to higher level FilterCollections. MemberOfCollection is established using methods of the
IndicationConfigurationService (see section 43.1.6).

43.1.6 Indication Configuration Services

Figure 64 illustrates the classes associated with support for methods for configuring and testing indications
support.

Figure 64 - Indication Configuration Service Classes
428

 Experimental Indication Profile

264

265

266
267
268
269
270
271
272

273
274

275

276
277
278
279
280
281

282

283
284
285
286

287

288

289

290

291

292
293
294

295
296
297

298
299
300

301
302
303
304

305
306
Support for the Indication Configuration Service add the following classes and associations to the model:

• SNIA_IndicationConfigurationService

This service includes methods for testing a listener, handling the creation and subscription to indications as
one extrinsic method (rather than a set of CreateInstances) and methods for managing client defined filter
collections. The SNIA_IndicationConfigurationService is a service that is specific to a particular profile
implementation and the classes managed are instantiated in the implementation namespace. The
SNIA_IndicationConfigurationService shall be instantiated when the Experimental Indication Profile is
supported, but support for the individual methods are conditional (See the
SNIA_IndicationConfigurationCapabilities).

Note that predefined FilterCollections are not managed by the methods of the indication configuration
services. They are, by their nature, static and maintained by the implementation.

• HostedService

This associates the SNIA_IndicationConfigurationService to the system of the autonomous profile
(referencing profile) for which the service applies. For example, for the Array Profile, the indication
configuration service would be hosted on the top level computer system for the Array. An autonomous
profile shall have exactly one indication configuration service and it shall be hosted on the top level
system. It may not be hosted on non-top-level systems (e.g., component computer systems defined in the
Multiple Computer System Profile).

• SNIA_IndicationConfigurationCapabilities

There is one instance of SNIA_IndicationConfigurationCapabilities for an
SNIA_IndicationConfigurationService. These capabilities define the extrinsic methods supported by the
implementation and a set of SupportedFeatures. The possible SupportedSynchronousActions values and
their definitions are as follows:

• ‘2’ (None) - None of the IndicatonConfigurationService methods are supported.

• ‘3’ (Test Listener) - The TestListener method is supported.

• '4' ("Create and Subscribe) - The CreateAndSubscribe method is supported.

• ‘5’ (Filter Collection Methods) - The methods for managing client defined FilterCollections are supported.

The possible SupportedFeatures values and their definitions are as follows:

• ‘2’ (None) - None of the optional features are supported. Specifically, FilterCollections (either predefined or
client defined) are not supported. Filters (either predefined or client defined) are not supported. And semi-
fixed Indication Filters are not supported.

Note: In SMI-S, ‘none’ is only valid for profiles that don’t support indications. Any profile that
supports indications shall support either or both predefined or client defined indication
filters.

• ‘3' (Predefined Filters) - The implementation has populated a set of predefined IndicationFilters for
indications that it supports. These should include those specified by SMI-S, but may include vendor specific
IndicationFilters that the implementation supports.

• ‘4' (Client Defined Filters) - The implementation supports client defined IndicationFilters through
CreateInstance (and possibly through the CreateAndSubscribe method). If SupportedFeatures includes ‘4’,
but SupportedSynchronousActions does not include ‘4’, it means that only CreateInstance is supported for
creation of client defined filters.

• ‘5‘ (Predefined Filter Collections) - The implementation has collected its predefined IndicationFilters into
FilterCollections. Each predefined FilterCollection corresponds to an SMI-S profile (autonomous or
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 429

Experimental Indication Profile

307
308

309
310
311
312

313
314

315

316
317

318

319

320

321

322
323
324
325
326

327
328
329
330
331
332
333
334

335
336
337
338
339

340
341
342
343
344
345
346
347
component) and is structured as a two level hierarchy. The top FilterCollection contains the predefined
IndicationFilters of the autonomous profile and FilterCollections for the component profiles.

• ‘6' (Client Defined Filter Collections) - The implementation supports client defined FilterCollections through
CreateInstance (and possibly through the CreateAndSubscribe method). If SupportedFeatures includes ‘6’,
but SupportedSynchronousActions does not include ‘4’, it means that only CreateInstance is supported for
creation of client defined filter collections.

• ‘7' (Semi-fixed Indication Filters) - The implementation supports semi-fixed IndicationFilters, which means
that it can accept client definitions of filters that fit the pattern defined by the semi-fixed IndicationFilter.

• ElementCapabilities

This associates the SNIA_IndicationConfigurationService instance to its
SNIA_IndicationConfigurationCapabilities instance.

• ServiceAffectsElement

This associates the IndicationConfigurationService to client defined FilterCollections it manages.

43.2 Fault Management Considerations

EXPERIMENTAL

43.2.1 Indication Correlation

There are cases where many indications are produced in response to a single event. In fact, the indications
themselves are correctly viewed as presenting an aspect or view of the event itself and not as a comprehensive
representation of the event. AlertIndications provide a means of notification that is direct to the point than life cycle
indications, even though the production of life cycle indications are also important. The subtleties of the effect of
the event are better communicated through life cycle indications.

A given event, like a network port communication failure, can itself be reported as an AlertIndication. It is also
important to communicate the change in status of the port itself through life cycle indications. It is probable that the
network port communication failure will cause some function of the device which contains the point to also fail or
become degraded. The impact of the failure (or significant state or status change) is of great interest to
management clients as it assist in the triage of the error and potentially can also assist HFM aware clients to
contain the failure, fence off the failing component, or even prevent a more serious failure of the system in which
the component participates, like the failure of business function (like closing the book at quarter end or dropping
transactions at Christmas time).

SMI-S provides the mechanism where storage management can be affected without requiring a priori knowledge of
the device or application being managed. In this world, the overall system or service component that is most able
to assess and report the impact of the failure (or significant state or status change) is the managed device or
application itself. Indication correlation provides the mechanism that can be used to asynchronously report the
changes brought about by the event.

The mechanism requires that a single indication be the first reporter of the event. This first reporter may be an
AlertIndication or a life cycle indication. This indication should report the state or status change caused by the
event in the simplest and most direct manner. All other indications that report state or status change and are
associated directly to the first reporter indications should correlated to the first reported indication. Indication
correlation shall be done by the implementation through reporting the IndicationIdentifier of the correlated and
previously produced indications in the CorrelatedIndications array. The elements in the CorrelatedIndications may
be in any order. The linkage of indication thusly correlated is like a one-way linked list. The beginning of the
correlation link is indicated by the nullness of the CorrelatedIndications property.
430

 Experimental Indication Profile

348
349
350
351
352

353
354
355

356
357
358
359
360
361
362
363

364

365

366

367

368

369

370

371
372
373

374

375

376

377

378
379

380

381
Indication correlation shall be accomplished in the path of cause and effect or scoping relationships. If indication B
is to correlated to indication A, then the model change reported by B is caused by or is a side-effect of the model
change reported by A. Indication correlation shall not be accomplished by sorting the indications to be correlated
by PerceivedSeverity. That being said, Indication correlation should not be used to report secondary events,
themselves caused by the primary event, and side-effects of the secondary event.

Indication correlation provides important information about the onset of the condition and its immediate impact that
may not be retrievable when the client can react. The spread of the effects of the event within a device or
application can certainly be faster than maximum speed of the management network.

Indication correlation shall be accomplished through scoping relationships, like the part to group component or
dependent to antecedent relationships, or across direct cause and effect relationships for peer components. For
example, given that a network port communication failure within a given device causes changes to the status of
port, the scoping computer system, the port communications statistics, the status of the network pipe, and the
overall communication statistics of the device, then indication correlation shall not report correlation of the network
port communication failure to the changes in the overall communications statistics of the device. This requirement
is necessary to limit the potentially lengthy correlation and impose undue burden on the implementation without
value to the client.

EXPERIMENTAL

43.3 Cascading Considerations
Not Applicable.

43.4 Supported Profiles, Subprofiles and Packages
Related Profiles for Experimental Indication: Not defined in this standard.

43.5 Methods of the Profile

43.5.1 Extrinsic Methods of the Profile

43.5.1.1 TestListener Method
The TestListener method allows a client to test that the ListenerDestination is actually reachable from the
implementation. It also provides information, in error cases, on why the test failed (e.g., destination not resolvable,
Port not reachable, certificate errors, etc.).

uint32 IndicationConfigurationService.TestListener(

 [IN] CIM_ListenerDestination REF Destination);

The TestListener method takes as input a reference to a CIM_ListenerDestination class.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the indication was sent. The implementation will send an
AlertIndication with the standard message MP22 (Listener Destination Test).

1 - The method is not supported (e.g., the provider does not support the function)

4 - Failed. If the return code is 4, it means that the provider was not able to send the indication.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 431

Experimental Indication Profile

382
383

384

385
386
387

388

389

390

391

392

393

394

395

396

397

398

399
400
401
402

403
404
405
406

407
408

409
410

411
412

413

414

415
416

417

418

419

420
421
422

423
5 - Invalid parameter. The protocol specified is not a recognized protocol or the destination was not in a
valid URI format.

43.5.1.2 CreateAndSubscribe Method
The CreateAndSubscribe method allows a client to create IndicationFilters, ListenerDestinations and Subscriptions
in a single extrinsic call. If the instance supplied as input already exist (e.g., an IndicationFilter, FilterCollection and
ListenerDestination), then the only element created is the subscription.

uint32 IndicationConfigurationService.CreateAndSubscribe(

 [IN, EmbeddedInstance(“CIM_IndicationFilter")]

 string IndicationFilter,

 [IN, EmbeddedInstance(“CIM_FilterCollection")]

 string FilterCollection,

 [IN, EmbeddedInstance(“CIM_ListenerDestination")]

 string ListenerDestination,

 [IN, EmbeddedInstance(“CIM_AbstractIndicationSubscription")]

 string SubscriptionData,

 [OUT] CIM_AbstractIndicationSubscription REF Subscription);

The CreateAndSubscribe method takes as input a set of 4 embedded Instances provided by the client application:

• CIM_IndicationFilter - This would be filled in if the desired output is an instance of
CIM_IndicationSubscription. The method will use properties of the embedded instance to determine if the
IndicationFilter exists. If it does not exist and IndicationConfigurationService.SupportedFeatures includes ‘4’,
then the method will create the instance.

• CIM_FilterCollection - This would be filled in if the desired output is an instance of
CIM_FilterCollectionSubscription. The method will use properties of the embedded instance to determine if
the FilterCollection exists. If it does not exist and IndicationConfigurationService.SupportedFeatures
includes ‘6’, the method will create the instance (but it will be an empty collection).

• CIM_ListenerDestination - The method will use properties of the embedded instance to determine if the
ListenerDestination exists. If it does not exist, the method will create the instance.

• CIM_AbstractIndicationSubscription - As an input embedded instance, the references should be NULL. The
other properties of the instance will be used to establish the properties of the subscription created.

The CreateAndSubscribe method output (Subscription) is a reference to the created subscription which can be
either an IndicationSubscription or a FilterCollectionSubscription.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the subscription (and any related instances) has been created.

1 - Not Supported. The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘4’.

4 - Failed. If the return code is 4, it means that the provider was not able to create the subscription.

5 - Invalid Parameter. The implementation does not recognize the value of a parameter.

43.5.1.3 CreateFilterCollection
The CreateFilterCollection method allows a client to create a client specific collection of IndicationFilters (and/or
other filter collections) for the purpose of subscribing to all collected indications with one subscription to the
FilterCollection.

uint32 IndicationConfigurationService.CreateFilterCollection(
432

 Experimental Indication Profile

424

425

426

427
428

429
430
431

432
433

434

435

436
437

438
439

440

441
442
443

444

445

446

447

448

449

450
451

452
453

454

455

456

457
458

459
460

461
462
[IN] string FilterCollectionName,

[IN] CIM_ManagedElement REF Members[],

[OUT] CIM_FilterCollection REF FilterCollection);

The CreateFilterCollection method takes as input the name of the collection and a list of members to be added to
the collection:

• FilterCollectionName - FilterCollectionName takes the form ‘OrgID:CollectionID’ where OrgID is the client
vendor and product is part of CollectionID. Predefined collections have an OrgID of ‘SNIA’, so a client
defined filter collection shall not use the prefix ‘SNIA’.

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection. A
Member may be an IndicationFilter (a ManagedElement) or another FilterCollection (a Collection).

The CreateFilterCollection method output (FilterCollection) is a reference to the created FilterCollection.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the FilterCollection has been created and the specified members
have been added to the collection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to create the FilterCollection.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, the
FilterCollectionName has a prefix of ‘SNIA’ or one of the Members is not a CIM_IndicationFilter or
CIM_FilterCollection.

43.5.1.4 AddFilterToCollection
The AddFilterToCollection method allows a client to add members to an existing client defined FilterCollection.

uint32 IndicationConfigurationService.AddFilterToCollection(

 [IN] CIM_ManagedElement REF Members[],

 [IN] CIM_FilterCollection REF FilterCollection);

The AddFilterToCollection method takes as input

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection to
be added to the FilterCollection.

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the new members are to
be added.

The AddFilterToCollection method output is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the Members have been added to the FilterCollection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to add the members to the
FilterCollection and none of the additions were done.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, one of the Members is
not a CIM_IndicationFilter or CIM_FilterCollection.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 433

Experimental Indication Profile

463

464

465

466

467

468

469
470

471
472

473

474

475

476
477

478
479

480
481

482

483

484

485

486

487

488
489

490
491

492

493

494

495
496

497
498
499
43.5.1.5 RemoveFilterFromCollection
The RemoveFilterFromCollection method allows a client to remove filters from client defined collections.

uint32 IndicationConfigurationService.RemoveFilterFromCollection(

 [IN] CIM_ManagedElement REF Members[],

 [IN] CIM_FilterCollection REF FilterCollection);

The RemoveFilterFromCollection method takes as input

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection to
be removed to the FilterCollection.

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the members are to be
removed.

The RemoveFilterFromCollection method output is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the Members have been removed to the FilterCollection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to remove the members to the
FilterCollection and none of the removals were done.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, one of the Members is
not a CIM_IndicationFilter or CIM_FilterCollection.

43.5.1.6 DeleteFilterCollection
The DeleteFilterCollection method allows a client to remove a client defined FilterCollection.

uint32 IndicationConfigurationService.DeleteFilterCollection(

 [IN, Required] CIM_FilterCollection REF FilterCollection.

 [IN] boolean RemoveMembers);

The DeleteFilterCollection method takes as input

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the members are to be
removed.

• RemoveMembers - This boolean, when “true” means the method should imply removal of existing members
of the collection. When “false”, the method will fail if members exist in the collection.

The DeleteFilterCollection method output (FilterCollection) is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the FilterCollection has been deleted.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to delete the FilterCollection. For
example, this method will return this error if RemoveMembers is ‘false’ and there are members in the
FilterCollection.
434

 Experimental Indication Profile

500
501
502

503

504
505
506
507
508

509
510
511

512

513

514

515

516

517

518
519

520

521
522

523
524
525

526
527
528
529
530

531
532
533
534

535

536

537

538

539

540
5 - Invalid parameter. A parameter is not recognized as a valid value. For example, the
FilterCollectionName has a prefix of ‘SNIA’. That is, this method will return this error if the application
attempts to delete a predefined FilterCollection.

43.5.2 Intrinsic Methods of the Profile

The Experimental Indication Profile is mostly populated by providers and is accessible to clients using basic read
and association traversal. However, there are three constructs that may be created by Clients. These are the
FilterCollection, MemberOfCollection and the FilterCollectionSubscription. In addition to being able to create them,
client may delete them (except “pre-defined” filters which cannot be deleted), and a client may modify any
IndicationFilter that was client created.

Note: The IndicationConfigurationService provides extrinsic methods for creating and managing client
defined FilterCollections. The intrinsic methods for creating and maintaining FilterCollections is
provided for clients that have a preference to use of intrinsic methods.

43.5.2.1 FilterCollection
The CreateInstance and DeleteInstance operations are supported for client defined FilterCollections.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

On CreateInstance on FilterCollections, the implementation should allow NULL to be specified for key properties
(the InstanceID). If key properties are passed in on the CreateInstance, the implementation may ignore the keys.

If the client supplies an CollectionName, the implementation shall persist the property for later use by the client.

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

Note: If a client attempts to create an FilterCollection that already exists (has the same InstanceID), but other
properties are different, then the request will fail. If the Client attempts to create an FilterCollection that
has identical properties to an existing FilterCollection instance, it will succeed and CreateInstance need
not treat the instance as a separate instance.

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified FilterCollection Instance shall have been removed.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 435

Experimental Indication Profile

541
542

543
544
545

546
547
548
549
550

551

552
553

554

555

556

557

558
559

560
561
562
563

564
565

566
567

568
569
570

571
572
573
574
575

576

577

578

579

580

581

582
583
The deletion of a FilterCollection instance will cause the automatic deletion of any associated MemberOfCollection
and FilterCollectionSubscription instances.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the filter collection is a pre-defined filter
collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing, duplicate,
unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in
the specified namespace), CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance
does not exist in the specified namespace), CIM_ERR_FAILED (some other unspecified error occurred).

43.5.2.2 MemberOfCollection
The CreateInstance and DeleteInstance operations are supported on MemberOfCollection for associating client
defined FilterCollections and their members.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

An implementation should populate all fields of references (scheme, hostname, port number, namespace, key) in
object path for the instance being created.

The host name portion shall be set to a valid, client-resolvable host name (i.e., DNS) or IPv4 or IPv6 address.
Internal names (e.g., /etc/hosts) are not valid. If host name, then must be FQDN (not a short name). This implies
the provider shall be configured as a valid DNS client to use host names and cannot rely on an administratively
defined name.

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

Note that for CreateInstance of a MemberOfCollection requires that the FilterCollection instance and the member
instances (FilterCollection or IndicationFilter) exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the FilterCollection referenced is a pre-defined
filter collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing,
duplicate, unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which
this is to be a new Instance does not exist), CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists),
CIM_ERR_FAILED (some other unspecified error occurred).

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified MemberOfCollection Instance shall have been removed.

Deletion of a MemberOfCollection will not cause the deletion of any corresponding FilterCollection or
IndicationFilter instances.
436

 Experimental Indication Profile

584
585
586

587
588
589
590
591

592

593
594

595

596

597

598

599
600

601
602
603
604

605
606

607
608

609
610
611

612
613
614
615
616

617

618

619

620

621

622

623
624
If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the FilterCollection referenced is a pre-defined
filter collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing,
duplicate, unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not
exist in the specified namespace), CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM
Instance does not exist in the specified namespace), CIM_ERR_FAILED (some other unspecified error occurred).

43.5.2.3 FilterCollectionSubscription
The CreateInstance and DeleteInstance operations are supported on FilterCollectionSubscription for associating
client defined FilterCollections with ListenerDestinations.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

An implementation should populate all fields of references (scheme, hostname, port number, namespace, key) in
object path for the instance being created.

The host name portion shall be set to a valid, client-resolvable host name (i.e., DNS) or IPv4 or IPv6 address.
Internal names (e.g., /etc/hosts) are not valid. If host name, then must be FQDN (not a short name). This implies
the provider shall be configured as a valid DNS client to use host names and cannot rely on an administratively
defined name.

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

Note that for CreateInstance of an FilterCollectionSubscription requires that the ListenerDestinationCIMXML
instance and the FilterCollection exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified FilterCollectionSubscription Instance shall have been removed.

Deletion of a FilterCollectionSubscription will not cause the deletion of any corresponding
ListenerDestinationCIMXML or FilterCollection instances.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 437

Experimental Indication Profile

625
626
627

628
629
630
631
632

633

634

635

636
637

638

639
640
If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace),
CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does not exist in the specified
namespace), CIM_ERR_FAILED (some other unspecified error occurred).

43.6 Client Considerations and Recipes
The use cases in the following sections illustrate some of the features (and particularly the methods) of this profile.

43.6.1 Testing a Listener Destination

Table 425 identifies the elements of the use case to test whether a listener destination can receive indications from
a CIM Server.

43.6.2 Discovering predefined IndicationFilters of an implementation

Table 426 identifies the elements of the use case to discover predefined indication filters supported by a profile
implementation.

Table 425 - Test that a Listener Destination if Functioning Properly

Use Case Element Description

Summary Given an application that listens for indications, test whether or not a
CIM_Server can successfully communicate with the application.

Basic Course of Events 1. Start the application that is listening for indications
2. Tell the CIM_Server to send an indication to the listener application
3. Verify the CIM_Server sent the indication
4. Verify that the listening application received the indication

Alternative Paths None

Exception Paths None

Triggers Installing a new or upgraded application that listens for indications.

Assumptions None

Preconditions The CIM Server is operational and supports a profile with support for
the TestListener function.

Postconditions The listener application receives the indication and displays it (or logs
it).

Table 426 - Discovery of Predefined IndicationFilters

Use Case Element Description

Summary Given an implementation of an autonomous Profile and its top level
ComputerSystem, determine any predefined IndicationFilters it has.
438

 Experimental Indication Profile

641

642
43.6.3 Creating a subscription to a predefined IndicationFilter

Table 427 identifies the elements of the use case to create a subscription to a predefined indication filter.

Basic Course of Events 1. Determine if the implementation has
IndicationConfigurationCapabilities
2. If it does, verify that it supports Predefined Indications and/or
Predefined FilterCollections
2a. If Predefined FilterCollections are supported, then look for the Top
Level FilterCollection and determine the predefined IndicationFilters
supported
2b. If FilterCollections are not supported (or the
IndicationConfigurationService is not supported), then simply
enumerate CIM_IndicationFilter in the namespace of the top level
ComputerSystem

Alternative Paths None

Exception Paths None

Triggers The administrator (or application) wants to inspect filters that are
declared to be supported by an implementation.

Assumptions None

Preconditions The top level system of the profile has been discovered from profile
registration and ElementConformsToProfile.

Postconditions A list of predefined IndicationFilters (possibly by Profile) is produced.

Table 427 - Create a subscription to a predefined indication filter

Use Case Element Description

Summary Given a ListenerDestination and a predefined indication filter, subscribe
to the filter

Basic Course of Events 1. See if the implementation supports the CreateAndSubscribe method
2. Retrieve the predefined IndicationFilter
2a. If CreateAndSubscribe is supported, copy properties of the
predefined indication filter into and embedded instance and invoke
CreateAndSubscribe passing the Destination of the Listener
2b. If CreateAndSubscribe is not supported, Create the
ListenerDestination and Create the IndicationSubscription

Alternative Paths None

Exception Paths None

Triggers Set up a listener to get indications for an indication in the SMI-S
Specification.

Assumptions None

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Table 426 - Discovery of Predefined IndicationFilters

Use Case Element Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 439

Experimental Indication Profile

643

644

645

646
43.6.4 Creating a client defined indication and subscription

Table 428 identifies the elements of the use case to create an indication filter and subscribe to it.

43.6.5 Creating a semi-fixed indication filter

Table 429 identifies the elements of the use case to create a semi-fixed indication filter.

Postconditions The subscription is recorded in the CIM Server.

Table 428 - Create an IndicationFilter and subscribe to it

Use Case Element Description

Summary Given a top level system of an autonomous profile and a URI for an
indication listener create a client defined indication and subscribe to it.

Basic Course of Events 1. Get the IndicationConfigurationService if it exists
1b. If not try to do a CreateInstance for the IndicationFilter (if it
succeeds, then continue)
2. If the service exists, get the IndicationConfigurationCapabilities to
find out if the implementation supports client defined IndicationFilters
3. If the capability exists, then do a CreateAndSubscribe for the
indication
3b. Do a CreateInstance on the ListenerDestination and another
CreateInstance on the IndicationSubscription

Alternative Paths 1. Create a FilterCollection and put the client defined indication filter in
that collection

Exception Paths None

Triggers The administrator wants to listen for a specific indication of his/her
choosing.

Assumptions The implementation supports client defined IndicationFilters

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The IndicationFilter is created and a subscription to it is recorded in the
CIM Server.

Table 429 - Creation of a semi-fixed Indication filters

Use Case Element Description

Summary A client application wants to create an indication filter that has
application specific information to include in the filter.

Table 427 - Create a subscription to a predefined indication filter

Use Case Element Description
440

 Experimental Indication Profile

647

648
43.6.6 Creating a FilterCollection

Table 430 identifies the elements of the use case to create a client defined Filter Collection.

Basic Course of Events 1. Determine if the implementation supports semi-fixed IndicationFilters
2. Find the semi-fixed IndicationFilter
2a. Look in the ‘SNIA’ FilterCollections if they exist
2b. Enumerate predefined indication filters if not
3. Do a CreateAndSubscribe for the IndicationFilter substituting the
application specific information in the query
3a. Do a CreateInstance on the filter and the subscription if
CreateAndSubscribe is not supported.

Alternative Paths 1. If none of the new functions are supported try to create the filter
using a CreateInstance

Exception Paths None

Triggers The application wants to restrict the number of indications it receives by
adding application specific information to the filter query.

Assumptions The implementation supports semi-fixed IndicationFilters

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The IndicationFilter is created and a subscription to it is recorded in the
CIM Server.

Table 430 - Creation of a client defined FilterCollection

Use Case Element Description

Summary Given a top level system of an autonomous profile and a URI for an
indication listener and a list of IndicationFilter that the administrator
wants to listen for create a client defined FilterCollection and subscribe
to it.

Basic Course of Events 1. Determine if the implementation supports client defined
FilterCollections
1a. If not quit, you have no options.
2. Determine if the implementation supports FilterCollection Methods
2a. If not go to 3a
3. Do a CreateFilterCollection to create the FilterCollection
3a. Do a CreateInstance on the FilterCollection and a bunch of
CreateInstances for the MemberOfCollection associations to each of
the IndicationFilters.Then do a CreateInstance on
FilterCollectionSubscription.

Alternative Paths None

Exception Paths None

Triggers The client was subscriptions to IndicationFilters in a client specific list of
filters.

Table 429 - Creation of a semi-fixed Indication filters

Use Case Element Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 441

Experimental Indication Profile

649

650

651

652

653
43.7 Registered Name and Version
Experimental Indication version 1.5.0 (Component Profile)

Specializes SNIA Indication version 1.5.0

43.8 CIM Elements
Table 431 describes the CIM elements for Experimental Indication.

Assumptions None

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The FilterCollection is created and a subscription to it is recorded in the
CIM Server.

Table 431 - CIM Elements for Experimental Indication

Element Name Requirement Description

43.8.1 CIM_AlertIndication Optional This is a specialization of the
CIM_AlertIndication class in the Indication
Profile.

43.8.2 CIM_ElementCapabilities (Indication
Config Service to Capabilities)

Mandatory Experimental. This associates the
IndicationConfigurationService to the
IndicationConfigurationCapabilities.

43.8.3 CIM_FilterCollection (Client Defined) Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This is a client defined collection
of IndicationFilters to which a client may
subscribe.

43.8.4 CIM_FilterCollectionSubscription (Filter
Collection Subscription)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections) or '6' (Client Defined Filter
Collections). This associates the
FilterCollection to the system in the
referencing profile.

Table 430 - Creation of a client defined FilterCollection

Use Case Element Description
442

 Experimental Indication Profile
43.8.5 CIM_HostedCollection (Hosted Filter
Collection)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This associates a client defined
FilterCollection to the system in the
referencing profile.

43.8.6 CIM_HostedService (Indication Config
Service to System)

Mandatory Experimental. This associates the
IndicationConfigurationService to the System
in the referencing profile.

43.8.7 CIM_IndicationFilter (client defined) Optional This is for 'client defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

43.8.8 CIM_IndicationFilter (pre-defined) Optional This is for 'pre-defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

43.8.9 CIM_IndicationSubscription Mandatory This association is a specialization of the
IndicationSubscription as defined in the
Indication Profile.

43.8.10 CIM_InstCreation Optional This is a specialization of the
CIM_InstCreation class in the Indication
Profile.

43.8.11 CIM_InstDeletion Optional This is a specialization of the
CIM_InstDeletion class in the Indication
Profile.

43.8.12 CIM_InstModification Optional This is a specialization of the
CIM_InstModification class in the Indication
Profile.

43.8.13 CIM_ListenerDestinationCIMXML
(Indication Handler)

Mandatory A CIM_ListenerDestinationCIMXML describes
the destination for CIM Export Messages to be
delivered via CIM-XML.
ListenerDestinationCIMXML is subclassed
from ListenerDestination.

43.8.14
CIM_ListenerDestinationWSManagement
(WS-Man Indication Handler)

Optional Experimental. A
CIM_ListenerDestinationWSManagement
describes the destination for CIM Export
Messages to be delivered via WS-Man.

43.8.15 CIM_MemberOfCollection (Filter
Collection to Filters)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This associates a client defined
FilterCollection to the Filters in the collection.

Table 431 - CIM Elements for Experimental Indication

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 443

Experimental Indication Profile

654

655
656
657

658

659

660

661

662
43.8.1 CIM_AlertIndication

This is a specialization of the CIM_AlertIndication class in the Indication Profile. The class definition specializes the
CIM_AlertIndication definition in the Indication profile. Properties or methods not inherited are marked accordingly
as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 432 describes class CIM_AlertIndication.

43.8.16
SNIA_IndicationConfigurationCapabilities

Mandatory Experimental. This is the capabilities of the
implementation of indications.

43.8.17 SNIA_IndicationConfigurationService Mandatory Experimental. This is the indication services of
the implementation.

43.8.18 SNIA_IndicationFilterTemplate (semi-
fixed)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='7' (Semi-fixed Indication
Filters). This is a template for 'semi-fixed'
IndicationFilter instances.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_FilterCollectionSubscription

Optional Experimental. CQL -This indicates that a
subscription to a FilterCollection has been
deleted by either explicit user action
(DeleteInstance) or by provider clean up.

Table 432 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes

IndicationIdentifier
(overridden)

Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime N Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

Description Optional A free form text description.

AlertingManagedEle
ment (overridden)

Mandatory The identifying information of the entity for which this
Indication is generated.

If the element in question is modeled by the profile
implementation, then the format for this property should be
as a Typed WBEM URI as defined in DSP0207.

Table 431 - CIM Elements for Experimental Indication

Element Name Requirement Description
444

 Experimental Indication Profile
AlertingElementForm
at

Mandatory Valid SMI-S values are 0|1|2 ('Unknown' | 'Other' |
'CIMObjectPath').

AlertType Mandatory This shall be 1|2|3|4|5|6|7|8 ('Other' | 'Communications
Alert' | 'Quality of Service Alert' | 'Processing Error' | 'Device
Alert' | 'Environmental Alert' | 'Model Change' | 'Security
Alert').

OtherAlertType Optional

PerceivedSeverity Mandatory This shall be 0|1|2|3|4|5|6|7 ('Unknown', 'Other' |
'Information' | 'Degraded/Warning' | 'Minor' | 'Major' |
'Critical' | 'Fatal/NonRecoverable').

OtherSeverity Optional

ProbableCause Mandatory Many possible values in a value map. See MOF.

ProbableCauseDescr
iption

Optional

EventID Optional

SystemCreationClas
sName

Mandatory

SystemName Mandatory The scoping System's Name for the Provider generating
this Indication.

The SystemName would typically be the name of the
system that generates the indication.

ProviderName Mandatory

OwningEntity
(overridden)

N Mandatory A string that uniquely identifies the entity that owns the
definition of the format of the Message.

MessageID
(overridden)

N Mandatory A string that uniquely identifies, within the scope of the
OwningEntity, the format of the Message.

Message
(overridden)

N Mandatory The formatted message (including the
MessageArguments).

MessageArguments N Optional An array of strings that contain the dynamic content of the
message.

OtherAlertingElement
Format

N Optional Not Specified in this version of the Profile.

Trending N Optional Not Specified in this version of the Profile.

RecommendedAction
s

N Optional Not Specified in this version of the Profile.

EventTime N Optional Not Specified in this version of the Profile.

IndicationFilterName
(added)

Mandatory The list of IndicationFilter.Name values for IndicationFilters
or FilterCollections that this indication supports.

Table 432 - SMI Referenced Properties/Methods for CIM_AlertIndication

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 445

Experimental Indication Profile

663

664

665

666

667

668
669
670

671
672

673

674

675

676
677
43.8.2 CIM_ElementCapabilities (Indication Config Service to Capabilities)

Experimental. This associates the IndicationConfigurationService to the IndicationConfigurationCapabilities.

Requirement: Mandatory

Table 433 describes class CIM_ElementCapabilities (Indication Config Service to Capabilities).

43.8.3 CIM_FilterCollection (Client Defined)

Experimental. This is a client defined collection of IndicationFilters to which a client may subscribe. An
implementation would indicate support for client defined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '6' (Client Defined Filter Collections).

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 434 describes class CIM_FilterCollection (Client Defined).

43.8.4 CIM_FilterCollectionSubscription (Filter Collection Subscription)

Experimental. This associates the FilterCollection to the system in the referencing profile.

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter
Collections) or '6' (Client Defined Filter Collections).

Table 433 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Indication Config
Service to Capabilities)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The indication capabilities instance associated with the
indication configuration service.

ManagedElement Mandatory The indication configuration service.

Table 434 - SMI Referenced Properties/Methods for CIM_FilterCollection (Client Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be constructed using the
following algorithm: OrgID:CollectionID where OrgID and
CollectionID are separated by a colon ':'.
446

 Experimental Indication Profile

678

679

680

681
682

683

684

685
Table 435 describes class CIM_FilterCollectionSubscription (Filter Collection Subscription).

43.8.5 CIM_HostedCollection (Hosted Filter Collection)

Experimental. This associates a client defined FilterCollection to the system in the referencing profile.

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 436 describes class CIM_HostedCollection (Hosted Filter Collection).

43.8.6 CIM_HostedService (Indication Config Service to System)

Experimental. This associates the IndicationConfigurationService to the System in the referencing profile.

Table 435 - SMI Referenced Properties/Methods for CIM_FilterCollectionSubscription (Filter Col-
lection Subscription)

Properties Flags Requirement Description & Notes

OnFatalErrorPolicy Mandatory

OtherOnFatalErrorPo
licy

Optional This should contain a description of the fatal error policy if
OnFatalErrorPolicy=1 (Other).

FailureTriggerTimeInt
erval

Mandatory Specifies minimum delay before OnFatalErrorPolicy is
implemented.

SubscriptionState Mandatory

OtherSubscriptionSta
te

Optional This should contain a description of the subscription state if
SubscriptionState=1 (Other).

RepeatNotificationPo
licy

Mandatory This shall be 2 (None), 3 (Suppress), or 4 (Delay).

RepeatNotificationInt
erval

Optional This should be provided if the value of
RepeatNotificationPolicy is 3 (Suppress) or 4 (Delay).

RepeatNotificationGa
p

Optional This should be provided if the value of
RepeatNotificationPolicy is 4 (Delay).

RepeatNotificationCo
unt

Optional This should be provided if the value of
RepeatNotificationPolicy is 3 (Suppress) or 4 (Delay).

Filter Mandatory Reference to the FilterCollection.

Handler Mandatory Reference to the ListenerDestination.

Table 436 - SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Filter Collec-
tion)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the FilterCollection.

Antecedent Mandatory Reference to the 'Top level' System that hosts the
collection.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 447

Experimental Indication Profile

686

687

688

689
690
691
692
693

694

695

696

697

698

699
Requirement: Mandatory

Table 437 describes class CIM_HostedService (Indication Config Service to System).

43.8.7 CIM_IndicationFilter (client defined)

CIM_IndicationFilter instances that are 'client defined' are IndicationFilters that are be created by a client using
CreateInstance. If a profile implementation can support client defined IndicationFilters, the implementation would
support 'client defined' IndicationFilter instances. The implementation shall support 'client defined' filters that are
defined by SMI-S profile as mandatory, but may also support additional filters supported by the implementation
(See QueryCapabilities).

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 438 describes class CIM_IndicationFilter (client defined).

Table 437 - SMI Referenced Properties/Methods for CIM_HostedService (Indication Config Ser-
vice to System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting system.

Dependent Mandatory The Indication configuration service hosted on the system.

Table 438 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This should take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 42.1.1 IndicationFilter Names.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Mandatory This should be all the namespaces where the indications
may originate.
448

 Experimental Indication Profile

700

701
702
703
704

705

706

707

708

709

710
43.8.8 CIM_IndicationFilter (pre-defined)

CIM_IndicationFilter instances that are 'pre-defined' are IndicationFilters that are populated automatically by the
profile provider. If a profile implementation cannot support client defined IndicationFilters, the implementation can
populate its model with 'pre-defined' IndicationFilter instances. 'Pre-defined' filters shall include those that are
required by the profile, but may also contain additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 439 describes class CIM_IndicationFilter (pre-defined).

Query Mandatory A string that specifies (in QueryLanguage terms) which
indications are to be delivered to the ListenerDestinations.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName Optional A Client Defined user friendly string that identifies the
Indication Filter.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 439 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This should take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 42.1.1 IndicationFilter Names.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

Table 438 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 449

Experimental Indication Profile

711

712
713
714

715

716

717

718

719
43.8.9 CIM_IndicationSubscription

A CIM_IndicationSubscription is not subclassed from anything. The class definition specializes the
CIM_IndicationSubscription definition in the Indication profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 440 describes class CIM_IndicationSubscription.

SourceNamespaces N Mandatory This should be all the namespaces where the indications
may originate.

Query Mandatory A string that specifies (in QueryLanguage terms) which
indications are to be delivered to the ListenerDestinations.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries, but may be
'WQL' or 'SMI-S V1.0'. WQL and SMI-S V1.0 are
deprecated in favor of 'DMTF:CQL'.

ElementName N Optional SMI-S does not specify this property for pre-defined
IndicationFilters.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

Table 440 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes

RepeatNotificationPo
licy

Mandatory SMI-S supports a restricted set of values.

This shall be 2|3|4 ('None' | 'Suppress' | 'Delay').

RepeatNotificationInt
erval

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

RepeatNotificationGa
p

Optional Mandatory if the RepeatNotificationPolicy is 'Delay'.

RepeatNotificationCo
unt

Optional Mandatory if the RepeatNotificationPolicy is 'Suppress' or
'Delay'.

LastIndicationIdentifi
er (overridden)

Optional The IndicationIdentifier of the last indication produced for
this subscription regardless if that indication were
delivered.

LastIndicationProduc
tionDateTime
(overridden)

Optional The date and time of the production of the last indication
produced for this subscription regardless if that indication
were delivered.

Table 439 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes
450

 Experimental Indication Profile

720

721
722
723

724

725

726

727

728
43.8.10 CIM_InstCreation

This is a specialization of the CIM_InstCreation class in the Indication Profile. The class definition specializes the
CIM_InstCreation definition in the Indication profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 441 describes class CIM_InstCreation.

OnFatalErrorPolicy N Optional Not Specified in this version of the Profile.

OtherOnFatalErrorPo
licy

N Optional Not Specified in this version of the Profile.

FailureTriggerTimeInt
erval

N Optional Not Specified in this version of the Profile.

SubscriptionState N Optional Not Specified in this version of the Profile.

OtherSubscriptionSta
te

N Optional Not Specified in this version of the Profile.

TimeOfLastStateCha
nge

N Optional Not Specified in this version of the Profile.

SubscriptionDuration N Optional Not Specified in this version of the Profile.

SubscriptionStartTim
e

N Optional Not Specified in this version of the Profile.

SubscriptionTimeRe
maining

N Optional Not Specified in this version of the Profile.

OtherRepeatNotificati
onPolicy

N Optional Not Specified in this version of the Profile.

AlertOnStateChange N Optional Not Specified in this version of the Profile.

Filter (overridden) Mandatory

Handler (overridden) Mandatory

Table 441 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes

IndicationIdentifier
(overridden)

Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

Table 440 - SMI Referenced Properties/Methods for CIM_IndicationSubscription

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 451

Experimental Indication Profile

729

730
731
732

733

734

735

736

737
43.8.11 CIM_InstDeletion

This is a specialization of the CIM_InstDeletion class in the Indication Profile. The class definition specializes the
CIM_InstDeletion definition in the Indication profile. Properties or methods not inherited are marked accordingly as
'(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 442 describes class CIM_InstDeletion.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

IndicationFilterName
(added)

Mandatory The list of IndicationFilter.Name values for IndicationFilters
or FilterCollections that this indication supports.

Table 442 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes

IndicationIdentifier
(overridden)

Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

Table 441 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes
452

 Experimental Indication Profile

738

739
740
741

742

743

744

745

746
43.8.12 CIM_InstModification

This is a specialization of the CIM_InstModification class in the Indication Profile. The class definition specializes
the CIM_InstModification definition in the Indication profile. Properties or methods not inherited are marked
accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 443 describes class CIM_InstModification.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

IndicationFilterName
(added)

Mandatory The list of IndicationFilter.Name values for IndicationFilters
or FilterCollections that this indication supports.

Table 443 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes

IndicationIdentifier
(overridden)

Mandatory An identifier for the Indication used for correlated
indications.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

IndicationTime Mandatory The time and date of creation of the Indication. The
property may be set to NULL if it cannot be determined.

SourceInstance Mandatory A copy of the instance that changed to generate the
Indication. SourceInstance contains the current values of
the properties selected by the Indication Filter's Query.

SourceInstanceMode
lPath

Mandatory The Model Path of the SourceInstance.

PreviousInstance Optional A copy of the 'previous' instance whose change generated
the Indication. PreviousInstance contains 'older' values of
an instance's properties (as compared to SourceInstance),
selected by the IndicationFilter's Query.

PerceivedSeverity N Optional Not Specified in this version of the Profile.

OtherSeverity N Optional Not Specified in this version of the Profile.

SourceInstanceHost N Optional Not Specified in this version of the Profile.

IndicationFilterName
(added)

Mandatory The list of IndicationFilter.Name values for IndicationFilters
or FilterCollections that this indication supports.

Table 442 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 453

Experimental Indication Profile

747

748

749

750

751

752

753

754

755

756

757

758

759
43.8.13 CIM_ListenerDestinationCIMXML (Indication Handler)

CIM_ListenerDestinationCIMXML is subclassed from CIM_ListenerDestination.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 444 describes class CIM_ListenerDestinationCIMXML (Indication Handler).

43.8.14 CIM_ListenerDestinationWSManagement (WS-Man Indication Handler)

Experimental. CIM_ListenerDestinationWSManagement is subclassed from CIM_ListenerDestination.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Optional

Table 444 - SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication
Handler)

Properties Flags Requirement Description & Notes

ElementName Mandatory A client defined user friendly string that identifies the
CIMXML Listener destination.

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

PersistenceType Mandatory For SMI-S, this shall be 2|3 ('permanent' | 'transient').

Destination Mandatory The destination URL to which CIM-XML Export Messages
are to be delivered. The scheme prefix shall be consistent
with the DMTF CIM-XML specifications.If a scheme prefix
is not specified, the scheme \http:\'shallbeassumed.'

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.

OtherPersistenceTyp
e

N Optional Not Specified in this version of the Profile.
454

 Experimental Indication Profile

760

761

762

763
764

765

766

767

768
Table 445 describes class CIM_ListenerDestinationWSManagement (WS-Man Indication Handler).

43.8.15 CIM_MemberOfCollection (Filter Collection to Filters)

Experimental. This associates a client defined FilterCollection to the Filters in the collection.

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 446 describes class CIM_MemberOfCollection (Filter Collection to Filters).

43.8.16 SNIA_IndicationConfigurationCapabilities

Experimental. This is the capabilities of the implementation of indications.

Requirement: Mandatory

Table 445 - SMI Referenced Properties/Methods for CIM_ListenerDestinationWSManagement
(WS-Man Indication Handler)

Properties Flags Requirement Description & Notes

ElementName Mandatory A user-friendly string that describes the destination.

SystemCreationClas
sName

Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

SystemName Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

CreationClassName Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

Name Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

PersistenceType Mandatory For SMI-S, this shall be 2|3 ('permanent' | 'transient').

Destination Mandatory The value shall be a valid IETF Uniform Resource Identifier
(URI) value.

ProtocolType Mandatory For WS-Man, this shall be '4' (WS-Management).

Table 446 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Filter Collection to
Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the FilterCollection.

Member Mandatory Reference to the IndicationFilter.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 455

Experimental Indication Profile

769

770

771

772

773

774

775
776
Table 447 describes class SNIA_IndicationConfigurationCapabilities.

43.8.17 SNIA_IndicationConfigurationService

Experimental. This is the indication services of the implementation.

Requirement: Mandatory

Table 448 describes class SNIA_IndicationConfigurationService.

43.8.18 SNIA_IndicationFilterTemplate (semi-fixed)

Experimental. IndicationFilter instances that are 'semi-fixed' are IndicationFilters that are be created by a client
using CreateInstance, but they follow a pattern defined by an IndicationFilterTemplate. If a profile implementation

Table 447 - SMI Referenced Properties/Methods for SNIA_IndicationConfigurationCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Optional This is a user friendly name of the capabilities instance.

SupportedFeatures Mandatory This may be any or all of the following values: '2' (none), '3'
(Predefined Filters), '4' (Client Defined Filters), '5'
(Predefined Filter Collections), '6' (Client Defined Filter
Collections) or '7' (Semi-fixed Indication Filters).

SupportedSynchrono
usActions

Mandatory This shall be '2' (none), '3' (Test Listener), '4' ("Create and
Subscribe) or '5' (Filter Collection Methods).

Table 448 - SMI Referenced Properties/Methods for SNIA_IndicationConfigurationService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

TestListener() Optional A method for testing if the listener can receive indications.

CreateAndSubscribe(
)

Optional A method for creating a Filter and subscribing to it.

CreateFilterCollectio
n()

Optional A method for creating a FilterCollection and adding initial
members.

AddFilterToCollection
()

Optional A method for adding members to a client defined
FilterCollection.

RemoveFilterFromCo
llection()

Optional A method for removing members from a client defined
FilterCollection.

DeleteFilterCollection
()

Optional A method for Deleting a FilterCollection.
456

 Experimental Indication Profile

777
778

779

780

781

782

783
784

785
can support semi-fixed IndicationFilters, the implementation would support 'semi-fixed' IndicationFilterTemplate
instances. The implementation shall support 'semi-fixed' filters that are defined by SMI-S profile as mandatory.

SNIA_IndicationFilterTemplate is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='7' (Semi-fixed Indication
Filters).

Table 449 describes class SNIA_IndicationFilterTemplate (semi-fixed).

Table 449 - SMI Referenced Properties/Methods for SNIA_IndicationFilterTemplate (semi-fixed)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This shall take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 43.1.4.1 Naming Conventions for
IndicationFilterTemplates and IndicationFilters.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Optional Experimental. For instances in the InteropNamespace, this
should be all the namespaces where the indications may
originate. For instances in the implementation namespaces
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

Query Mandatory A string that specifies a template (in QueryLanguage terms
with SUBSTITUTION_STRINGs) what IndicationFilters
may be created from this template.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries with substitution.

ElementName Optional A Client Defined user friendly string that identifies the
Indication Filter.

Caption N Optional Not Specified in this version of the Profile.

Description N Optional Not Specified in this version of the Profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 457

Experimental Indication Profile
DEPRECATED
458

 Object Manager Adapter Subprofile

1

2

3
4
5

6

7

8

9

10

11

12

13

14

15
STABLE

Clause 44: Object Manager Adapter Subprofile

44.1 Description
The ObjectManagerAdapter model defines the protocol adapters that are supported for a CIM Server. This model
is optional for the CIM Server Profile. If implemented, the ObjectManagerAdapterModel shall adhere to Table 450,
“CIM Elements for Object Manager Adapter”.

44.1.1 Instance Diagram

ObjectManagerAdapter Subprofile is not advertised. Figure 65 illustrates the model.

44.2 Health and Fault Management
Not defined in this standard.

44.3 Cascading Considerations
Not defined in this standard.

44.4 Supported Subprofiles and Packages
None.

44.5 Methods of the Profile
None.

Figure 65 - ObjectManagerAdapter Subprofile Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 459

Object Manager Adapter Subprofile

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
44.6 Client Considerations and Recipes
None.

44.7 Registered Name and Version
Object Manager Adapter version 1.3.0 (Component Profile)

44.8 CIM Elements
Table 450 describes the CIM elements for Object Manager Adapter.

44.8.1 CIM_CommMechanismForObjectManagerAdapter

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 451 describes class CIM_CommMechanismForObjectManagerAdapter.

44.8.2 CIM_ObjectManagerAdapter

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 450 - CIM Elements for Object Manager Adapter

Element Name Requirement Description

44.8.1
CIM_CommMechanismForObjectManagerAd
apter

Mandatory

44.8.2 CIM_ObjectManagerAdapter Mandatory

Table 451 - SMI Referenced Properties/Methods for
CIM_CommMechanismForObjectManagerAdapter

Properties Flags Requirement Description & Notes

Dependent Mandatory The encoding/protocol/set of operations that may be used
to communicate between the Object Manager and the
referenced ObjectManagerAdapter.

Antecedent Mandatory The specific ObjectManagerAdapter whose communication
mechanism with the CIM Object Manager is described.
460

 Object Manager Adapter Subprofile

33
 Table 452 describes class CIM_ObjectManagerAdapter.

STABLE

Table 452 - SMI Referenced Properties/Methods for CIM_ObjectManagerAdapter

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory

Handle Mandatory

AdapterType Mandatory

OtherAdapterTypeDe
scription

Optional

OperationalStatus Mandatory

StatusDescriptions Conditional Conditional requirement: CIM_ObjectManagerAdapter
requires the StatusDescriptions property be populated if the
OperationalStatus property has a value of 1 (\Other\').'This
shall not be NULL if 'Other' is identified in
OperationalStatus.

Started Mandatory

StartService() Mandatory

StopService() Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 461

Object Manager Adapter Subprofile
462

1

2

3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19

20
21
22
23

24

25
26
27

28

29
30
31
32
EXPERIMENTAL

Clause 45: Proxy Server System Management Subprofile

45.1 Description
This subprofile addresses the question of how an SMI-S server can discover the devices it is going to manage.
Knowledge of the external devices must be set by the client and retained in some fashion by the SMI-S server.
Note that the mechanics of storing that information is beyond the scope of this profile. Typically, in order for the
SMI-S server to discover and manage these devices, the client will need to provide some connection information,
such as IP addresses, and authorization/authentication information (e.g., user name and password) to allow
access to the device. SMI-S defines the two roles of SMI-S servers -- Embedded and Proxy. Proxy servers (see
Clause 10: SMI-S Roles in Storage Management Technical Specification, Part 1 Common Architecture) typically
manage one or more devices that are separate from the computer system the proxy is running on. Embedded
servers are internal to the device being managed. While it is more likely that the Proxy server will need client help
to determine which devices to manage, it may also be the case that Embedded services may also take advantage
of this capability. Therefore this profile does not distinguish between Proxy and Embedded servers.

This subprofile defines a new service, SystemRegistrationService with three methods, AddSystem,
DiscoverSystems, and RemoveSystem. AddSystem will supply all the parameters, such as IP Address, that will
allow the proxy to add the device. DiscoverSystems is similar to AddSystem but relies on the SMI-S server to go
out and discover devices that it can manage. The Credential Management and Device Credentials subprofiles will
be used to support the passing of the security credentials to the device to be added or discovered. RemoveSystem
will remove the device from management by the proxy.

When a system is added to the proxy, it will result in the creation of the top-level system and all the other objects
needed to correctly model that system. Similarly, when a system is removed, it results in the deletion of the top-
level computer system and corresponding objects. The Client Considerations section below will cover this in more
detail.

45.1.1 Relationship to Server Profile

This profile is a component profile (or subprofile) and extends the functionality of the Server Profile, which in turn
references this as a component profile. This profile introduces a new Service that is associated to the Server
System.

45.1.2 Model

The service shall be modeled as an instance of SNIA_SystemRegistrationService associated to the System that is
associated to the ObjectManager via HostedService as defined in the Server Profile. Figure 66 shows the Proxy
Server System Management model. The service shall have an associated Capabilities object,
SNIA_SystemRegistrationCapabilities, that is associated to the service via ElementCapabilities.
SMI-S 1.6.0 Revision 4 SNIA Technical Position 463

Proxy Server System Management Subprofile

33
 Table 453 describes each associated capability.

Figure 66 - Proxy Server System Management Model

Table 453 - Capabilities

Capability Description

SupportedSynchronousMethods[] Lists methods of the profile that do not result in a job
being created

SupportedAsynchronousMenthods[] Lists methods of the profile that do result in a job being
created. If a method is listed in both, the client needs
to check the Job parameter to see if a job was created
464

 Proxy Server System Management Subprofile

34

35
36
37
38
39
40
41
42

43

44

45

46

47

48

49

50
51
52

53

54
55
56
45.1.3 Creation Considerations

The methods in this profile shall not support the creation of new namespaces. The namespace supplied to the
method shall already exist. The SMI-S server may restrict the namespaces that can be used. An instance of the
SNIA_SystemRegistrationService shall be created in each namespace supported and shall be associated to the
System in the interop namespace. For some SMI-S servers, addition of a device in one namespace may result in
the device being accessible from other namespace. One specific use case for this is where a proxy supports
namespaces for prior versions of SMI-S for backwards compatibility with clients. The same code may support
these multiple namespaces by default. There is no mechanism in this profile for a client to determine if this is
indeed the case.

45.2 Health and Fault Management Consideration
Not defined in this standard.

45.3 Cascading Considerations
Not applicable

45.4 Supported Profiles, Subprofiles, and Packages
Related Profiles for Proxy Server System Management: Not defined in this standard.

45.5 Methods of the Profile
This subprofile defines three new methods, AddSystem, DiscoverSystem, and RemoveSystem. AddSystem will
have parameters such as IP Address that will allow the proxy to discover the device. The security aspect needs
some refinement. It may take advantage of the Security profiles.

45.5.1 AddSystem

The AddSystem method shall result in the SMI-S server contacting the device and creating the instances
necessary to model that device in the requested namespace. If the device has already been added to the SMI-S,
then calling this method shall result in an update to the instances already in existence. Note that this may result in

AutonomousProfilesSupported[] This property identifies the profiles that this service is
capable of discovering and managing. For example, a
block device could potentially list “Array” and “Storage
Virtualizer”. An attempt to discover a different kind of
device, like a Fibre Channel switch would fail.

VendorsSupported[] This property identifies the vendors whose devices
this service can discover. For example, if the list
contains “Vendor A” then only “Vendor A” devices with
the supported autonomous profiles listed in
AutonomousProfilesSupported[] can be discovered.
Attempting to discover other vendors devices would
result in an error. This should include at least the
instrumentation vendor, and may include other
vendors. (e.g., due to OEM relationships)

Table 453 - Capabilities

Capability Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 465

Proxy Server System Management Subprofile

57
58

59

60
61
62

63

64
the creation of new and deletion of old instances. See 45.6 "Client Considerations and Recipes" for more details on
this method call.

Method signature:

uint32 AddSystem(CIM_Job REF Job, String Namespace, String Addresses[], uint32 PortNumbers[], uint16
AddressTypes[], String ElementName, String Description, SharedSecret REF Secret, OUT CIM_System REF
AddedSystem)

Table 454 describes the AddSystem Method Parameters.

Table 455 presents the valid return codes.

Table 454 - AddSystem Method Parameters

Parameters Description

Job Reference to a Job, if one is created

UseNamespace Name of the Namespace to create the system in. Namespace must already
exist

Addresses[] Address of the device (e.g., IP address(es) of array controller). Shall have the
same number of elements as AddressTypes[]

PortNumbers Port number to use for each address given. Shall either be null if not applicable
or shall ave one entry per entry in the Addresses array

AddressTypes[] Type of address (valid values are URL, IPAddress, DeviceName, WWN), Each
entry in AddressTypes[] is matched with the entry in Addresses[]

ElementName User-friendly name to give to the system

Description Description to use for the system

Secret Reference to previously created SharedSecret to pass along to device

AddedSystem Reference to system added

Table 455 - AddSystem Return Codes

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot
be modified

Invalid namespace Namespace supplied does
not exist or service not
supported for that namespace
466

 Proxy Server System Management Subprofile

65

66
67
68
69
70
71
72

73

74
75

76
45.5.2 DiscoverSystems

The DiscoverSystems method shall result in the SMI-S server attempting to discover devices that are available.
The difference between AddSystem and DiscoverSystems is that DiscoverSystems does not need connection
information. Upon discovery, the SMI-S server shall create the instances necessary to model that device in the
requested namespace. If the device has already been added to the SMI-S server, then calling this method shall
result in an update to the instances already in existence. Note that this may result in the creation of new and
deletion of old instances. See 45.6 "Client Considerations and Recipes" for more details on what happens with this
method call.

Method signature:

uint32 DiscoverSystems(CIM_Job REF Job, String Namespace, SharedSecret REF Secret, OUT CIM_System
REF DiscoveredSystems[])

Table 456 describes parameters of DiscoverSystem.

Device profile not supported Device at the address
specified does not support
any of the autonomous
profiles supported

Vendor not supported Device at the address
specified from a vendor that is
not supported

Device not found No device found at address
given

Communication error Unable to communicate with
device

Invalid credentials Invalid credentials for device

4096: Method Parameters Checked - Job started Job was started

Table 456 - DiscoverSystem Parameters

Parameter Description

Job Reference to a Job, if one is created

UseNamespace Name of the Namespace to create the system in. Namespace must already
exist

Secret Reference to previously created SharedSecret to pass along to device

DiscoveredSystems[] System discovered

Table 455 - AddSystem Return Codes

Value Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 467

Proxy Server System Management Subprofile

77

78

79

80

81
Table 457, “DiscoverSystem Return Codes,” presents return codes for the DiscoverSystem method.

45.5.3 RemoveSystem

The RemoveSystem method shall result in the removal of all instances related to that device from the proxy server.

Method signature:

uint32 RemoveSystem(CIM_Job REF Job, String Namespace, CIM_System REF Device)

Table 457 - DiscoverSystem Return Codes

Value Description

0: Success Job completed with no error.

1: Not Supported Not supported

2: Unknown Unknown error occurred

3: Timeout Timeout

4: Failed Method failed.

5: Invalid Parameter

6: In Use Element is in use and cannot
be modified

Invalid namespace Namespace supplied does
not exist or service not
supported for that namespace

Device profile not supported Device at the address
specified does not support
any of the autonomous
profiles supported

Vendor not supported Device at the address
specified from a vendor that is
not supported

Device not found No device found at address
given

Communication error Unable to communicate with
device

Invalid credentials Invalid credentials for device

4096: Method Parameters Checked - Job started Job was started
468

 Proxy Server System Management Subprofile

82

83

84
85
86
87
88

89
90
91
92
93
94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111
Table 458 describes each of the RemoveSystem Parameters.

45.6 Client Considerations and Recipes
One of the key client considerations is indications. Because adding and removing a device will result in the creation
or deletion of a large number of instances, care must be taken to avoid “indication storms” that overwhelm clients
with large numbers of indications. To this end, the proxy shall only send an InstCreation or InstDeletion indication
for the creation or deletion of the top-level ComputerSystem, respectively. Note that these are exactly the
indications specified in the autonomous device profiles Fabric, Array, and Storage Virtualizer.

Another consideration is what happens if the proxy does not support the device being added. For example, a proxy
for an array is asked to discover a switch, or vendor A’s proxy is asked to discover vendor B’s device. To prevent
clients from having to try-and-fail a request, the SNIA_SystemRegistrationCapabilities class provides
AutonomousProfilesSupported and VendorsSupported arrays. When adding a device, the client will probably have
enough information at hand about that device to know, based on these arrays, whether or not the AddSystem call
would succeed for that device.

The following are the anticipated uses cases that will drive development of the functionality.

45.6.1 Use Case 1: Add Device

In this use case, the client wishes to discover a new device just installed

Pseudo-code:

Assume IP address, user name and password are known

Step 1: Create SharedSecret

Step 2: Create indication listener

Step 3: Call AddSystem

Step 4: If Job created, wait for indication

Step 5: Remove indication listener

45.6.2 Use Case 2: Remove Device

In this use case, the client wishes to delete a device that has just been replaced.

Assume IP address, user name and password are known

Step 1: Create indication listener

Step 2: Call RemoveSystem

Step 3: If Job created, wait for indication

Step 4: Remove indication listener

Table 458 - RemoveSystem Parameters

Parameters Description

Job Reference to a Job, if one is created

Namespace Name of the Namespace to create the system in. Namespace must already
exist

Device Reference to device currently managed
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 469

Proxy Server System Management Subprofile

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126
45.7 Registered Name and Version
Proxy Server System Management version 1.3.0 (Component Profile)

45.8 CIM Elements
Table 459 describes the CIM elements for Proxy Server System Management.

45.8.1 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 460 describes class CIM_HostedService.

45.8.2 SNIA_SystemRegistrationCapabilities

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 459 - CIM Elements for Proxy Server System Management

Element Name Requirement Description

45.8.1 CIM_HostedService Mandatory

45.8.2 SNIA_SystemRegistrationCapabilities Mandatory

45.8.3 SNIA_SystemRegistrationService Mandatory

SELECT * FROM CIM_InstCreation WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Addition of a device (ComputerSystem).

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ComputerSystem

Mandatory Deletion of a device (ComputerSystem).

Table 460 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
470

 Proxy Server System Management Subprofile

127

128

129

130

131

132

133
Table 461 describes class SNIA_SystemRegistrationCapabilities.

45.8.3 SNIA_SystemRegistrationService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 462 describes class SNIA_SystemRegistrationService.

EXPERIMENTAL

Table 461 - SMI Referenced Properties/Methods for SNIA_SystemRegistrationCapabilities

Properties Flags Requirement Description & Notes

AutonomousProfiles
Supported

Mandatory This property identifies the profiles that this service is
capable of discovering and managing. For example, a block
device could potentially list "Array" and "Storage
Virtualizer".

VendorsSupported Mandatory This property identifies the vendors whose devices this
service can discover. For example, if the list contains
"Vendor A" then only "Vendor A" devices can be
discovered. This should include at least the instrumentation
vendor, and may include other vendors. (e.g. due to OEM
relationships).

SupportedAsynchron
ousActions

Mandatory Indicates which methods are executed asynchronously.

SupportedSynchrono
usActions

Mandatory Indicates which methods are executed synchronously.

Table 462 - SMI Referenced Properties/Methods for SNIA_SystemRegistrationService

Properties Flags Requirement Description & Notes

AddSystem() Mandatory

DiscoverSystems() Optional

RemoveSystem() Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 471

Proxy Server System Management Subprofile
472

 Device Credentials Subprofile

1

2

3
4
5

6
7

8
9

10

11

12

13

14

15

16

17
STABLE

Clause 46: Device Credentials Subprofile

46.1 Description
Many devices require a shared secret to be provided to access them. This shared secret is different that the
credentials used by the SMI-S Client for authentication with the CIM Server. This subprofile is used to change this
device shared secrets.

The SMI-S Client shall not be provided with the password, only the principle. The SMI-S Client can use the
principle to change the shared secret appropriately.

The device credentials can be exposed throughout the CIM model such that a CIM Client may manipulate them.
The credentials are modeled as shared secrets.

46.1.1 Instance Diagram

Figure 67 provides a sample instance diagram.

46.2 Health and Fault Management Considerations
Not defined in this standard.

46.3 Cascading Considerations
Not defined in this standard.

46.4 Supported Subprofiles and Packages
Not defined in this standard.

Figure 67 - DeviceCredentials Subprofile Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 473

Device Credentials Subprofile

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
46.5 Extrinsic Methods of this Profile
Not defined in this standard.

46.6 Client Considerations and Recipes
None.

46.7 Registered Name and Version
Device Credentials version 1.3.0 (Component Profile)

46.8 CIM Elements
Table 463 describes the CIM elements for Device Credentials.

46.8.1 CIM_HostedService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 464 describes class CIM_HostedService.

46.8.2 CIM_SharedSecret

Created By: Static
Modified By: Static
Deleted By: Static

Table 463 - CIM Elements for Device Credentials

Element Name Requirement Description

46.8.1 CIM_HostedService Mandatory

46.8.2 CIM_SharedSecret Mandatory

46.8.3 CIM_SharedSecretIsShared Mandatory

46.8.4 CIM_SharedSecretService Mandatory

Table 464 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
474

 Device Credentials Subprofile

36

37

38

39

40

41

42

43

44

45

46

47

48
Requirement: Mandatory

Table 465 describes class CIM_SharedSecret.

46.8.3 CIM_SharedSecretIsShared

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 466 describes class CIM_SharedSecretIsShared.

46.8.4 CIM_SharedSecretService

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 465 - SMI Referenced Properties/Methods for CIM_SharedSecret

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

ServiceCreationClas
sName

Mandatory

ServiceName Mandatory

RemoteID Mandatory

Secret Mandatory

Table 466 - SMI Referenced Properties/Methods for CIM_SharedSecretIsShared

Properties Flags Requirement Description & Notes

Antecedent Mandatory

Dependent Mandatory
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 475

Device Credentials Subprofile

49
 Table 467 describes class CIM_SharedSecretService.

STABLE

Table 467 - SMI Referenced Properties/Methods for CIM_SharedSecretService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

ElementName Mandatory
476

 Miscellaneous Security Profiles

1

2
3

4

5

6

7

8

9

10

11
12
13
14
DEPRECATED

Clause 47: Miscellaneous Security Profiles

The functionality of several experimental SMI-S security profiles has been subsumed by emerging profile
development in DMTF. The following experimental SMI-S profiles have been removed from this standard:

• Security Profile

• Authorization Subprofile

• Credential Management Subprofile

• Security Resource Ownership Subprofile

• Security Role Based Access Control Subprofile

• Identity Management Subprofile

• 3rd Party Authentication Subprofile

The final experimental versions of these profiles are defined in Storage Management Technical Specification, Part
2 Common Profiles, Version 1.3.0. The emerging profiles from DMTF do not map exactly to the SNIA profile, but
DSP1034 Simple Identity Management Profile and DSP1039 Role Based Authorization Profile are related. These
and other DMTF profiles may be downloaded from http://www.dmtf.org/standards/profiles/

DEPRECATED
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 477

Miscellaneous Security Profiles
478

1

2

3

4

5

6

7

8

9

10

11

12
13
14

15
16
17

18
19
20
EXPERIMENTAL

Clause 48: Operational Power Profile

48.1 Synopsis
Profile Name: Operational Power (Component Profile)

Version: 1.5.0

Organization: SNIA

CIM Schema Version: 2.23.0

Table 468 describes the related profiles for Operational Power.

Central Class: OperationalPowerStatisticsService

Scoping Class: ComputerSystem

48.2 Description

48.2.1 Overview

The Operational Power Profile defines classes and methods for viewing system power usage information in real
time. It is a component profile supported by autonomous profiles such as the Array and Self-Contained NAS
Profile.

Emerging data center best practices require close monitoring of the energy used by various system components.
These include the CPUs, chipsets, fans, power supplies, disks and PDUs (Power Distribution Units) used in
storage systems.

Systems have various capabilities with respect to the granularity of information they are able to provide. For this
reason, nearly all the classes and properties in this profile, except for whole-system info, are listed as optional.
However, implementers must understand that the more granular the information that a data center manager can

Table 468 - Related Profiles for Operational Power

Profile Name Organization Version Requirement Description

Disk Drive Lite SNIA 1.6.0 Optional

Fan SNIA 1.0.1 Optional

Power Supply SNIA 1.0.1 Optional

Multiple Computer
System

SNIA 1.2.0 Optional

CPU DMTF 1.0.0 Optional

Device Tray DMTF 1.0.0 Optional
SMI-S 1.6.0 Revision 4 SNIA Technical Position 479

Operational Power Profile

21
22

23
24

25

26

27
28
29
30
31
32

33
34
35
36
37

38
39
40
obtain, the more specifically they can tune their power and air conditioning systems. So it is advantageous to
implement every property on which the underlying system supports reporting.

This profile is specifically patterned after the Block Server Performance and the Filesystem Performance Profiles in
order to ease implementation by both client and server-side developers already experienced with those profiles.

48.3 Implementation

48.3.1 Model Overview

Figure 68 provides an overview of the model. The ComputerSystem is that of the autonomous profile (e.g., a NAS
Head or a Self-Contained NAS) which utilizes the Operational Power Profile. This set of classes indicates the
system supports power statistics for the entire system (OperationalPowerStatistics with ElementType = 2) and
disks (OperationalPowerStatistics with ElementType = 10). There may be multiple instances of
OperationalPowerStatistics with ElementType = 2 providing power statistics for multiple disks. There may be power
statistics for other element types (see 48.3.2 Element Types).

The StatisticsCollection is the anchor point from which all statistics being kept by the profile can be found. Statistics
are defined as an OperationalPowerStatisticalData class, instances of which hold the statistics for particular
metered elements (i.e., whole systems, PDUs, power supplies, disks, disk trays, RAID groups, and fans). The
particular type of metered element is recorded in the instance of OperationalPowerStatisticalData within the
ElementType property.

All of the statistics instances are related to the elements that they meter via the ElementStatisticalData association
(e.g., OperationalPowerStatisticalData for a DiskDrive can be found from the DiskDrive by traversing the
ElementStatisticalData association).

Figure 68 - Operational Power Profile Summary
480

 Operational Power Profile

41
42
43

44

45
46
47
48

49

50
51
All of the statistics instances kept within the profile are associated to the one StatisticsCollection instance. Access
to all of the statistics for the profile is through the StatisticsCollection. The StatisticsCollection has a
HostedCollection association to the "top level" computer system of the profile.

48.3.2 Element Types

Statistics may be kept for a number of elements within the profile, including elements within other component
profiles. For example, power statistics may be associated with an instance of CIM_DiskDrive implemented as part
of the SMI-S DIsk Drive Lite Profile. If the implementation does not support the Disk Drive Live Profile, then it may
chose to support CIM_DiskDrive instances purely for this profile.

Figure 69, “Model for Element Types,” provides an overview of the models for various element types.

OperationalPowerStatisticsCapabilities.ElementsSupported holds a list of the types of elements supported by this
profile. See 48.3.7.1 ElementsSupported.

Figure 69 - Model for Element Types
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 481

Operational Power Profile

52

53
54
55
56
57
58
59

60

61
62
63
64
65

66
67
68
69
70
71

72

73
74
75
76

77
78
79

80

81

82
83
84
48.3.2.1 "Top Level" System
The top-level system is the ComputerSystem instance defined in an autonomous profile (e.g., Array, NAS Head)
that supports the Operational Power Profile. This top-level system represents the entire storage system; power
statistics for the top-level system represent the aggregation of values from all elements within the system. In other
words, the milliwatt value reported for the top-level statistics should equal the sum of the Milliwatts reported for
other elements. Power statistics for the top-level system are mandatory. Figure 70, “Classes related to Top-level
System Power Statistics,” which is a subset of the model from Figure 69, “Model for Element Types,” shows the
mandatory classes for power statistics for the top-level system.

48.3.2.2 Power Source Statistics
Within this profile, a power source that provides statistics and provides some source of power conversion (for
example, from AC to DC) is known as a Power Supply and is modeled using CIM_PowerSupply. A device that
provides power statistics without information about conversions is known as a Power Distribution Unit (PDU) and is
modeled using CIM_PowerSource. Any given subset of power may be represented by either a PDU
(CIM_PowerSource) or Power Supply (CIM_PowerSupply), but shall not be resented by both.

The power statistics for Power Supplies or PDUs are kept within the OperationalPowerStatisticalData instances,
with one for each Power Supply or PDU within the system. The Milliwatts attribute of
OperationalPowerStatisticalData associated to PowerSource or PowerSupply represents the power dedicated to
that power source, not the power supplied by it. In other words, it represents the overhead of the power source.
There may be multiple instances per disk tray or controller. The implementation may use the DMTF Power Supply
Profile (DSP1015) or model key classes as follows:

Each PowerSupply or PowerSource instance shall be associated to the ComputerSystem using SystemDevice.

If no instance of CIM_SuppliesPower references the instance of CIM_PowerSupply (or PowerSource), the power
supply represented by CIM_PowerSupply or PowerSource supplies power to the whole managed system. In this
case, the CIM_ComputerSystem instance and the CIM_PowerSupply or PowerSource instance shall only be
associated through an instance of CIM_SystemDevice.

If at least one instance of CIM_SuppliesPower references the instance of CIM_PowerSupply (or PowerSource), all
of the power-receiving elements shall be associated with the CIM_PowerSupply (or PowerSource) instance
through an instance of CIM_SuppliesPower.

The ElementType associated with a PDU is 201; the ElementType associated with a power supply is 202.

48.3.2.3 Disk tray
Each disk tray is represented by a separate OperationalPowerStatisticalData instance. The tray itself is modeled by
an instance of CIM_LogicalModule. The implementation may use the DMTF Device Tray Profile (DSP1019) or may
model key classes as follows:

Figure 70 - Classes related to Top-level System Power Statistics
482

 Operational Power Profile

85
86
87
88

89

90

91
92
93

94

95

96

97
98
99

100

101

102

103

104
105

106

107
108

109

110
111
112
113
114

115

116

117
118

119

120

121

122
123
Each LogicalModule instance shall be associated to the ComputerSystem using SystemDevice. There shall be
ConcreteComponent associations between LogicalModule and contained disks. The Milliwatts value in the
OperationalPowerStatisticalData instance associated with LogicalModule shall be the sum of values of disks
residing in the tray.

The ElementType associated with a disk tray is 206.

48.3.2.4 Fan
The power statistics for each fan may be presented in a separate OperationalPowerStatisticalData instance. There
may be multiple instances per disk tray or controller head. The implementation may use the DMTF Fan Profile
(DSP1013) or may model key classes as follows:

Each Fan instance shall be associated to the ComputerSystem using SystemDevice.

The ElementType associated with a fan is 203.

48.3.2.5 CPU
The power statistics for each CPU in a system may be modeled by a separate OperationalPowerStatisticalData
instance. At the provider’s discretion, each core on the system may have its own instance. While the naming of
these instances is not specified, there may be a need to indicate whether cores or entire CPU units are being
reported. The implementation may use the DMTF CPU Profile (DSP1022) or may model key classes as follows:

Each CPU (CIM_Processor) instance shall be associated to the ComputerSystem using SystemDevice.

The ElementType associated with a CPU is 204.

48.3.2.6 Disk Drive
The statistics for each disk drive in a system is represented by a separate OperationalPowerStatisticalData
instance. The implementation may use the SNIA Disk Drive Lite Profile or may model key classes as follows:

Each Disk Drive (CIM_DiskDrive) instance shall be associated to the ComputerSystem using SystemDevice.

The ElementType associated with a disk drive is 10. This value is consistent with the value in the Block Server
Performance Profile.

48.3.2.7 RAID Groups
The statistics for each RAID Group in a system is represented by a separate OperationalPowerStatisticalData
instance. This OperationalPowerStatisticalData instance shall have an association to the SNIA_DeviceSet instance
representing the RAID Group. Each DIskDrive instance which is a member of the RAID group shall be associated
to the SNIA_DeviceSet via MemberOfCollection. The Milliwatts value in OperationalPowerStatisticalData
representing the RAID group shall be the sum of the values of the associated disks.

The ElementType associated with a RAID Group is 205.

48.3.2.8 Controller
If the implementation supports the SNIA Multiple Computer System Profile, it may model controller statistics with
OperationalPowerStatisticalData instances associated to ComputerSystem instances representing controllers.

The ElementType associated with a RAID Group is 207.

48.3.3 Power Metric Attributes

At this time, the following attributes are defined for all Elements described in 48.3.2 "Element Types":

• Milliwatt: the current value in Milliwats of the power consumed by the element referenced. Note that in this
standard, a milliwatt is defined to be one thousandth of a watt.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 483

Operational Power Profile

124

125
126

127
128

129

130
131
132
133
134
135
136

137

138
139
140
141
142
143
144

145
146
147
148
149
150
151

152

153
154
155
156

157
158
159
160
161
162

163
164
• Precision: the number of decimal places of accuracy of the Milliwatt attribute.

• StatisticTime: the date and time the Milliwatt value was acquired from the device. This is stored in CIM
datetime format.

All three of these values are mandatory for the OperationalPowerStatisticalData instance reference the top-level
ComputerSystem and optional for other elements.

48.3.4 Bulk Retrieval

Figure 68, “Operational Power Profile Summary,” illustrates the OperationalPowerStatisticsService for bulk
retrieval of all the statistics data and the creation of manifest collections. Associated with the
OperationalPowerStatisticsService is an OperationalPowerStatisticsCapabilities instance that identifies the specific
capabilities implemented by the operational power statistics support. Specifically, it includes an
“ElementsSupported” property that identifies the elements for which statistics are kept; the
OperationalPowerStatisticsCapabilities instance also identifies the various retrieval mechanisms (e.g., Extrinsic or
Association Traversal) that are implemented (i.e., supported) by the provider’s statistics support.

48.3.5 Default Manifest Collection

Associated with the instances of the StatisticsCollection shall be a provider-supplied (Default)
SNIA_ManifestCollection that represents the statistics properties that are kept by the profile. The default manifest
collection is indicated by the IsDefault property (=True) of the SNIA_OperationalPowerManifestCollection. For
each metered object (element) of the profile implementation, the default manifest collection will have exactly one
manifest that will identify which properties are included for that metered object. If an object is not metered, then
there shall not be a manifest for that element type. If an element type (e.g., CPU) is metered, then there shall be a
manifest for that element type.

EXPERIMENTAL

Each default manifest in the default manifest collection identifies the properties included by default by the
implementation. The CSVSequence property of the manifest shall identify the default sequence in which the
implementation will return properties within each record for the ElementType on a GetStatisticsCollection request.
For each property included in the manifest by the value “true”, there should be an entry in the CSVSequence array
identifying the OperationalPowerStatisticalData property by name. The first three values of CSVSequence shall be
"InstanceID", "ElementType" and "StatisticsTime" to allow correlation of the Manifest with the CSV record based on
the ElementType.

EXPERIMENTAL

48.3.6 Client Defined Manifest Collection

Manifest collections are either provider-supplied (SNIA_OperationalPowerManifestCollection.IsDefault=True) or
client-defined collections (SNIA_OperationalPowerManifestCollection.IsDefault=False). Client-defined collections
are used to indicate the specific statistics properties that the client would like to retrieve using the
GetStatisticsCollection method. For a discussion of provider-supplied manifest collections, see 48.3.5.

Client-defined manifest collections are a mechanism for restricting the amount of data returned on a
GetStatisticsCollection request. A client-defined manifest collection is identified by the IsDefault property of the
collection set to False. For each element type of the operational power statistics class (e.g., PDU, Fan, etc.), a
manifest can be defined that identifies which specific properties of the particular statistics class element type are to
be returned on a GetStatisticsCollection request. Each of the element types of the operational power statistics
class may have no or one manifest in any given manifest collection. This is illustrated in Figure 68.

In Figure 68, manifest classes are defined for PDUs, power supplies, fans, CPUs, disks and disk trays. Each
property of the manifest is a Boolean that indicates whether the property is to be returned (true) or omitted (false).
484

 Operational Power Profile

165
166
167
168
169
170

171
172
173

174
175
176

177

178
179
180
181
182
183
184
185
186

187
188
189
190
191

192

193
194
195

196
197
198

199
200
201

202

203
204
205
206

207

208
209
Multiple client-defined manifest collections can be defined in the profile. Consequently, different clients or different
client applications can define different manifests for different application needs. A manifest collection can
completely omit a whole set of statistics pertaining to one or more element types; for example, one manifest might
collect information on disk power only. Since manifest collections are "client objects", they are named
(ElementName) by the client for the client's convenience. The CIM server will generate an instance ID to uniquely
identify the manifest collection in the CIM Server.

Client-defined manifest collections are created using the CreateManifestCollection method. Manifests are added or
modified using the AddOrModifyManifest method. A manifest may be removed from the manifest collection by
using the RemoveManifests method.

Note: Use of manifest collections is optional with the GetStatisticsCollection method. If NULL for the manifest
collection is passed on input, then all statistics instances are assumed (i.e., all available statistics will be
returned).

48.3.7 Capabilities Support for Operational Power Profile

To determine what is supported with a Operational Power Profile implementation, inspect the
RegisteredSubprofiles supported by the autonomous profile (i.e., an Array, NAS Head or Self-Contained NAS
Profile) that utilizes the Operational Power Profile. In order to support statistics for a particular class of metered
element, the corresponding object must be modeled. This profile requires support for all classes used by the
profile, regardless of whether statistics on them are available or not. To find out whether statistics are reported,
examine the ElementsSupported property in the SNIA_OperationalPowerStatisticsCapabilities instance associated
to the SNIA_OperationalPowerStatisticsService. This capabilities class instance is not created nor modified by
clients; rather, it is populated by the provider and has three properties of interest (as discussed within the following
sections).

For the methods-supported properties described below (namely, SynchronousMethodsSupported and
AsynchronousMethodsSupported), any or all of the respective values can be missing (e.g., the arrays can be
NULL). If all of the methods supported are NULL, then manifest collections are not supported and
GetStatisticsCollection is not supported for the retrieval of statistics. This leaves enumerations or association
traversals as the only methods for retrieving the statistics.

48.3.7.1 ElementsSupported
This property within the OperationalPowerStatisticsCapabilities class defines a list of element types for which
statistical data is available. The valid values are "PDU", "Disk tray", "Disk", "CPU", "Fan", "Power Supply", "RAID
Group", and "Controller".

To be a valid implementation of the Operational Power Profile, at least one of the values listed for
ElementsSupported shall be supported. ElementsSupported is an array, such that all of the values can be
identified.

Some of these elements are available in hybrid configurations. Two common examples are multi-core CPUs and
power supplies with integrated fans. Clients must examine the corresponding class instances to find out whether or
not they are so configured.

48.3.7.2 SynchronousMethodsSupported
This property within the OperationalPowerStatisticsCapabilities class defines the synchronous mechanisms that
are supported for retrieving statistics and for defining and modifying filters for statistics retrieval. For this release of
SMI-S, the values of interest are "GetStatisticsCollection", "Manifest Creation", "Manifest Modification", and
"Manifest Removal".

48.3.7.3 AsynchronousMethodsSupported
This property within the OperationalPowerStatisticsCapabilities class defines the asynchronous mechanisms that
are supported for retrieving statistics. For this release of SMI-S, this should be NULL.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 485

Operational Power Profile

210

211
212
213

214
215

216

217

218

219

220

221

222

223

224

225
226
227
228
229

230

231

232

233
48.3.7.4 ClockTickInterval
An internal clocking interval for all timer counters kept in the system implementation, measured in microseconds
(i.e., the unit of measure in the timers, measured in microseconds). Time counters are considered to be
monotonically increasing counters that contain "ticks". Each tick represents one clock tick interval.

For example, if ClockTickInterval contained a value of 32, then each time counter tick would represent 32
microseconds.

48.3.8 Health and Fault Management Consideration

Not defined in this version of the specification.

48.3.9 Cascading Considerations

Not applicable

48.4 Methods of the Profile

48.4.1 Extrinsic Methods of the Profile

48.4.1.1 Overview
The methods supported by this profile are summarized in Table 469 and detailed within the sections that follow it.

48.4.1.2 GetStatisticsCollection
This extrinsic method retrieves statistics in a well-defined bulk format. The set of statistics returned by this method
is determined by the list of element types passed into the method and the manifests for those types contained in
the supplied manifest collection. The statistics are returned through a well-defined array of strings that can be
parsed to retrieve the desired statistics as well as limited information about the elements that those metrics
describe.

GetStatisticsCollection(

[OUT, Description(“Reference to the job(shall be null in this version of SMI-S.)”]

CIM_ConcreteJob REF Job = NULL,

Table 469 - Creation, Deletion and Modification Methods

Method Created Instances Deleted Instances Modified Instances

GetStatisticsCollection None None None

CreateManifestCollection OperationalPowerStatisticsM
anifestCollection

AssociatedOperationalPower
StatisticsManifestCollection

None None

AddOrModifyManifest OperationalPowerStatisticsM
anifest(subclass)

MemberOfCollection

None OperationalPowerSta
tisticsManifest(subcla
ss)

RemoveManifest None OperationalPowerSta
tisticsManifest(subcla
ss)

MemberOfCollection

None
486

 Operational Power Profile

234

235

236

237
238
239

240

241
242
243
244
245
246
247

248

249
250
251

252

253

254

255

256

257
258

259

260

261

262
263

264
265

266
267

268
269
270

271
272
273
274
[IN, Description("Element types for which statistics should be returned")

 ValueMap {"1", "2", "10", "201", "202", "203", "204", "205", "206", "207", "..",

 "0x8000.."},

 Values {"Other", "Top-Level System", "Disk Drive", "PDU", "Power Supply", "Fan",
"CPU", "RAID Group", "Disk tray", "Controller", "DMTF
Reserved", "Vendor Specific"}]

uint16 ElementTypes[],

[IN, Description ("An array of strings that specify the particular ’Other’"
"element(s) when the ElementType property above includes the"
"ElementType value of 1 (i.e., "Other"). Each string within"
"this array identifies a separate "Other" element and duplicate"
"string values are NOT allowed. This property should be set"
"to NULL when the ElementType property does not include the" "value
of 1.")]

string OtherElementTypeDescriptions[],

[IN, Description("The manifest collection that contains the manifests which list"
"the metrics that should be returned for each element
type")]

SNIA_OperationalPowerStatisticsManifestCollection REF ManifestCollection,

[IN, Description("Specifies the format of the Statistics output parameter"),

 ValueMap {"2", "..", "0x8000.."},

 Values ("CSV", "DMTF Reserved", "Vendor Specific")]

uint16 StatisticsFormat,

[OUT, Description("The statistics for all the elements as determined by the"
"Elements and ManifestCollection parameters")]

string Statistics[]

);

Error returns are:

{"Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter", "Method Reserved", "Method Parameters",
"Element Not Supported", "Statistics Format Not Supported", "Method Reserved", "Vendor Specific"}

Note: In this version of the standard, Job Control is not supported for the GetStatisticsCollection method. This
method should always return NULL for the Job parameter, and no job related errors shall be returned.

If the ElementTypes[] array is empty, then no data shall be returned. If the ElementTypes[] array is NULL, then the
ElementTypes[] parameter shall be ignored and all data specified in the manifest collection shall be returned.

If the manifest collection is empty, then no data shall be returned. If the manifest collection parameter is NULL, then
the default manifest collection is used. (Note: In SMI-S, a default manifest collection shall exist if the
GetStatisticalCollection method is supported).

Note: The ElementTypes[] and ManifestCollection parameters may identify different sets of element types.
The effect of this will be for the implementation to return statistics for the element types that are in both
lists (that is, the intersection of the two lists). This intersection could be empty. In this case, no data will
be returned.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 487

Operational Power Profile

275
276

277
278
279
280

281
282
283

284

285

286
287

288
289
290

291
292
293
294

295
296

297
298
299
300

301
302
303

304
305
306
307
308

309
310
311

312
313
314

315

316
317

318
For the current version of SMI-S, the only recognized value for StatisticsFormat is "CSV". The method may support
other values, but they are not specified by SMI-S (i.e., they would be vendor specific).

Given a client has an inventory of the metered objects with Statistics InstanceIDs that may be used to correlate with
the OperationalPowerStatisticalData instances, a simple CSV format is sufficient and the most efficient human-
readable format for transferring bulk statistics. More specifically, the following rules constrain that format and define
the content of the String[] Statistics output parameter to the GetStatisticsCollection() method:

• The Statistics[] array may contain multiple statistics records per array entry. In such cases, the total length of
the concatenated record strings shall not exceed 64K bytes. And a single statistics record shall not span Array
entries.

• There shall be exactly one statistics record per line in the bulk Statistics parameter. A line is terminated by:

• a line-feed character

• the end of a String Array Element (i.e., a statistics record cannot overlap elements of the String[] Statistics
output parameter).

• Each statistics record shall contain the InstanceID of the OperationalPowerStatisticalData instance, the value
map (number) of the ElementType of the metered object, and one value for each property that the relevant
OperationalPowerStatisticsManifest specifies as "true".

• Each value in a record shall be separated from the next value by a Semi-colon (";"). This is to support
internationalization of the CSV format. A provider creating a record in this format should not include white
space between values in a record, though it may be included for human readability if so desired. A client
reading a record it has received shall ignore white-space between values.

• The InstanceID value is an opaque string that shall correspond to the InstanceID property from
OperationalPowerStatisticalData instance.

• For the convenience of client software that needs to be able to correlate InstanceIDs between different
GetStatisticsCollection method invocations, the InstanceID for OperationalPowerStatisticalData instance
shall be unique across all instances of the OperationalPowerStatisticalData class. It is not sufficient that
InstanceID is unique across subclasses of OperationalPowerStatisticalData.

• The ElementType value shall be a decimal string representation of the Element Type number (e.g., "201" for
PDU). The StatisticTime shall be a string representation of DateTime. All other values shall be decimal string
representations of their statistical values.

• Null values shall be included in records for which a statistic is returned (specified by the manifest or by a lack of
manifest for a particular element type) but there is no meaningful value available for the statistic. A NULL
statistic is represented by placing a semi-colon (;) in the record without a value at the position where the value
would have otherwise been included. A record in which the last statistic has a NULL value shall end in a semi-
colon (;). Clients shall ignore whitespace between semicolons.

• The first three values in a record shall be the InstanceID, ElementType and StatisticTime values from the
OperationalPowerStatisticalData instance. The remaining values shall be returned in the order in which they
are defined by the MOF for the OperationalPowerStatisticsManifest class or subclass the record describes.

As an additional convention, a provider should return all the records for a particular element type in consecutive
String elements, and the order of the element types should be the same as the order in which the element types
were specified in the input parameter to GetStatisticsCollection().

48.4.1.3 CreateManifestCollection
This extrinsic method creates a new manifest collection whose members serve as a filter for metrics retrieved
through the GetStatisticsCollection method.

CreateManifestCollection(
488

 Operational Power Profile

319
320

321

322

323

324

325

326

327

328
329

330

331
332
333
334

335

336
337

338

339

340
341

342
343
344

345

346
347
348
349

350

351
352

353

354
355
356

357
[IN, Description("The collection of statistics that will be filtered using the new
manifest collection")]

CIM_StatisticsCollection REF Statistics,

[IN, Description("Client-defined name for the new manifest collection)"]

string ElementName,

[OUT, Description("Reference to the new manifest collection")]

SNIA_OperationalPowerStatisticsManifestCollection REF ManifestCollection

);

Error returns are:

{"Ok", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Vendor Specific"}

48.4.1.4 AddOrModifyManifest
This is an extrinsic method that either creates or modifies a statistics manifest for this statistics service. A client
supplies a manifest collection within which the new manifest collection will be placed or an existing manifest will be
modified, the element type of the statistics that the manifest will filter, and a list of statistics that should be returned
for that element type using the GetStatisticsCollection method.

AddOrModifyManifest(

[IN, Description("Manifest collection that the manifest is or should be a member
of")]

SNIA_OperationalPowerStatisticsManifestCollection REF ManifestCollection,

[IN, Description("The element type whose statistics the manifest will filter")

ValueMap {"1", "2", "10", "201", "202", "203", "204", "205", "206", "207", "..",
"0x8000.."},

 Values {"Other", "Disk Drive", "PDU", "Power Supply", "Fan", "CPU", "RAID Group",
"Disk tray", "Controller", "DMTF Reserved", "Vendor
Specific"}]

uint16 ElementType,

[IN, Description ("A string describing the type of element when the ElementType"
 "property above is set to 1 (i.e., ‘Other’). This property"
 "should be set to NULL when the ElementType property is any"
 "value other than 1.")]

 string OtherElementTypeDescription,

[IN, Description("The client-defined string that identifies the manifest created
or modified by this method")]

string ElementName,

[IN, Description("The statistics that will be included by the manifest filter;"
"that is, the statistics that will be supplied through
the" "GetStatisticsCollection method")

string StatisticsList[],
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 489

Operational Power Profile

358
359

360

361

362

363
364
365
366

367
368
369

370

371

372

373

374

375

376

377

378

379
380
381

382

383

384
385
386
387

388

389
390
391
392
[OUT, Description("The Manifest that is created or modified on the successful"
"execution of this method")]

SNIA_OperationalPowerStatisticsManifest REF Manifest

);

Error returns are:

{"Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Element Not Supported", "Metric not
supported", "ElementType Parameter Missing", "Method
Reserved", "Vendor Specific"}

If the StatisticsList[] array is empty, then only InstanceID and ElementType will be returned when the manifest is
referenced. If the StatisticsList[] array parameter is NULL, then all supported properties is assumed (i.e., all
supported properties shall be included).

Note: This would be the OperationalPowerStatisticsManifest from the default manifest collection.

48.4.1.5 RemoveManifests
This is an extrinsic method that removes manifests from the manifest collection.

RemoveManifests(

[IN, Description("Manifest collection from which the manifests will be removed")]

SNIA_OperationalPowerStatisticsManifestCollection REF ManifestCollection,

[IN, Description("List of manifests to be removed from the manifest collection")

SNIA_OperationalPowerStatisticsManifest REF Manifest[]);

Error returns are:

{"Success", "Not Supported", "Unknown", "Timeout", "Failed", "Invalid Parameter",
"Method Reserved", "Manifest not found", "Method
Reserved", "Vendor Specific"}

48.4.2 Intrinsic Methods of this Profile

48.4.2.1 DeleteInstance (of a OperationalPowerStatisticsManifestCollection)
This will delete the OperationalPowerStatisticsManifestCollection where IsDefault=False, the
AssociatedOperationalPowerStatisticsManifestCollection association to the StatisticsCollection and all manifests
collected by the manifest collection (and the MemberOfCollection associations to the
OperationalPowerStatisticsManifestCollection).

48.4.2.2 Association Traversal
One of the ways of retrieving statistics is through association traversal from the StatisticsCollection to the individual
Statistics following the MemberOfCollection association. This shall be supported by all implementations of the
Operational Power Profile and would be available to clients if the provider does not support the
GetStatisticsCollection approach.
490

 Operational Power Profile

393

394

395

396
397
398
399

400

401
48.5 Use Cases

48.5.1 Client Considerations and Recipes

48.5.1.1 Operations Using SNIA_DeviceSet
The purpose of SNIA_DeviceSet is to organize a set of LogicalDevices that support some management operation,
for example the Operational Power management that instrumentation might provide to a client. The
LogicalDevices associated to the SNIA_DeviceSet would typically be related by some hardware constraint, like
being in the same RAID Group that supports power operations.

48.6 CIM Elements
Table 470 describes the CIM elements for Operational Power.

Table 470 - CIM Elements for Operational Power

Element Name Requirement Description

48.6.1 CIM_ElementCapabilities Mandatory This associates the
OperationalPowerStatisticsCapabilities to the
OperationalPowerStatisticsService.

48.6.2 CIM_ElementStatisticalData
(Component System Stats)

Conditional Conditional requirement: Component Systems
statistics support. This is mandatory if
OperationalPowerStatisticsCapabilities.Eleme
ntTypesSupported = '3', '4' or '5'.

This associates an
OperationalPowerStatisticalData instance to
the component ComputerSystem for which
the statistics are collected.

48.6.3 CIM_ElementStatisticalData (Top Level
System Stats)

Conditional Conditional requirement: Top level system
statistics support. This is mandatory if
OperationalPowerStatisticsCapabilities.Eleme
ntTypesSupported = '2'.

This associates an
OperationalPowerStatisticalData instance to
the Top Level ComputerSystem for which the
statistics are collected.

48.6.4 CIM_ElementStatisticalData (Volume
Stats)

Optional This is mandatory if
OperationalPowerStatisticsCapabilities.Eleme
ntTypesSupported = '8', and the parent profile
supports Storage Volumes.

This associates an
OperationalPowerStatisticalData instance to
the volume for which the statistics are
collected.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 491

Operational Power Profile
48.6.5 CIM_HostedCollection (Client Defined) Conditional Conditional requirement: Clients can create
manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.
SynchronousMethodsSupported or Clients
can create manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.
AsynchronousMethodsSupported. This would
associate a client defined
OperationalPowerStatisticalManiestCollection
to the top level system for the profile (e.g.,
array).

48.6.6 CIM_HostedCollection (Default) Mandatory This would associate a default
OperationalPowerStatisticsManifestCollection
to the top level system for the profile (e.g.,
array).

48.6.7 CIM_HostedCollection (Systemto
StatisticsCollection)

Mandatory This would associate the StatisticsCollection
to the top level system for the profile (e.g.,
array).

48.6.8 CIM_HostedService Mandatory This associates the
OperationalPowerStatisticsService to the
ComputerSystem that hosts it.

48.6.9 CIM_MemberOfCollection (DeviceSet) Optional This would associate LogicalDevices to
SNIA_DeviceSets.

48.6.10 CIM_MemberOfCollection (Member
of client defined collection)

Conditional Conditional requirement: Clients can modify
manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.
SynchronousMethodsSupported. This would
associate Manifests to client defined manifest
collections.

48.6.11 CIM_MemberOfCollection (Member of
pre-defined collection)

Mandatory This would associate pre-defined Manifests to
default manifest collection.

48.6.12 CIM_MemberOfCollection (Member
of statistics collection)

Mandatory This would associate all statistics instances to
the StatisticsCollection.

48.6.13 CIM_StatisticsCollection Mandatory This would be a collection point for all
Statistics that are kept for a storage system.

48.6.14 SNIA_DeviceSet (Provider Defined) Optional An instance of this class defines a grouping of
LogicalDevices that support some
management operation.

48.6.15 SNIA_OperationalPowerManifest
(Client Defined)

Conditional Conditional requirement: Clients can modify
manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.
SynchronousMethodsSupported. An instance
of this class defines the statistics properties of
interest to the client for one element type.

Table 470 - CIM Elements for Operational Power

Element Name Requirement Description
492

 Operational Power Profile

402

403
404
405
406
407
408

409

410

411

412

413
48.6.1 CIM_ElementCapabilities

CIM_ElementCapabilities represents the association between ManagedElements (i.e.,
OperationalPowerStatisticsService) and their Capabilities (e.g., OperationalPowerStatisticsCapabilities). Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementCapabilities association for the referenced instance of Capabilities. ElementCapabilities
describes the existence requirements and context for the referenced instance of ManagedElement. Specifically, the
ManagedElement shall exist and provides the context for the Capabilities.

CIM_ElementCapabilities is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

48.6.16 SNIA_OperationalPowerManifest
(Provider Support)

Mandatory An instance of this class defines the statistics
properties supported by the profile
implementation for one element type.

48.6.17
SNIA_OperationalPowerManifestCollection
(Client Defined)

Conditional Conditional requirement: Clients can create
manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.
SynchronousMethodsSupported. An instance
of this class defines one client defined
collection of statistics manifests (one manifest
for each element type).

48.6.18
SNIA_OperationalPowerManifestCollection
(Provider Defined)

Mandatory An instance of this class defines the
predefined collection of default statistics
manifests (one manifest for each element
type).

48.6.19
SNIA_OperationalPowerStatisticalData

Mandatory This is a Subclass of CIM_StatisticalData for
Operational Power statistics. It is instantiated
to provide specific statistics for particular
components.

48.6.20
SNIA_OperationalPowerStatisticsCapabilities

Mandatory This defines the statistics capabilities
supported by the implementation of the profile.

48.6.21
SNIA_OperationalPowerStatisticsService

Mandatory This is a Service that provides (optional)
services of bulk statistics retrieval and
manifest set manipulation methods.

Table 470 - CIM Elements for Operational Power

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 493

Operational Power Profile

414

415

416
417
418
419
420

421

422

423

424

425

426

427

428
429
430
431
432

433

434

435

436

437
Table 471 describes class CIM_ElementCapabilities.

48.6.2 CIM_ElementStatisticalData (Component System Stats)

CIM_ElementStatisticalData is an association that relates a component ComputerSystem to its statistics. Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementStatisticalData association for the referenced instance of OperationalPowerStatisticalData.
ElementStatisticalData describes the existence requirements and context for the OperationalPowerStatisticalData,
relative to a specific component ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Component Systems statistics support.

Table 472 describes class CIM_ElementStatisticalData (Component System Stats).

48.6.3 CIM_ElementStatisticalData (Top Level System Stats)

CIM_ElementStatisticalData is an association that relates a top level ComputerSystem to its statistics. Note that
the cardinality of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of
the CIM_ElementStatisticalData association for the referenced instance of OperationalPowerStatisticalData.
ElementStatisticalData describes the existence requirements and context for the OperatioanlPowerStasticalData,
relative to a specific ComputerSystem.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Top level system statistics support.

Table 471 - SMI Referenced Properties/Methods for CIM_ElementCapabilities

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The managed element
(OperationalPowerStatisticsService).

Capabilities Mandatory The Capabilities instance associated with the
OperationalPowerStatisticsService.

Table 472 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Component Sys-
tem Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a component ComputerSystem for which the
Statistics apply.

Stats Mandatory A reference to the OperationalPowerStatisticalData that
hold the statistics for the ComputerSystem.
494

 Operational Power Profile

438

439

440
441
442
443
444

445

446

447

448

449

450

451

452
453
454
455

456

457

458

459

460
461
462
Table 473 describes class CIM_ElementStatisticalData (Top Level System Stats).

48.6.4 CIM_ElementStatisticalData (Volume Stats)

CIM_ElementStatisticalData is an association that relates a StorageVolume to its statistics. Note that the cardinality
of the ManagedElement reference is Min(1), Max(1). This cardinality mandates the instantiation of the
CIM_ElementStatisticalData association for the referenced instance of OperationalPowerStatisticalData.
ElementStatisticalData describes the existence requirements and context for the OperationalPowerStatisticalData,
relative to a specific volume.

CIM_ElementStatisticalData is not subclassed from anything.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 474 describes class CIM_ElementStatisticalData (Volume Stats).

48.6.5 CIM_HostedCollection (Client Defined)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Operational Power profile, it is used to associate a client defined
OperationalPowerStatisticalManiestCollections to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.SynchronousMethodsSupported or Clients can create manifests as
identified by SNIA_OperationalPowerStatisticsCapabilities.AsynchronousMethodsSupported.

Table 473 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Top Level Sys-
tem Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to the top level ComputerSystem for which the
Statistics apply.

Stats Mandatory A reference to the OperationalPowerStatisticalData that
hold the statistics for the ComputerSystem.

Table 474 - SMI Referenced Properties/Methods for CIM_ElementStatisticalData (Volume Stats)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory A reference to a StorageVolume for which the Statistics
apply.

Stats Mandatory A reference to the OperationalPowerStatisticalData that
hold the statistics for the StorageVolume.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 495

Operational Power Profile

463

464

465
466
467
468

469

470

471

472

473

474

475

476
477
478
479

480

481

482

483

484
Table 475 describes class CIM_HostedCollection (Client Defined).

48.6.6 CIM_HostedCollection (Default)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Operational Power profile, it is used to associate the default
OperationalPowerStatisticsManifestCollection to the top level Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 476 describes class CIM_HostedCollection (Default).

48.6.7 CIM_HostedCollection (Systemto StatisticsCollection)

CIM_HostedCollection defines a SystemSpecificCollection in the context of a scoping System. It represents a
Collection that only has meaning in the context of a System, and/or whose elements are restricted by the definition
of the System. In the Operational Power profile, it is used to associate the StatisticsCollection to the top level
Computer System.

CIM_HostedCollection is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 475 - SMI Referenced Properties/Methods for CIM_HostedCollection (Client Defined)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory A client defined
OperationalPowerStatisticalManiestCollection.

Table 476 - SMI Referenced Properties/Methods for CIM_HostedCollection (Default)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The provider defined OperatonalPowerManifestCollection.
496

 Operational Power Profile

485

486

487
488
489
490

491

492

493

494

495

496

497

498

499

500

501

502
Table 477 describes class CIM_HostedCollection (Systemto StatisticsCollection).

48.6.8 CIM_HostedService

CIM_HostedService is an association between a Service (OperationalPowerStatisticsService) and the System
(ComputerSystem) on which the functionality resides. Services are weak with respect to their hosting System.
Heuristic: A Service is hosted on the System where the LogicalDevices or SoftwareFeatures that implement the
Service are located.

CIM_HostedService is subclassed from CIM_HostedDependency.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 478 describes class CIM_HostedService.

48.6.9 CIM_MemberOfCollection (DeviceSet)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 479 describes class CIM_MemberOfCollection (DeviceSet).

Table 477 - SMI Referenced Properties/Methods for CIM_HostedCollection (Systemto Statistic-
sCollection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The top level ComputerSystem of the profile.

Dependent Mandatory The StatisticsCollection.

Table 478 - SMI Referenced Properties/Methods for CIM_HostedService

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting System.

Dependent Mandatory The Service hosted on the System.

Table 479 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (DeviceSet)

Properties Flags Requirement Description & Notes

Collection Mandatory The SNIA_DeviceSet.

Member Mandatory The individual LogicalDevice that is part of the set.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 497

Operational Power Profile

503

504

505

506

507

508
509

510

511

512

513

514

515

516

517

518

519
520

521

522

523

524
48.6.10 CIM_MemberOfCollection (Member of client defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in a client defined manifest collection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Static
Deleted By: Extrinsic: RemoveManifest
Requirement: Clients can modify manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.SynchronousMethodsSupported.

Table 480 describes class CIM_MemberOfCollection (Member of client defined collection).

48.6.11 CIM_MemberOfCollection (Member of pre-defined collection)

This use of MemberOfCollection is to Collect all Manifests instances in the default manifest collection.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 481 describes class CIM_MemberOfCollection (Member of pre-defined collection).

48.6.12 CIM_MemberOfCollection (Member of statistics collection)

This use of MemberOfCollection is to collect all OperationalPowerStatisticalData instances (in the
StatisticsCollection). Each association is created as a side effect of the metered object getting created.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 480 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of client
defined collection)

Properties Flags Requirement Description & Notes

Collection Mandatory A client defined manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 481 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of pre-
defined collection)

Properties Flags Requirement Description & Notes

Collection Mandatory The provider defined default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.
498

 Operational Power Profile

525

526

527
528
529

530

531

532

533

534

535

536

537

538

539

540
Table 482 describes class CIM_MemberOfCollection (Member of statistics collection).

48.6.13 CIM_StatisticsCollection

The CIM_StatisticsCollection collects all statistics kept by the profile. There is one instance of the
CIM_StatisticsCollection class and all individual element statistics can be accessed by using association
traversal(using MemberOfCollection) from the StatisticsCollection.

CIM_StatisticsCollection is subclassed from CIM_SystemSpecificCollection.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 483 describes class CIM_StatisticsCollection.

48.6.14 SNIA_DeviceSet (Provider Defined)

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 482 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Member of statis-
tics collection)

Properties Flags Requirement Description & Notes

Collection Mandatory The default manifest collection.

Member Mandatory The individual Manifest Instance that is part of the set.

Table 483 - SMI Referenced Properties/Methods for CIM_StatisticsCollection

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

SampleInterval Mandatory Minimum recommended polling interval for an array,
storage virtualizer system or volume manager. It is set by
the provider and cannot be modified.

TimeLastSampled Mandatory Time statistics table by object was last updated (Time
Stamp in SMI 2.2 specification format).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 499

Operational Power Profile

541

542

543
544

545

546
547
548
549
550

551

552

553

554
555

556
Table 484 describes class SNIA_DeviceSet (Provider Defined).

48.6.15 SNIA_OperationalPowerManifest (Client Defined)

The SNIA_OperationalPowerManifest class is concrete class that defines the OperationalPowerStatisticalData
properties that should be returned on a GetStatisticsCollection request.

SNIA_OperationalPowerManifest is subclassed from CIM_ManagedElement.

In order for a client defined instance of the SNIA_OperationalPowerManifest class to exist, the all the manifest
collection manipulation functions shall be identified in the 'SynchronousMethodsSupported' property of the
SNIA_OperationalPowerStatisticsCapabilities
(OperationalPowerStatisticsCapabilities.SynchronousMethodsSupported = '6') instance, AND a client must have
created at least ONE instance of SNIA_OperationalPowerManifestCollection.

Created By: Extrinsic: AddOrModifyManifest
Modified By: Extrinsic: AddOrModifyManifest
Deleted By: Extrinsic: RemoveManifest
Requirement: Clients can modify manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.SynchronousMethodsSupported.

Table 485 describes class SNIA_OperationalPowerManifest (Client Defined).

Table 484 - SMI Referenced Properties/Methods for SNIA_DeviceSet (Provider Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Unique identifier for the collection.

ElementName Mandatory User friendy name for the collection.

Purpose Mandatory This property shows what kind of management operation is
the purpose of the grouping.

GroupType Mandatory This property shows the unit of grouping.

Table 485 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Client
Defined)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Client defined string that identifies the manifest.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {'2', '3', '4', '5', '6','7', '8', '9','10', '11', '12'}

Values { 'Computer System', 'Front-end Computer System',
'Peer Computer System', 'Back-end Computer System',
'Front-end Port', 'Back-end Port', 'Volume', 'Extent', 'Disk
Drive', 'Arbitrary LUs' , 'Remote Replica Group'}.
500

 Operational Power Profile

557

558
559
560

561

562
563

564

565

566

567

568
48.6.16 SNIA_OperationalPowerManifest (Provider Support)

The SNIA_OperationalPowerManifest class is concrete class that defines the OperationalPowerStatisticalData
properties that supported by the Provider. These Manifests are established by the Provider for the default manifest
collection.

SNIA_OperationalPowerManifest is subclassed from CIM_ManagedElement.

At least one Provider supplied instance of the SNIA_OperationalPowerManifest class shall exist, if the Operational
Power profile is supported.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 486 describes class SNIA_OperationalPowerManifest (Provider Support).

IncludeStatisticTime Mandatory

CSVSequence Mandatory An array of strings that define a sequence of
OperationalPowerStatisticalData property names. The
sequence is the sequence that data is to be returned on a
GetStatisticsCollection request using this manifest. The first
three elements of this array should be "InstanceID",
"ElementType" and "StatisticsTime" to allow applications to
match the ElementType of the Manifest with the
OperationalPowerStatisticalData CSV record. For
OperationalPowerManifest (Client Defined) this shall be the
sequence desired by the client.

Table 486 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Provider
Support)

Properties Flags Requirement Description & Notes

ElementName Mandatory A Provider defined string that identifies the manifest in the
context of the Default Manifest Collection.

InstanceID Mandatory The instance Identification. Within the scope of the
instantiating Namespace, InstanceID opaquely and
uniquely identifies an instance of this class.

ElementType Mandatory This value is required AND the current version of SMI-S
specifies the following values:

ValueMap {'2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'}

Values { 'Computer System', 'Front-end Computer System',
'Peer Computer System', 'Back-end Computer System',
'Front-end Port', 'Back-end Port', 'Volume', 'Extent', 'Disk
Drive', 'Arbitrary LUs' , 'Remote Replica Group'}.

Table 485 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Client
Defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 501

Operational Power Profile

569

570
571

572

573
574
575

576

577

578

579
580

581
48.6.17 SNIA_OperationalPowerManifestCollection (Client Defined)

An instance of a client defined SNIA_OperationalPowerManifestCollection defines the set of Manifests to be used
in retrieval of statistics by the GetStatisticsCollection method.

SNIA_OperationalPowerManifestCollection is subclassed from CIM_SystemSpecificCollection.

In order for a client defined instance of the SNIA_OperationalPowerManifestCollection class to exist, then all the
manifest collection manipulation functions shall be identified in the 'SynchronousMethodsSupported' property of
the SNIA_OperationalPowerStatisticsCapabilities instance and a client must have created a Manifest Collection..

Created By: Extrinsic: CreateManifestCollection
Modified By: Static
Deleted By: Static
Requirement: Clients can create manifests as identified by
SNIA_OperationalPowerStatisticsCapabilities.SynchronousMethodsSupported.

Table 487 describes class SNIA_OperationalPowerManifestCollection (Client Defined).

IncludeStatisticTime Mandatory

CSVSequence Mandatory An array of strings that define a sequence of
OperationalPowerStatisticalData property names. The
sequence is the sequence that data is to be returned on a
GetStatisticsCollection request using this manifest. The first
three elements of this array shall be "InstanceID",
"ElementType" and "StatisticsTime" to allow applications to
match the ElementType of the Manifest with the
OperationalPowerStatisticalData CSV record. For
OperationalPowerManifest (Provider Support) this shall be
the default sequence provided by the provider.

Table 487 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifestCollection
(Client Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory A client defined user-friendly name for the manifest
collection. It is set during creation of the Manifest Collection
through the ElementName parameter of the
CreateManifestCollection method.

IsDefault Mandatory Denotes whether or not this manifest collection is a
provider defined default manifest collection. For the client
defined manifest collections this is set to 'false'.

Table 486 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifest (Provider
Support)

Properties Flags Requirement Description & Notes
502

 Operational Power Profile

582

583
584
585

586

587
588
589

590

591

592

593

594

595

596
597

598
599
600
601

602

603

604

605
48.6.18 SNIA_OperationalPowerManifestCollection (Provider Defined)

An instance of a default SNIA_OperationalPowerManifestCollection defines the set of Manifests that define the
properties supported for each ElementType supported for the implementation. It can also be used by clients in
retrieval of statistics by the GetStatisticsCollection method.

SNIA_OperationalPowerManifestCollection is subclassed from CIM_SystemSpecificCollection.

At least ONE SNIA_OperationalPowerManifestCollection shall exist if the Operational Power profile is
implemented. This would be the default manifest collection that defines the properties supported by the
implementation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 488 describes class SNIA_OperationalPowerManifestCollection (Provider Defined).

48.6.19 SNIA_OperationalPowerStatisticalData

The OperationalPowerStatisticalData class defines the statistics properties that may be kept for an metered
element of the storage entity.

Instances of this class will exist for each of the metered elements if the 'ElementTypesSupported' property of the
SNIA_OperationalPowerStatisticsCapabilities indicates that the metered element is supported. For example,
'Computer System' is identified in the 'ElementTypesSupported' property, then this indicates support for metering of
the Top level computer system or 'Component Computer System'.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 488 - SMI Referenced Properties/Methods for SNIA_OperationalPowerManifestCollection
(Provider Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory For the default manifest collection, this should be set to
'DEFAULT'.

IsDefault Mandatory Denotes whether or not this manifest collection is a
provider defined default manifest collection. For the default
manifest collection this is set to 'true'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 503

Operational Power Profile

606

607

608
609
610
611

612

613

614

615

616

617
Table 489 describes class SNIA_OperationalPowerStatisticalData.

48.6.20 SNIA_OperationalPowerStatisticsCapabilities

An instance of the OperationalPowerStatisticsCapabilities class defines the specific support provided with the
statistics implementation. Note: There would be zero or one instance of this class in a profile. There would be none
if the profile did not support the Operational Power profile. There would be exactly one instance if the profile did
support the Operational Power Statistics profile.

SNIA_OperationalPowerStatisticsCapabilities class is subclassed from CIM_Capabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 490 describes class SNIA_OperationalPowerStatisticsCapabilities.

Table 489 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticalData

Properties Flags Requirement Description & Notes

InstanceID Mandatory The InstanceID for OperationalPowerStatisticalData
instance shall be unique across all instances of the
OperationalPowerStatisticalData class.

StatisticTime Mandatory Time statistics table by object was last updated (Time
Stamp in CIM 2.2 specification format).

ElementType Mandatory This value is required AND current version of SMI-S
specifies the following values:

ValueMap {'2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'}

Values { 'Computer System', 'Front-end Computer System',
'Peer Computer System', 'Back-end Computer System',
'Front-end Port', 'Back-end Port', 'Volume', 'Extent', 'Disk
Drive', 'Arbitrary LUs' , 'Remote Replica Group'}.

Milliwatts Mandatory

Table 490 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsCapabilities

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Mandatory

ElementTypesSuppor
ted

Mandatory ValueMap { '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12' },

Values {'Computer System', 'Front-end Computer System',
'Peer Computer System', 'Back-end Computer System',
'Front-end Port', 'Back-endPort', 'Volume', 'Extent', 'Disk
Drive', 'Arbitrary LUs' , 'Remote Replica Group'}.
504

 Operational Power Profile

618

619
620

621
622

623
624

625

626

627

628

629
48.6.21 SNIA_OperationalPowerStatisticsService

The OperationalPowerStatisticsService class provides methods for statistics retrieval and Manifest Collection
manipulation.

There shall be an instance of the OperationalPowerStatisticsService, if the Operational Power profile is
implemented. It is not necessary to support any methods of the service, but the service shall be populated.

The methods that are supported can be determined from the SynchronousMethodsSupported and
AsynchronousMethodsSupported properties of the OperationalPowerStatisticsCapabilities.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 491 describes class SNIA_OperationalPowerStatisticsService.

SynchronousMethod
sSupported

N Mandatory This property is mandatory, but the array may be empty.

ValueMap { '2', '3', '4', '5', '6', '7', '8'},

Values {'Exec Query', 'Indications', 'QueryCollection',
'GetStatisticsCollection', 'Manifest Creation', 'Manifest
Modification', 'Manifest Removal' }.

AsynchronousMetho
dsSupported

Optional Not supported in current version of SMI-S.

ClockTickInterval Mandatory An internal clocking interval for all timers in the subsystem,
measured in microseconds (Unit of measure in the timers,
measured in microseconds).

Time counters are monotonically increasing counters that
contain 'ticks'. Each tick represents one ClockTickInterval.
If ClockTickInterval contained a value of 32 then each time
counter tick would represent 32 microseconds.

Table 491 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsService

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

SystemName Mandatory

CreationClassName Mandatory

Name Mandatory

Table 490 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsCapabilities

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 505

Operational Power Profile
GetStatisticsCollectio
n()

Conditional Conditional requirement: Clients can get statistics
collections using the GetStatisticsCollection as identified by
SNIA_OperationalPowerStatisticsCapabilities.Synchronous
MethodsSupported or Clients can get statistics collections
using the GetStatisticsCollection as identified by
SNIA_OperationalPowerStatisticsCapabilities.Asynchronou
sMethodsSupported. Support for this method is conditional
on
OperationalPowerStatisticsCapabilities.SynchronousMetho
dsSupported or
OperationalPowerStatisticsCapabilities.AsynchronousMeth
odsSupported containing '5' (GetStatisticsCollection). This
method retrieves all statistics kept for the profile as directed
by a manifest collection.

CreateManifestCollec
tion()

Conditional Conditional requirement: Clients can create manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Synchronous
MethodsSupported or Clients can create manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Asynchronou
sMethodsSupported. Support for this method is conditional
on
OperationalPowerStatisticsCapabilities.SynchronousMetho
dsSupported or
OperationalPowerStatisticsCapabilities.AsynchronousMeth
odsSupported containing '6' (Manifest Creation). This
method is used to create client defined manifest
collections.

Table 491 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsService

Properties Flags Requirement Description & Notes
506

 Operational Power Profile
AddOrModifyManifes
t()

Conditional Conditional requirement: Clients can modify manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Synchronous
MethodsSupported or Clients can modify manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Asynchronou
sMethodsSupported. Support for this method is conditional
on
OperationalPowerStatisticsCapabilities.SynchronousMetho
dsSupported or
OperationalPowerStatisticsCapabilities.AsynchronousMeth
odsSupported containing '7' (Manifest Modification). This
method is used to add or modify statistics manifests in a
client defined manifest collection.

RemoveManifests() Conditional Conditional requirement: Clients can remove manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Synchronous
MethodsSupported or Clients can remove manifests as
identified by
SNIA_OperationalPowerStatisticsCapabilities.Asynchronou
sMethodsSupported. Support for this method is conditional
on
OperationalPowerStatisticsCapabilities.SynchronousMetho
dsSupported or
OperationalPowerStatisticsCapabilities.AsynchronousMeth
odsSupported containing '8' (Manifest Removal). This
method is used to remove a statistics manifest from a client
defined manifest collection.

Table 491 - SMI Referenced Properties/Methods for SNIA_OperationalPowerStatisticsService

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 507

Operational Power Profile
508

 Cross Profile Considerations

1

2

3
4

5
6
7

8

9
10
Clause 49: Cross Profile Considerations

49.1 Overview
Many applications access data from multiple profiles to perform operations. Figure 71 shows a client application
communicating with multiple SMI-S agents.

This section describes algorithms that can be used to associate objects from different profiles to understand
connections between the profiles. The algorithms use Durable Names to match objects from different profiles.
Figure 72 and Figure 73 are simplified instance diagrams that are used to illustrate the algorithms.

49.2 HBA model
Figure 72 represents a simple “Host Bus Adapter”. The model includes objects that represent a single port Fibre
channel HBA. The model also includes a storage volume being accessed through the HBA.

Figure 71 - System Diagram

Figure 72 - Host Bus Adapter Model
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 509

Cross Profile Considerations

11

12
13

14

15

16
17

18

19

20
21

22

23

24

25

26

27
49.3 Switch Model
Figure 73 represents a two-port Fibre channel switch. The model also includes objects representing links to remote
ports the switch agent knows about, and ComputerSystems

49.3.1 Recipes

49.3.1.1 Disclaimer
The recipes in this section are included for illustrative purposes only. These recipes are not part of CTP and may
not have been validated.

49.3.1.2 Create MAP
// DESCRIPTION

// Create a map of how elements in a SAN are connected together via Fibre-Channel
ports

//

// The map is built in array $attachedFcPorts->[], where the index is a

// WWN of any device port on the SAN, and the value at that index is

// the object path of the connected switch port.

//

// First find all the switches in a SAN. Get all the FCPorts for each

Figure 73 - Switch Model
510

 Cross Profile Considerations

28

29

30

31
32

33

34
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55
56

57

58

59

60

61

62

63

64

65

66
// switch and get the Attached FCPorts for each Switch FCPort. Save

// these device ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified using
SLP

// Do this for each CIMOM supporting Fabric Profile

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true, true,
null)

for #i in $switches[]

{

 if (!contains(5, $switches[#i].Dedicated))

 continue // only process switches, not other computer systems

 $fcPorts->[] = AssociatorNames(

 $switches[#i].getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”)

 for #j in $fcPorts->[]

 {

 $protocolEndpoints->[] = AssociatorNames(

 fcPorts->[#j],

 “CIM_DeviceSAPImplementation”,

 “CIM_ProtocolEndpoint”,

 “Antecedent”,

 “Dependent”);

 // NOTE - It is possible for this collection to be empty (ports that are not

 // connected). It is NOT possible for this collection to have more than
one

 // element

 if ($protocolEndpoints->[].length == 0)

 continue

 $attachedProtocolEndpoints->[] = AssociatorNames(

 $protocolEndpoints->[0],

 “CIM_ActiveConnection”,

 “CIM_ProtocolEndpoint”,

 null, null) // NOTE: role & resultRole are null as the

 // direction of the association is not

 // dictated by the specification
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 511

Cross Profile Considerations

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100
101

102

103

104

105

106

107

108
 for #k in $attachedProtocolEndpoints->[] {

 // $attachedFcPort is either a device port or an ISLÂ’d

 // switch port from another switch. We store this result

 // (i.e. which device FCPort is connected to which switch

 // FCPort) in a suitable data structure for subsequent

 // correlation to ports discovered on devices.

 $attachedFcPorts->[] = Associators(

 $attachedProtocolEndpoints->[#k],

 “CIM_DeviceSAPImplementation”,

 “CIM_FCPort”,

 “Dependent”,

 “Antecedent”,

 false,

 false,

 [“PermanentAddress”])

 $attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed
by model

 #wwn = $attachedFcPort.PermanentAddress

 $attachedFcPorts->[#wwn] = $fcPorts->[#j]

 }

 }

}

49.3.1.3 HBA to Switch Physical Path
// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA port on every host, determine the connected switch

// port. NOTE: Not every HBA port will be connected to a switch port,

// and not every switch port will be connected to a device port. Only

// the connections between HBA ports and switch ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting HBA Profile previously identified using
SLP

// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch port.

// Do this for each CIMOM supporting HBA Profile

$hosts[] = enumerateInstances(“CIM_ComputerSystem”)

for #i in $hosts->[]
512

 Cross Profile Considerations

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145
146

147

148

149
{

 if (!contains(0, $hosts[#i].Dedicated))

 continue // only process systems that are “not dedicated”

 $fcPorts[] = Associators(

 $hosts[#i].getObjectPath(),

 “CIM_SystemDevice”,

 “CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 [“PermanentAddress”])

 for #j in $fcPorts[]

 {

 // Get the FCPort WWN

 #wwn = $fcPorts[#j].PermanentAddress

 // Match this device port WWN to one (or less) switch

 // ports, by using the mapping table

 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this

 // port is not connected to any switch

 }

}

49.3.1.4 Array to Switch Physical Path
// DESCRIPTION

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channel port on every array, determine the connected

// switch port. NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose ports are physically connected to

// some of the ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting Array Profile previously identified using
SLP

// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-Channel ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 513

Cross Profile Considerations

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181
// connected switch port.

// Do this for each CIMOM supporting the Array Profile

$storageArrays[] = enumerateInstances(“CIM_ComputerSystem”);

// NOTE: Some of the ports contained will be back-end ports, but they will

// have no connectivity to switches, so we won’t distinguish them

// from unconnected front-end ports

for #i in $storageArrays[]

{

 if (!contains(3, $storageArrays[#i].Dedicated))

 continue // only process systems that are dedicated “storage”

 if (!contains(15, $storageArrays[#i].Dedicated))

 continue // only process systems that are dedicated “block server”

 $fcPorts[] = Associators(

 $storageArrays[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

 “GroupComponent”,

 “PartComponent”,

 false,

 false,

 [“PermanentAddress”])

 for #j in $fcPorts[]

 {

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch

// ports, by using the mapping table

 $attachedSwitchPort-> = $attachedFcPorts->[#wwn]

 // Note - if there is no entry in the mapping array, this

 // port is not connected to any switch

 }

}

514

 Cross Profile Considerations

182

183
184
185
49.4 Array Model
Figure 74 is a simple model of a disk array. The array has a single controller with a single Fibre channel port on the
front end and a single parallel SCSI port for the disks. The model shows two disks that are members of a single
redundancy group. Part of the redundancy group is made available over the Fibre channel as a single volume.

Figure 74 - Array Instance
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 515

Cross Profile Considerations

186

187
188
49.5 Storage Virtualization Model
Figure 75 is a simple model of a Storage Virtualizer. The model shows the basic controller and pool. The model
also shows a single volume being used and a single volume being served to a host.

Figure 75 - Virtualization Instance
516

 Cross Profile Considerations

189

190
191
192

193
194
195
196

197
198
199
49.6 Fabric Topology (HBA, Switch, Array)
A map of a SAN that shows all the elements and the connections between them is very useful. To create the map
all the elements in the SAN with their Fibre channel ports are first located. Next the ports are linked together.
Figure 76 shows how a SAN map can be constructed.

To locate all the elements in a SAN, you start by locating the agents. SMI-S agents are located using SLP. Once the
agents are located, intrinsic methods are used to enumerate ComputerSystem objects. Each ComputerSystem
object represents an element in the SAN. The ComputerSystem object’s “Dedicated” attribute can be used to
identify the type of the element.

After the elements are located, Fibre channel ports for each element are discovered. For each ComputerSystem
object follow SystemDeviceFCPort objects and ProtocolController objects. For each ProtocolController object
follow the ProtocolControllerForPort associations to FCPort objects. Use the information in the FCPort objects

Figure 76 - Fabric Topology
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 517

Cross Profile Considerations

200
201

202
203
204
205
206
207
208

209

210
211
212
213
214
215
216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245
found to determine the Durable Name for the FCPort object. The Durable Name is used to match the ports to
objects in other profiles.

Now to link the elements’ ports together find the Switch elements. Switches know about ports on elements logged
into their ports. To find this information start by locating the ComputerSystem objects that represents switches.
Switches can be identified by the “Dedicated” attribute of the ComputerSystem object being set to “Switch”. For
each switch follow the SystemDeviceFCPort objects that represent the ports of the switch. Next look for
ActiveConnection ActiveConnectionFCPort objects. These FCPort objects represent the ports on the other side of
a link. Use attributes from the FCPort object to determine the Durable Name. These identifiers are then matched to
identifiers found in other profiles to complete the connections.

49.6.1 Logical Device Composition

The Logical Device Composition Recipe traces the objects and associations that make up a LogicalDevice across
profile boundaries. It serves performance and fault identification use-cases by allowing the user to map out all the
objects in the I/O stack that may contribute to the storage services a LogicalDevice provides to applications. It
covers the Disk Partition, Volume Manager, Disk, Multipath, Host Discovered Resources, Common Initiator, Fabric,
iSCSI Target, Storage Virtualizer, Array, and Storage Library Profiles and Subprofiles. This recipe also shows how
Correlatable Naming conventions may be used to identify and correlate instances of objects within, and across
profiles.

49.6.1.1 Main Recipe
Logical Device Composition Recipe

// This main recipe is profile-independent. It

// uses subroutines which are profile-dependent.

//

// DESCRIPTION:

//

// By stitching together information from

// multiple profiles, determine the logical composition

// a host LogicalDevice in terms of its constituent

// LogicalDevices, ProtocolControllers, Ports, StoragePools,

// etc. and the associations between them. This host LogicalDevice

// would typically either be a disk volume or tape device.

// Collect sufficient information to allow a graph to be drawn.

// Where possible, allow network topologies to be attached.

//

// PREEXISTING CONDITIONS AND ASSUMPTIONS:

//

// That all providers relevant to the logical composition

// of the device have been discovered (see the Server Profile

// recipe “Find Servers Supporting a Given Profile),

// can be queried for the information they have to contribute,

// and follow SMI-S 1.2

//

// Durable Names naming conventions to allow stitching

// across profiles and providers. Correlatable, unique

// and durable names are assumed if this is to work.

// In particular, this must be true of instances of:

//
518

 Cross Profile Considerations

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287
// CIM_LogicalDisk

// CIM_TapeDrive

// CIM_StorageExtent

// CIM_SCSIProtocolEndpoint // From Host Discovered Resources.

// CIM_iSCSIProtocolEndpoint // From iSCSI Initiator

//

// Which are node objects, included in multiple profiles.

//

// Other CIM Classes to be added as nodes are:

//

// CIM_SCSIProtocolController

// CIM_ProtocolEndpoint

// CIM_LogicalPort

// CIM_ComputerSystem

// CIM_iSCSISession

// CIM_EthernetPort

// CIM_StoragePool

// CIM_DiskDrive

// CIM_GenericDiskPartition

// SUBROUTINES:

//

// Each subroutine of this recipe has access to all

// providers relevant to the path under consideration.

// Add $node to $nodes[] if it has not already been added.

// If a new node was added, set #new_added to true.

sub AddIfNotAlreadyAdded(IN CIM_LogicalElement $node,

 IN/OUT CIM_LogicalElement[] $nodes[],

 OUT boolean #new_added,

 OUT int #error_code);

// Add $link to $links[] if it has not already been added.

// If a new link was added, set #new_added to true.

sub AddLinkIfNotAlreadyAdded(IN CIM_Dependency $link,

 IN/OUT CIM_Dependency[] $links[],

 OUT boolean #new_added,

 OUT int #error_code);

// Compare two LogicalElement references to determine if

// they represent the same modelled object. The two nodes

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the classes in question by the Profiles/SubProfiles.

sub RepresentsTheSameObject(IN CIM_LogicalElement $node1,
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 519

Cross Profile Considerations

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329
 IN CIM_LogicalElement $node2,

 OUT int #error_code);

// Compare two Dependency references to determine if

// they represent the same modelled association. The two links

// may come from entirely different providers/profiles.

// This method uses correlatable naming conventions defined

// for the endpoints in question by the Profiles/SubProfiles.

sub RepresentsTheSameAssociation(IN CIMObjectPath $link1->,

 IN CIMObjectPath $link2->,

 OUT int #error_code) {

// Given the Names and NameFormats of two object instances,

// determine if the two instances represent the same modelled object

// unambiguously according to correlatable names semantics.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByNameNameFormat(string name1,

 string nameFormat1,

 string name2,

 string nameFormat2

);

// Given the Names and ConnectionTypes of two SCSIProtocolEndpoint instances,

// determine if the two instances represent the same modelled object

// unambiguously according to correlatable names semantics for

// SCSIProtocolEndpoint.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByNameAndConnectionType(string name1,

 int16 conType1,

 string name2,

 int16 conType2

);

// Given the IdentifyingDescriptions and OtherIDentifyingInfo

// arrays of two object instances,

// determine if the two instances represent the same object

// unambiguously according to Correlatable names semantics

// for ComputerSystem names.

// Return true only if the match is unambiguous.

sub MatchUnambiguouslyByIdentifyingInfo(string info1[],

 string desc1[],

 string info2[],

 string desc2[]

);

// Given an instance of an object from one provider,

// find the instance of the same object in the current
520

 Cross Profile Considerations

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366
// provider. Return null if not found.

sub GetProviderInstanceOf(IN CIM_LogicalElement $that_node,

 OUT CIM_LogicalElement $this_node,

 OUT int #error_code);

// In this function, the layer is passed references

// to the working graph. It is expected that the layer

// will search the structures for objects it recognizes

// and can add new objects and associations to the graph.

// If the layer does not exist or does not recognize

// any of the objects or associations in the graph

// as objects it manages or knows about, it adds nothing.

// Set #new_added to true if the layer contributed anything new to

// contribute to the graph.

sub AddToGraphFromLayerXXX(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code

);

// This fictitious function would draw a node in

// this logical composition on a canvas. The net effect

// of drawing all the nodes would be

// an arrangement of boxes containing CIM class names

// and identifiers of those objects.

sub DrawNode($node);

// This fictitious function would draw a line representing

// the specified association between two nodes. The net

// result would be a graph directed graph of the nodes

// with their associations.

sub DrawLinkBetweenNodes($link);

// ------ Main Recipe ------

// Begin with a CIM_LogicalDevice reference representing a

// volume on which a filesystem has been placed or is

// being used “raw” by an application managing its own

// block structures. The CIM_LogicalDeivce could also

// represent a tape device such as (/dev/rmtX or \\.\\TAPEX)

$logicaldevice;
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 521

Cross Profile Considerations

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404
// The goal is to build two arrays: An array of objects

// representing nodes in the logical topology graph, and

// an array of Associations linking those objects to form

// a directed graph.

// CIM_LogicalElement[] $nodes[];

// CIM_Dependency[] $links[];

// Define some other flow control variables.

boolean #new_objects_added = true;

int #error_code = 0;

// Start by adding the top level volume.

$node[0] = $logicaldevice;

#new_objects_added = true;

// Now, build down through the layers building what

// should be a breadth-first traversal of the tree graph.

// Repeatedly cycle through the layers until no new objects

// have been added. This allows for multiple layers of

// virtualization and network to kick in if new objects are found

// from the layers above added in previous passes.

while (#new_objects_added) {

 boolean #added;

 #new_objects_added = false;

 &AddToGraphFromLayerVolumeManager($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerDiskPartitioning($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerLocalDiskDrive($nodes[],

 $links[],

 #new_objects_added,

 #error_code);
522

 Cross Profile Considerations

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444
 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerMultipath($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerHostDiscoveredResources($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerCommonInitiator($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerFabric($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerIPNetwork($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerStorageVirtualizer($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerArray($nodes[],

 $links[],

 #added,
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 523

Cross Profile Considerations

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481
 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

 &AddToGraphFromLayerStorageLibrary($nodes[],

 $links[],

 #added,

 #error_code);

 #new_objects_added |= #added;

 if (0 != #error_code) { return #error_code; }

} // while.

// Now “draw” the logical device composition. In reality these functions

// would need to rather sophisticated with geometric constraints

// to draw a nice looking graph.

for #i in $nodes[] {

 &DrawNode($nodes[#i]);

}

for #i in $links[] {

 &DrawLinkBetweenNodes($link[#i]);

}

// ------ Supporting Subroutines ------

sub AddIfNotAlreadyAdded(IN CIM_LogicalElement $node,

 IN/OUT CIM_LogicalElement[] $nodes[],

 OUT boolean #new_added,

 OUT int #error_code) {

 boolean #wasFound = false;

 boolean #new_added = false;

 // Search through the nodes looking for a match.

 // Not a particularly efficient way of doing it, but functional.

 for #i in $nodes[] {

 if (&RepresentsTheSameObject($node, $nodes[i], #error_code)) {

 if (compare(#error_code, 0)) {

 #wasFound = true;

 }

 break;

 }

 }
524

 Cross Profile Considerations

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520
 // If we did not find a match, and there were no errors, add it.

 if ((!#wasFound) && (compare(#error_code, 0))) {

 $nodes[].add($node);

 #new_added = true;

 }

} // AddIfNotAlreadyAdded.

// We are not being too picky about strong typing here.

// This function will take associations that are not subclasses

// of CIM_Dependency (such as the trinary CIM_SCSIInitiatorLogicalUnitPath)

sub AddLinkIfNotAlreadyAdded(IN CIM_Dependency $link,

 IN/OUT CIM_Dependency[] $links[],

 OUT int #error_code) {

 boolean #wasFound = false;

 #new_added = false;

 // Search through the nodes looking for a match.

 // Not a particularly efficient way of doing it, but functional.

 for #i in $links[] {

 if (&RepresentsTheSameAssociation($link.getObjectPath(),

 $links[#i].getObjectPath(),

 #error_code)) {

 if (compare(#error_code,0)) {

 #wasFound = true;

 }

 break;

 }

 }

 // If we did not find a match, and there were no errors, add it.

 if ((!#wasFound) && (compare(#error_code, 0))) {

 $links[].add($link);

 #new_added = true;

 }

} // AddLinkIfNotAlreadyAdded.

sub RepresentsTheSameAssociation(IN CIMObjectPath $link1->,

 IN CIMObjectPath $link2->,

 OUT int #error_code) {

 // Determine if the links are the same by comparing thier class

 if (

 // Now compare the correlatable identifiers of their endpoints.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 525

Cross Profile Considerations

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564
 if !compare($link1->getObjectClass(), $link2->getObjectClass()) return false;

 // Handle descendents of CIM_Dependency.

 if (($link1-> ISA CIM_Dependency) && ($link2-> ISA CIM_Dependency)) {

 if (

 (&RepresentsTheSameObject($link1->Antecedent,

 $link2->Antecedent, #error_code) &&

 (&RepresentsTheSameObject($link1->Dependent,

 $link2->Dependent, #error_code)

) {

 return true;

 } else {

 return false;

 }

 // Handle the trinary association here.

 } else if (($link1-> ISA CIM_SCSIInitiatorLogicalUnitPath) &&

 ($link2-> ISA CIM_SCSIInitiatorLogicalUnitPath)) {

 if (

 (&RepresentsTheSameObject($link1->Initiator,

 $link2->Initiator, #error_code) &&

 (&RepresentsTheSameObject($link1->Target, $link2->Target,

 #error_code) &&

 (&RepresentsTheSameObject($link1->LogicalUnit,

 $link2->LogicalUnit, #error_code)

) {

 return true;

 } else {

 return false;

 }

 // Handle the CIM_SAPAvailableForElement association here.

 } else if (($link1-> ISA CIM_SAPAvailableForElement) &&

 ($link2-> ISA CIM_SAPAvailableForElement)) {

 if (

 (&RepresentsTheSameObject($link1->AvailableSAP,

 $link2->AvailableSAP, #error_code) &&

 (&RepresentsTheSameObject($link1->ManagedElement, i

 $link2->ManagedElement, #error_code)

) {

 return true;

 } else {

 return false;

 }
526

 Cross Profile Considerations

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606
 } else {

 return false;

 }

}

sub RepresentsTheSameObject(IN CIM_LogicalElement $node1,

 IN CIM_LogicalElement $node2,

 OUT int #error_code) {

 int #error_code = 0;

 boolean #result;

 // First, check if this is the same instance by checking object path.

 if (compare($node1.getObjectPath(), $node2.getObjectPath())) {

 return true;

 }

 // SCSIProtocolEndpoint is handled by Name and ConnectionType.

 if ($node1 ISA CIM_SCSIProtocolEndpoint) &&

 ($node2 ISA CIM_SCSIProtocolEndpoint)) {

) {

 #result = &MatchUnambiguouslyByNameAndConnectionType(

 $node1.Name, $node1.ConnectionType,

 $node2.Name, $node2.ConnectionType);

 // LogicalDevice and its subclasses StorageExtent and

 // LogicalDisk are handled

 // by IdentifyingInfo.

 } else if (($node1 ISA CIM_LogicalDevice) &&

 ($node2 ISA CIM_LogicalDevice)) {

 #result = &MatchUnambiguouslyByIdentifyingInfo(

 $node1.OtherIdentifyingInfo[],

 $node1.IdentifyingDescriptions[],

 $node2.OtherIdentifyingInfo[],

 $node2.IdentifyingDescriptions[]);

 // ComputerSystems are compared by two methods.

 } else if ($node1 ISA CIM_ComputerSystem) &&

 ($node2 ISA CIM_ComputerSystem)) {

 #result = &MatchUnambiguouslyByNameNameFormat(

 $node1.Name, $node1.NameFormat,

 $node2.Name, $node2.NameFormat);

 if (!#result) {

 #result = &MatchUnambiguouslyByIdentifyingInfo(

 $node1.OtherIdentifyingInfo[],

 $node1.IdentifyingDescriptions[],

 $node2.OtherIdentifyingInfo[],
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 527

Cross Profile Considerations

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646
 $node2.IdentifyingDescriptions[]);

 }

 // These objects are compared by name.

 } else if (($node1 ISA CIM_GenericDiskPartition) &&

 ($node2 ISA CIM_GenericDiskPartition)) {

 #result = (compare($node1.Name, $node2.Name));

 } else if (($node1 ISA CIM_FCPort) && ($node2 ISA CIM_FCPort)) {

 #result = (compare($node1.Name, $node2.Name));

 // These DiskDrive and StoragePool have their own monikers.

 } else if (($node1 ISA CIM_DiskDrive) && ($node2 ISA CIM_DiskDrive)) {

 #result = (compare($node1.DeviceID, $node2.DeviceID));

 } else if (($node1 ISA CIM_StoragePool) && ($node2 ISA CIM_StoragePool)) {

 #result = (compare($node1.InstanceID, $node2.InstanceID));

 } else {

 < this method can’t handle this type >

 #error_code = 1;

 return false;

 }

 return #result;

} // RepresentsTheSameObject.

sub MatchUnambiguouslyByNameAndConnectionType(string name1,

 int16 conType1,

 string name2,

 int16 conType2

) {

 if (conType1 != conType2) {

 return false;

 } else {

 if (compare(name1, name2)) {

 return true;

 }

 }

 return false;

}

sub MatchUnambiguouslyByNameNameFormat(string name1,

 string nameFormat1,

 string name2,

 string nameFormat2

) {
528

 Cross Profile Considerations

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687
 if (nameFormat1 != nameFormat2) {

 return false;

 } else {

 if (compare(name1, name2)) {

 return true;

 }

 }

 return false;

}

sub MatchUnambiguouslyByIdentifyingInfo(string info1[],

 string desc1[],

 string info2[],

 string desc2[]

) {

 boolean #matchFound = false;

 // Loop through both arrays looking for a match.

 for (#i=0; #i<info1[].length; #i++) {

 for (#j=0; #j<info2[].length; #j++) {

 if (MatchUnambiguouslyByNameNameFormat(desc1[#i],

 info1[#i],

 desc2[#j],

 info2[#j]

)

) {

 #matchFound = true;

 break;

 }

 if (#matchFound) {

 break;

 }

 }

 return #matchFound;

}

sub GetProviderInstanceOf(IN CIM_LogicalElement $that_node,

 OUT CIM_LogicalElement $this_node,

 OUT int #error_code) {

 CIM_LogicalElement $possible_matches[];

 $this_node = null;

 // Enumerate through all the instances of this class in this provider

 // looking for a match to $that_node.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 529

Cross Profile Considerations

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721
 $possible_matches = EnumInstances($that_node.getClass(), false, false);

 for #i in $possible_matches[] {

 if (&RepresentsTheSameObject($that_node, $possible_matches[#i],

 #error_code)

 && !#error_code) {

 $this_node = $possible_matches[#i];

)

 }

} // GetProviderInstanceOf.

49.6.1.2 Array paths
// Array layer piece of the Logical Device Composition Recipe

// This is based on the

// Array Profile, which uses the Target Port Subprofile.

// It connects LogicalDevices left by the SCSI initiator

// side to StorageVolumes and their LogicalPorts on the array side

// to allow network and logical disk topologies to be correlated.

// Further analysis of the topology inside the array

// will be left fo the next release of SMI-S.

sub AddToGraphFromLayerArray(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

 // CIM_SCSIProtocolController $found_protocol_controllers[];

 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}
530

 Cross Profile Considerations

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758
 if ($node != null) {

 // Work up the path to include the network ports

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 // Each LogicalDevice may be handled by multiple controllers.

 for #j in $found_protocol_controllers[] {

 &AddIfNotAlreadyAdded($found_protocol_controllers[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”

);
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 531

Cross Profile Considerations

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795
 // Each controller may multipath through multiple ports.

 for #k in $found_protocol_endpoints[] {

 &AddIfNotAlreadyAdded($found_protocol_endpoints[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 // This is a 1:1 relationship.

 $found_ports[] = Associators(

 $found_protocol_endpoints[#k].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #k.

 } // for #j.

 } // for #i.

} // AddToGraphFromLayerArray.

49.6.1.3 Host Discovered Resource

// Host Discovered Resources layer piece of the Logical Device Composition Recipe

// It uses the Host Discovered Resources Profile.
532

 Cross Profile Considerations

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833
sub AddToGraphFromLayerHostDiscoveredResources(

 IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

for #i in $nodes[] {

 // CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

 // CIM_SCSIProtocolEndpoint $initiator_endpoint;

 // CIM_SCSIProtocolEndpoint $target_endpoint;

 #i =0;

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $node as the LogicalUnit reference.

 $scsi_paths[] = References(

 $node.getObjectPath(),

 “CIM_SCSIInitiatorLogicalUnitPath”, //ResultClass

 “LogicalUnit” // Role

);

 for (#j=0; #j<$scsi_paths.length; #j++) {

 &AddLinkIfNotAlready($scsi_paths[#j], $links[],

 #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#j].Initiator;

 $target_endpoint = $scsi_paths[#j].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // if $node != null.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 533

Cross Profile Considerations

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865
 } // if $node ISA.

} // For #i.

} // AddToGraphFromLayerHostDiscoveredResources.

49.6.1.4 Common Initiator Port

// Common Initiator layer piece of the Logical Device Composition Recipe

// It uses one of the initiator port subprofiles (eg. FibreChannel or iSCSI).

sub AddToGraphFromCommonInitiator(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

// The Goal is to start with SCSIProtocolEndpoints and add

// the associated port objects.

for #i in $nodes[] {

 // CIM_LogicalPort $ports[];

 // CIM_DeviceSAPImplementation $sap_associations[];

 if ($nodes[#i] ISA CIM_SCSIProtocolEndpoint) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Follow the DeviceSAPImplementation assocation

 // to the LogicalPort object

 $ports[] = Associators($node.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $sap_associations[] = References($node.getObjectPath(),
534

 Cross Profile Considerations

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905
 “CIM_LogicalPort”,

 “Dependent”

);

 // Add the port objects and associations to the graph.

 for #j in $ports[] {

 if ((null != $sap_associations[#j]) &&

 (null != $ports[#j])

) {

 &AddLinkIfNotAlreadyAdded($sap_associations[#j], $links[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($ports[#j], $nodes[], #added, #error_code);

 #new_added |= #added;

 }

 } for #j.

 } // if $node != null.

 } // if $nodes[#i] ISA.

} // AddToGraphFromLayerCommonInitiator.

49.6.1.5 Fabric Layer
Fibre Channel Fabric layer piece of the Logical Disk Composition Recipe

It uses the Fabric profile.

Sub AddToGraphFromLayerFabric($nodes, $links, #error_code){

// This function does the following

//

// 1. Identifies all the Switches and adds their objects paths and the object

// paths of the FC Ports belonging to these Switches to the $nodes array

//

// 2. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Switch and a FC Port), setting its GroupComponent and

// PartComponent. Adds the object path of the Association to the $links array

//

// 3. Creates a map of all connected FC Ports (i.e., belonging to Switches

// that are ISL’d together and to Host HBAs and Storage System Front End

// Controllers)

//

// In this map, the FC Ports (i.e., the ones that are connected) are

// cross-connected.

//

// e.g., For a pair of FC Ports, one belonging to a Switch and the other
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 535

Cross Profile Considerations

906

907
908

909

910

911

912

913

914

915

916

917

918

919

920

921
922
923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941
942
943

944

945

946

947

948

949

950

951

952
// belonging to a Host (HBA), the map indexed by the Switch Port WWN returns

// the Host (HBA) FC Port object path and the map indexed by the Host (HBA) FC //
Port WWN returns the Switch FC Port object path.

//

// The Object stored in this Map is a composite of five objects and four

// associations. They are Switch, Switch FC Port, Switch end Protocol End Point,

// Attached Protocol End Point and Attached FC Port. The Associations are

// System Device, Device SAPImplementation, ActiveConnection, The attached side

// DeviceSAPImplementation.

// This information is kept in the Map. While traversing the Host-HBA part of

// the topology, the HBA FC Ports are matched in this Map to find out if there

// is a corresponding Switch side FC Port. If yes, only then all the objects

// are that lie on that path are saved in the Nodes Array and the corresponding

// Associations that lie on the path are stored in the Links Array.

//

// Similar relationship exists between the pairs of FC Ports where one belongs //
to a Switch and the other belonging belongs to a Storage
System Front End

// Controller and for FC Ports each of which belongs to a Switch.

//

// 4. Identifies all the Hosts and adds their objects paths to the $nodes array.

// Note that the object paths of the FC Ports (HBA Ports) belonging to these

// Hosts are already added to the $nodes array in step-3.

//

// 5. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Host and a FC Port), setting its GroupComponent and

// PartComponent. Adds the object path of the Association to the $links array.

//

// 6. Identifies all the Storage Systems and adds their objects paths to the

// $nodes array.

// Note that the object paths of the FC Ports (i.e., Front End Controller FC

// Ports) belonging to these Storage Systems are already added to the $nodes

// array in step-3.

//

// 7. Creates a suitable Association instance (e.g. a SystemDevice Association

// instance between a Storage System and a FC Port), setting its GroupComponent //
and PartComponent. Adds the object path of the
Association to the $links

// array.

//

// First find all the switches in a SAN. Get all the FC Ports for each

// switch and get the Attached FC Ports for each Switch FC Port. Save these

// device FC ports in the map described above.

// PREEXISTING CONDITIONS AND ASSUMPTIONS

// 1. All agents/namespaces supporting Fabric Profile previously identified

// using SLP. Do this for each CIMOM supporting Fabric Profile

// A composite elementsOnPath object is created. This object will be populated
536

 Cross Profile Considerations

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987
// as we go along and will be stored in elementsOnPathMap with the index

// of attached FC Port WWN

ElementsOnPath #elementsOnPath = new ElementsOnPath();

ElementsOnPathMap #elementsOnPathMap = new ElementsOnPathMap();

switches[] = enumerateInstances(“CIM_ComputerSystem”, true, false, true,

true, null)

for #i in $switches[]

{

if (!contains(5, $switches[#i].Dedicated))

continue // only process switches, not other computer systems

// Add the switch to the elementsOnPath object

#elementsOnPath.switch = $switches[#i];

// Get all the SystemDevice associations between this switch and its FC Ports

$sysDevAssoc[] = ReferenceNames($switches[#i],

 “CIM_FCPort”,

 “GroupComponent”);

// Add the system device associations to the links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

$fcPorts->[] = AssociatorNames(

$switches[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”)

for #j in $fcPorts->[]

{

// Add the FC Port to the elementsOnPathObject

#elementsOnPath.swFCPort = fcPorts->[#j];

$protocolEndpoints->[] = AssociatorNames(

fcPorts->[#j],

“CIM_DeviceSAPImplementation”,

“CIM_ProtocolEndpoint”,

“Antecedent”,

“Dependent”);
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 537

Cross Profile Considerations

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020
// NOTE - It is possible for this collection to be empty (i.e., ports that are not

// connected). It is NOT possible for this collection to have more than one

// element

if ($protocolEndpoints->[].length == 0)

continue

// Add the Protocol End Point to the elementsOnPathObject

#elementsOnPath.prorEP = protocolEndpoints[0];

// Add the associations between the fcPort and the Protocol end point to the

// links array

$devSAPImplassoc[] = ReferenceNames($fcPorts->[#j],

 “CIM_ProtocolEndpoint”,

 “Antecedent”);

for #a in $devSAPImplassoc->[]

$links.addIfNotAlreadyAdded ($devSAPImplassoc->[#a];

$attachedProtocolEndpoints->[] = AssociatorNames(

$protocolEndpoints->[0],

“CIM_ActiveConnection”,

“CIM_ProtocolEndpoint”,

 null, null)

//Add the AttachedProtocolEndPoint to the elementsOnPath object

elementsOnPath.attachedPEP = attachedProtocolEndpoints->[0];

// Get the associations between the Protocol end point and the Attached

// protocol endpoint

$actConnassoc[] = ReferenceNames($protocolEndpoint->[#0],

 “CIM_ActiveConnection”,

 “Antecedent”);

// Add it to the elementsOnPath object

elementsOnPath.actConn = actConnAssoc->[0];

// NOTE: role & resultRole are null as the direction of the association is not

// dictated by the specification

// $attachedFcPort is either a device FC port or an ISL’d switch FC port from

// another switch. We store this result is stored (i.e., which device

// FC Port is connected // to which switch FC Port) in a suitable data
538

 Cross Profile Considerations

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059
// structure for subsequent correlation to ports discovered on devices.

for #k in $attachedProtocolEndpoints->[] {

$attachedFcPorts->[] = Associators(

$attachedProtocolEndpoints->[#k],

“CIM_DeviceSAPImplementation”,

“CIM_FCPort”,

“Dependent”,

“Antecedent”,

false,

false,

[“PermanentAddress”]);

$attachedFcPort = $attachedFcPorts[0] // Exactly one member guaranteed by model

// Add the attached FC Port to the elementsOnPath object

if $attachedFcPort != null

 #elementsOnPath.attFCPort = $attachedFcPort);

// Save the elementsOnPath object in elementsOnPath Map with the index of

// wwn of the attached fc port

elementsOnPathMap.put ($attachedfcPort.PermanentAddress, elementsOnPath);

}

}

}

 // HBA to switch paths

// DESCRIPTION

// Determine physical path from HBA to switch.

//

// For each HBA FC port on every host, determine the connected switch

//FC port. NOTE: Not every HBA FC port will be connected to a switch FC port,

// and not every switch FC port will be connected to a device FC port. Only

// the connections between HBA FC ports and switch FC ports are discovered

// by this recipe

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces supporting HBA Profile previously identified

// using SLP

// 2. Array $attachedFcPorts->[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting HBA Profile
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 539

Cross Profile Considerations

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093
1094
$hosts[] = enumerateInstances(“CIM_ComputerSystem”)

for #i in $hosts->[]

{

if (!contains(0, $hosts[#i].Dedicated))

continue // only process systems that are “not dedicated”

$fcPorts[] = Associators(

$hosts[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”,

false,

false,

[“PermanentAddress”])

// If the Host has FC Ports, add the Host to the $nodes array

if $fcPorts[] != null

$nodes.addIfNotAlreadyAdded ($hosts[#i]);

// Get all the SystemDevice associations between this host and its FC Ports

$sysDevAssoc[] = ReferenceNames($hosts[#i],

 “CIM_FCPort”,

 “GroupComponent”);

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a
path will be entered in the nodes and links array
540

 Cross Profile Considerations

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137
if elementsOnPath != null

{

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

 $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

// Determine physical path from Switch to Storage Arrays

// DESCRIPTION

// Determine physical path from Storage Arrays to Switches

//

// For each fibre-channelFC port on every array, determine the connected

// switch FC port. NOTE: This identifies the FrontEnd I/O Controllers

// (and Storage Arrays) whose FC ports are physically connected to

// some of the FC ports of some of the Switches. This recipe does not

// distinguish and does not filter the front-end FC Port from the

// back-end FC Ports.

//

// PRE-EXISTING CONDITIONS AND ASSUMPTION

// 1. All agents/namespaces conforming to the Array profile previously

// identified

// 2. Array $attachedFcPorts[] is a map of how elements in a SAN are

// connected together via Fibre-ChannelFC ports. Each index is a WWN of

// any device FC port on the SAN, and the value at that index is the

// connected switch FC port.

// Do this for each CIMOM supporting the Array Profile:

// First identify upper-level computer systems for storage arrays -

// see 7.3.7.9.4 for how to use the Server profile to do this,

// or (as here) enumerate all systems within a conforming namespace

$computerSystems[] = enumerateInstances(“CIM_ComputerSystem”);

#n = 0

for #i in $computerSystems[]

{

if (!contains(3, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated “storage”

if (!contains(15, $computerSystems[#i].Dedicated))

continue // only process systems that are dedicated “block server”

$storageSystems[#n++] = $computerSystems[#i]
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 541

Cross Profile Considerations

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181
}

// Now accumulate all subsidiary computerSystems (cluster members or

// storage controllers) - treat $storageSystems[] as a queue and stuff

// newly discovered subsidiaries onto the end, so that ComponentCS

// associations are followed to arbitrary depth

#i = 0

while (#i < #n)

{

$subsidiaries[] = Associators(

$storageSystems[#i].getObjectPath(),

“CIM_ComponentCS”,

“CIM_ComputerSystem”,

“GroupComponent”,

“PartComponent”,

false,

false,

null)

for #j in $subsidiaries[]

{

$storageSystems[#n++] = $subsidiaries[#j]

}

#i++;

}

// Now get scoped FC ports for all the systems that have been accumulated

// NOTE: Some of the FC ports contained will be back-end ports, but they will

// have no connectivity to switches, so we won’t distinguish them

// from unconnected front-end FC ports

for #i in $storageSystems[]

{

$fcPorts[] = Associators(

$storageSystems[#i].getObjectPath(),

“CIM_SystemDevice”,

“CIM_FCPort”,

“GroupComponent”,

“PartComponent”,

false,

false,

[“PermanentAddress”])

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// If the Storage System has FC Ports, add the storage system to the $nodes array

if $fcPorts[] != null
542

 Cross Profile Considerations

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199
1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214
$nodes.addIfNotAlreadyAdded ($storageSystems[#i]);

// Get all the SystemDevice associations between this host and its FC Ports

$sysDevAssoc[] = ReferenceNames($storageSystems[#i],

 “CIM_FCPort”,

 “GroupComponent”);

// Add these associations to the $links array

for #a in $sysDevAssoc-[]

$links.addIfNotAlreadyAdded ($sysDevAssoc[#a];

for #j in $fcPorts[]

{

// Get the FCPort WWN

#wwn = $fcPorts[#j].PermanentAddress

// Match this device port WWN to one (or less) switch FC ports, by using the

// mapping table built above

$elementsOnPath = elementsOnPathMap.get(#wwn);

// If a match is found, then add all the elements from the elementsOnPath

// object to nodes and links array.

// This will ensure that only those Switches and Switch FC Ports etc that are on a
path will be entered in the nodes and links array

if elementsOnPath != null

{

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getSwitch());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getswFCPort());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.geAttPEP());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttFCPort());

 $links.addIfNotAlreadyAdded (elementsOnPath.getDevSAPImpl());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getActConn());

 $nodes.addIfNotAlreadyAdded (elementsOnPath.getAttDevSAPImpl());

}

}

}

}

 SMI-S 1.6.0 Revision 4 SNIA Technical Position 543

Cross Profile Considerations

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249
49.6.1.6 IP Network Layer

// IP Network piece of the Logical Device Composition Recipe

// It uses the iSCSI Target Ports Subprofile.

// This subroutine tries to account for the logical topology

// of the IP network between an iSCSI Initiator and Target

// by adding an object representing the iSCSISession (NetworkPipe)

// between them.

sub AddToGraphFromLayerIPNetwork(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

// CIM_EnpointOfNetworkPipe $found_endpoints_of_pipe[];

// CIM_iSCSISession $found_sessions[];

// CIM_EthernetPort $found_ports[];

// CIM_DeviceSAPImplementation $found_sap_associations[];

boolean #added;

for #i in $nodes[] {

 if ($nodes[#i] instanceof iSCSIProtocolEndpoint) {

 // Find the iSCSIProtocolEndpoints left for us by the iSCSI

 // Initiator Port subprofile. These are correlated by Name-NameFormat.

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if ($node != null) {

 // Using the EndpointOfNetworkPipe, follow the association

 // to an iSCSISession. This represents the topology contribution

 // if the IP Network.

 $found_sessions[] = Associators(

 $node.getObjectPath(),

 “CIM_EndpointOfNetworkPipe”,

 “CIM_iSCSISession”,

 “Antecedent”,

 “Dependent”

);

 $found_endpoints_of_pipe[] = References($node.getObjectPath(),

 “CIM_iSCSISession”,
544

 Cross Profile Considerations

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283
 “Antecedent”

);

 &AddIfNotAlreadyAdded($found_sessions[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_endpoints_of_pipe[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Also follow the DeviceSAPImplementation association

 // from the protocol endpoint to the EthernetPort for completeness.

 $found_ports[] = Associators($node.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_EthernetPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References($node.getObjectPath(),

 “CIM_EthernetPort”,

 “Dependent”

);

 // Add the ports and sap associations. There should only be one

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // if $node != null.

 } // if $nodes[#i] instanceof.

} // for #i.

} // AddToGraphFromLayerIPNetwork.

49.6.1.7 Local Disk Layer

// Local Disk layer piece of the Logical Device Composition Recipe

// It uses the Disk Subprofile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 545

Cross Profile Considerations

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318
sub AddToGraphFromLayerLocalDiskDrive(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

// Make sure we’ve recursively tracked down all the StorageExtents.

boolean #added = false;

// CIM_StorageExtent $found_extents[];

// CIM_BasedOn $found_associations[];

#new_added = false;

// Now see if there are any local disk drives making

// up those extents through the MediaPresent association.

// CIM_DiskDrive $disk_media[];

// CIM_MediaPresent $mediapresent_associations[];

for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_StorageExtent) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}

 if ($node != null) {

 $disk_media[] = Associators($node.getObjectPath(),

 “CIM_MediaPresent”,

 “CIM_DiskDrive”,

 “Dependent”,

 “Antecedent”

);

 $mediapresent_associations[] = References($node.getObjectPath(),

 “CIM_DiskDrive”,

 “Dependent”

);

 }

 // There should be only one asociation found for each extent.

 if (0 != $disk_media.length) {

 &AddIfNotAlreadyAdded($disk_media[0], $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($mediapresent_associations[0], $links[],
546

 Cross Profile Considerations

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348
 #added, #error_code);

 #new_added |= #added;

 }

 } if $node != null.

 } if $node ISA .

} // for.

} // AddToGraphFromLayerLocalDiskDrive.

49.6.1.8 Logical Disk Layers

// Logical Disk Partitioning piece of the Logical Device Composition Recipe

// It uses the Disk Partition Subprofile.

// Given a CIM_GenericDiskPartition, recursively traverse the CIM_BasedOn

// associations finding other CIM_GenericDiskPartitions on which

// this partition is based

// and adding the partitions and associations to the found_partitions

// and found_partition_associations as you go. Follow CIM_BasedOn associations

// to the underlying CIM_StorageExtents.

sub RecursivelyAddPartitions(

 IN CIM_GenericDiskPartition $found_partition,

 IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

 IN/OUT CIM_BasedOn[] $found_partition_associations[],

 OUT boolean #new_added

);

sub AddToGraphFromLayerDiskPartitioning(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_LogicalElement $links[],

 OUT #new_added,

 OUT #error_code) {

// CIM_GenericDiskPartition $found_partitions[];

// CIM_LogicalDiskBasedOnPartition $found_partition_associations[];

// CIM_StorageExtent $found_extents[];

// CIM_BasedOn $found_extent_associations[];
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 547

Cross Profile Considerations

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385
boolean $added = false;

#new_added = false;

for #j in $nodes[] {

 // In the Disk Partitioning Profile

 // start with a LogicalDisk object, as it is defined

 // as that on which storage applications (volume managers or

 // filesystems) may be placed.

 // The LogicalDisk object has DeviceID and Name attributes

 // that should be set to OS device names like

 // (/dev/sda1 on Linux or C: on Windows)

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // One would then follow the LogicalDiskBasedOn Partition

 // association to a GenericDiskPartition object.

 $found_partitions[] = Associators($node.getObjectPath(),

 “CIM_LogicalDiskBasedOnPartition”,

 “CIM_GenericDiskPartition”,

 “Dependent”,

 “Antecedent”

);

 $found_partition_associations[] = References($node.getObjectPath(),

 “CIM_GenericDiskPartition”,

 “Dependent”

);

 // To found paritions, add all recursive BasedOn associations to

 // and their partitions.

 for (#i=0; #i<$found_partitions[].length; #i++) {

 &RecursivelyAddPartitions($found_partitions[#i],

 $found_partitions[],

 $found_partition_associations[]);

 }

 // Now add all parititons and associations found so far.

 for (#i=0; #i<$found_partitions[].length; #i++) {
548

 Cross Profile Considerations

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424
 &AddIfNotAlreadyAdded($found_partitions[#i], $nodes[],

 #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_partition_associations[#i],

 $links[], #added, #error_code);

 #new_added |= #added;

 }

 // Now follow the BasedOn associations from partitions

 // to extents.

 for #k in $found_partitions[] {

 // look for a BasedOn association that

 // leads to a StorageExtent.

 $found_extents[] = Associators($found_partitions[#k].getObjectPath(),

 “CIM_BasedOn”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”

);

 $found_extent_associations[] = References($node.getObjectPath(),

 “CIM_StorageExtent”,

 “Dependent”

);

 if (($found_extents[0] != null) &&

 ($found_extent_associations[0] != null) &&

) {

 &AddLinkIfNotAlreadyAdded($found_extent_associations[0], $links[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($found_extents[0], $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // For over partitions.

 // The DeviceID field of those StorageExents that are

 // StorageVolumes should be correlatable

 // to a StorageVolume object maintained by the Array profile.

 // (see Host Discovered Resources profile).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 549

Cross Profile Considerations

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461
 } // if $null != $node.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerDiskPartitioning.

sub RecursivelyAddPartitions(

 IN CIM_GenericDiskPartition $found_partition,

 IN/OUT CIM_GenericDiskPartition[] $found_partitions[],

 IN/OUT CIM_BasedOn[] $found_partition_associations[],

 OUT boolean #new_added

){

 // CIM_GenericDiskPartition $new_found_partitions[];

 // CIM_BasedOn $new_found_associations;

 $new_found_partitions[] = Associators($found_partition.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_GenericDiskPartition”,

 “Dependent”,

 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_GenericDiskPartition”,

 “Dependent”

);

 for #i in $new_found_associations[] {

 $found_partition_associations[].add($new_found_associations[#i]);

 #new_added = true;

 }

 for #i in $new_found_partitions[] {

 $found_partitions[].add($new_found_partitions[#i]);

 &RecursivelyAddPartitions($new_found_partitions[#i],

 $found_partitions[],

 $found_partition_associations[]);

 #new_added = true;

 }

} // RecursivelyAddPartitions.
550

 Cross Profile Considerations

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498
49.6.1.9 Multipath Layer

// Multipath layer piece of the Logical Device Composition Recipe

// It uses the SCSI Multipath Management Subprofile

sub AddToGraphFromLayerMultipath(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

boolean #added = false;

#new_added = false;

for #j in $nodes[] {

 // CIM_SCSIInitiatorTargetLogicalUnitPath $scsi_paths[];

 // CIM_SCSIProtocolEndpoint $initiator_endpoint;

 // CIM_SCSIProtocolEndpoint $target_endpoint;

 #i = 0;

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return; }

 if ($node != null) {

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $node as the LogicalUnit reference.

 $scsi_paths[] = References($node.getObjectPath(),

 “CIM_SCSIProtocolEndpoint”, // ResultClass

 “LogicalUnit” // Role

);

 for (#i=0; #i<$scsi_paths.length; #i++) {

 &AddLinkIfNotAlreadyAdded($scsi_paths[#i], $links[],

 #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#i].Initiator;

 $target_endpoint = $scsi_paths[#i].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint, $nodes[],

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint, $nodes[],
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 551

Cross Profile Considerations

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532
 #added, #error_code);

 #new_added |= #added;

 } // for.

 } // if $node != null.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerMultipath.

49.6.1.10 Virtualizer Layer

// Virtualizer layer piece of the Logical Device Composition Recipe

// It is based on the Storage Virtualizer Profile,

// which includes the Target Port Subprofile,

// the Block Services Package, and the

// Initiator Port Subprofile. It stitches StorageVolumes

// it finds up to their ingress ports, across the layers

// of virtualization, and out their egress ports.

// For simplicity, this subroutine assumes there is no multipathing

// of LogicalDevices across multiple ingress ports.

// Given a CIM_StoragePool, recursively traverse the

// CIM_AllocatedFromStoragePool

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools

// and found_allocated_associations as you go. This method is implemented

// in Volume Manager Layer subroutine of this recipe.

sub RecursivelyAddPools(

 IN CIM_StoragePool$found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

);

sub AddToGraphFromLayerStorageVirtualizer(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 int #error_code) {

 // CIM_SCSIProtocolController $found_protocol_controllers[];
552

 Cross Profile Considerations

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569
 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 // CIM_StorageVolume $found_storage_volumes[];

 // CIM_StoragePool $found_storage_pools[];

 // CIM_AllocatedFromStoragePool $found_allocated_associations[];

 // CIM_StorageExtent $found_component_disks[];

 // CIM_ConcreteComponent $found_component_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}

 if ($node != null) {

 // First, work up the path to include the network port

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_protocol_controllers[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[0],

 $links[], #added, #error_code);
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 553

Cross Profile Considerations

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612
 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[0].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”

);

 &AddIfNotAlreadyAdded($found_protocol_endpoints[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 $found_ports[] = Associators(

 $found_protocol_endpoints[0].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Now, starting from our StorageVolume node, work down the path

 // through the virtualization layer and out the other side
554

 Cross Profile Considerations

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655
 // to the LogicalPorts.

 // Follow the AllocatedFromStoragePool to a StoragePool.

 $found_storage_pools[] = Associators(

 $node.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,

 “CIM_StoragePool”,

 “Dependent”,

 “Antecedent”

);

 $found_allocated_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 // Recursively add other StoragePools by following additional

 // AllocatedFromStoragePool associations.

 for #j in $found_storage_pools[] {

 &RecursivelyAddPools($found_storage_pools[#j],

 $found_storage_pools[],

 $found_allocated_associations[],

 #added

);

 #new_added |= #added;

 } // for #j.

 for #j in $found_storage_pools[] {

 // Add the pools and allocated associations.

 &AddIfNotAlreadyAdded($found_storage_pools[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_allocated_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the ConcreteComponent associations to StorageExtents.

 $found_component_disks[] = Associators(

 $found_storage_pools[#j].getObjectPath(),

 “CIM_ConcreteComponent”,

 “CIM_StorageExtent”,

 “Dependent”,

 “Antecedent”

);

 $found_component_associations[] = References(

 $found_storage_pools[#j].getObjectPath(),
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 555

Cross Profile Considerations

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696
 “CIM_StorageExtent”,

 “Dependent”

);

 // Now, work down each component_disk using the

 // Initiator Port Subprofile.

 for #k in $found_component_disks[] {

 // Add the disks and component associations.

 &AddIfNotAlreadyAdded($found_component_disks[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_component_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Find all CIM_SCSIInitiatorTargetLogicalUnitPath

 // with $found_component_disks[#k] as the LogicalUnit.

 $scsi_paths[] = References(

 $found_component_disks[#k].getObjectPath(),

 “CIM_SCSIProtocolEndpoint”, // ResultClass

 “LogicalUnit” // Role

);

 // Backward compatibility note: SMI-S 1.0 used an

 // SAPAvailableForElement association to get the the

 // SCSIProtocolEndpoint here. This recipe has been written

 // to the SMI-S 1.1 model, which uses the trinary association

 // SCSIInitiatorTargetLogicalUnitPath.

 for (#ii=0; #ii<$scsi_paths.length; #ii++) {

 &AddLinkIfNotAlreadyAdded($scsi_paths[#ii],

 $links[], #added, #error_code);

 #new_added |= #added;

 $initiator_endpoint = $scsi_paths[#ii].Initiator;

 $target_endpoint = $scsi_paths[#ii].Target;

 &AddIfNotAlreadyAdded($initiator_endpoint,

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($target_endpoint,

 $nodes[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation assocation

 // to the LogicalPort object.

 $found_ports[] = Associators(
556

 Cross Profile Considerations

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730
 $initiator_endpoint.getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $initiator_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 // Add the ports and sap associations.

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #ii.

 } // for #k.

 } // for #j.

 } // if $node != null.

 } // if $node ISA.

 } // for #i.

} // AddToGraphFromLayerStorageVirtualizer.

49.6.1.11 Volume Manager Layer

// Volume Manager layer piece of the Logical Device Composition Recipe

// It uses the Volume Management Profile.

// Given a CIM_StoragePool, recursively traverse the

// CIM_AllocatedFromStoragePool

// associations finding other CIM_StoragePools on which this pool is based

// and adding the pools and associations to the found_pools

// and found_allocated_associations as you go.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 557

Cross Profile Considerations

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766
sub RecursivelyAddPools(

 IN CIM_StoragePool$found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

);

// Given a CIM_LogicalDisk, recursively traverse the CIM_BasedOn

// associations finding other CIM_LogicalDisks on which this

// LogicalDisk is based

// and adding the disks and associations to the found_disks

// and found_basedon_associations as you go.

sub RecursivelyAddDisks(

 IN CIM_LogicalDisk $found_disk,

 IN/OUT CIM_LogicalDisk $found_disks[],

 IN/OUT CIM_AllocatedFromStoragePools $found_basedon_associations[],

 OUT boolean #new_added

);

// We want the CIM_StoragePools to be part of the

// composition topology if they exist.

sub AddToGraphFromLayerVolumeManager(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

#added = false;

for #j in $nodes[] {

 // CIM_StoragePool $found_storage_pools[];

 // CIM_AllocatedFromStoragePool $found_allocated_associations[];

 if ($nodes[#j] ISA CIM_LogicalDisk) {

 &GetProviderInstanceOf($nodes[#j], $node, #error_code);

 if (#error_code) { return;}

 if (($node != null)) {

 // This first method looks for cases where volume groups

 // have been created as StoragePools.

 // Follow the CIM_AllocatedFromStoragePool association

 // to a CIM_StoragePool.
558

 Cross Profile Considerations

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810
 $found_storage_pools[] = Associators($node.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,

 “CIM_StoragePool”,

 “Dependent”,

 “Antecedent”

);

 $found_allocated_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 // Then, recursively follow any CIM_AllocatedFromStoragePool

 // associations to other CIM_StoragePools, adding associations

 // and strorage pools as you go.

 for (#i=0; #i<$found_storage_pools[].length, #i++) {

 &RecursivelyAddPools($found_storage_pools[#i],

 $found_storage_pools[],

 $found_allocated_associations[],

 #added

);

 #new_added |= #added;

 }

 for #k in $found_allocated_associations[] {

 &AddLinkIfNotAlreadyAdded($found_allocated_association[#k], $links[],

 #added, #error_code);

 #new_added |= #added;

 }

 for #k in $found_storage_pools[] {

 &AddIfNotAlreadyAdded($found_pool_storage_pools[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 }

 // Now find the component disks of the storage pools.

 // CIM_LogicalDisk[] $found_component_disks[];

 for #k in $found_storage_pools[] {

 $found_component_disks[] = Associators(

 $found_storage_pools[#k].getObjectPath(),

 “CIM_ConcreteComponent”,

 “CIM_CIMLogicalDisk”,

 “Dependent”,

 “Antecedent”

);

 $found_component_associations[] = References(

 $found_storage_pools[#k].getObjectPath(),
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 559

Cross Profile Considerations

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849
 “CIM_LogicalDisk”,

 “Dependent”

);

 }

 for (#i=0; i < $found_component_disks[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($found_component_associations[#i],

 $links[],

 #added,

 #error_code);

 #new_added |= #added;

 }

 // If this implementation does not use volume groups,

 // look for the BasedOn associations to find the disks.

 // CIM_LogicalDisk[] $found_logical_disks[];

 // CIM_BasedOn[] $found_basedon_associations[];

 $found_logical_disks[] = Associators($node.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”

);

 $found_basedon_associations[] = References($node.getObjectPath(),

 “CIM_LogicalDisk”,

 “Dependent”

);

 // Add these disks to the component_disks.

 for (#i=0; #i<$found_basedon_associations[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($found_basedon_associations[#i], $links[].

 #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($found_logical_disks[#i],

 $found_component_disks[],

 #added, #error_code);

 #new_added |= #added;

 }

 // Follow all BasedOn associations to find more component disks

 // recursively.
560

 Cross Profile Considerations

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886
 // CIM_LogicalDisk $recusive_disks[];

 // CIM_BasedOn $recursive_basedon_associations[];

 for (#i=0; #i<$found_component_disks[].length; #i++) {

 &RecursivelyAddDisks($found_component_disks[#i],

 $recursive_disks[],

 $recursive_basedon_associations[],

 #added);

 }

 // Now add the recursive disks and associations to the

 // $nodes[] and $links[] arrays.

 for (#i=0; #i<$recursive_disks[].length; #i++) {

 &AddLinkIfNotAlreadyAdded($recursive_basedon_associations[#i],

 $links[], #added, #error_code);

 #new_added |= #added;

 &AddIfNotAlreadyAdded($recursive_disks[#i],

 $nodes[],

 #added, #error_code);

 #new_added |= #added;

 }

 } // if $node != null.

 } // if $node ISA.

} // For over nodes.

} // AddToGraphFromLayerVolumeManager.

sub RecursivelyAddPools(

 IN CIM_StoragePool $found_pool,

 IN/OUT CIM_StoragePool $found_pools[],

 IN/OUT CIM_AllocatedFromStoragePools $found_allocated_associations[],

 OUT boolean #new_added

) {

 // CIM_StoragePool $new_found_pools;

 // CIM_AllocatedFromStoragePool $new_found_associations;

 #new_added = false;

 $new_found_pools[] = Associators($found_pool.getObjectPath(),

 “CIM_AllocatedFromStoragePool”,

 “CIM_StoragePool”,

 “Dependent”,
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 561

Cross Profile Considerations

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926
 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_StoragePool”,

 “Dependent”

);

 for #i in $new_found_associations[] {

 $found_allocated_associations[].add($new_found_associations[#i]);

 #new_added = true;

 }

 for #i in $new_found_pools[] {

 $found_pools[].add($new_found_pools[#i]);

 &RecursivelyAddPools($new_found_pools[#i], $found_pools[],

 $found_allocated_associations[], #new_added);

 #new_added = true;

 }

} // RecursivelyAddPools.

sub RecursivelyAddDisks(IN CIM_LogicalDisk $found_disk,

 IN/OUT CIM_LogicalDisk $found_disks[],

 IN/OUT CIM_BasedOn $found_basedon_associations[],

 OUT boolean #new_added

) {

 // CIM_StoragePool $new_found_disks[];

 // CIM_AllocatedFromStoragePool $new_found_associations;

 #new_added = false;

 $new_found_disks[] = Associators($found_disk.getObjectPath(),

 “CIM_BasedOn”,

 “CIM_LogicalDisk”,

 “Dependent”,

 “Antecedent”

);

 $new_found_associations[] = References($node.getObjectPath(),

 “CIM_LogicalDisk”,

 “Dependent”

);

 for #i in $new_found_associations[] {

 $found_basedon_associations[].add($new_found_associations[#i]);

 #new_added = true;
562

 Cross Profile Considerations

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961
 }

 for $new_found_disk in $new_found_disks[] {

 $found_disks[].add($new_found_disks[#i]);

 &RecursivelyAddDisks($new_found_disks[#i], $found_disks[],

 $found_basedon_associations[], #new_added);

 #new_added = true;

 }

} // RecursivelyAddDisks.

49.6.1.12 Storage Library

// Storage Library layer piece of the Logical Device Composition Recipe

// This is based on the

// Storage Library Profile, which can include the Target Port Subprofile.

// It connects LogicalDevices left by the SCSI initiator

// side to TapeDrives and their LogicalPorts on the array side

// to allow network and logical device topologies to be correlated.

sub AddToGraphFromLayerStorageLibrary(IN/OUT CIM_LogicalElement $nodes[],

 IN/OUT CIM_Dependency $links[],

 OUT boolean #new_added,

 OUT int #error_code) {

 // CIM_SCSIProtocolController $found_protocol_controllers[];

 // CIM_ProtocolControllerForUnit $found_for_unit_associations[];

 // CIM_ProtocolEndpoint $found_protocol_endpoints[];

 // CIM_DeviceSAPImplementation $found_sap_associations[];

 // CIM_LogicalPort $found_ports[];

 // CIM_SAPAvailableForElement $found_available_associations[];

 boolean #added = false;

 #new_added = false;

 for #i in $nodes[] {

 if ($nodes[#i] ISA CIM_LogicalDevice) {

 // This should correlate by OtherIdentifyingInfo and should find the

 // corresponding CIM_TapeDrive object instance in this profile.

 &GetProviderInstanceOf($nodes[#i], $node, #error_code);

 if (#error_code) { return;}
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 563

Cross Profile Considerations

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
 if ($node != null) {

 // Work up the path to include the network ports

 // for stitching in the network topology.

 // Follow an ProtocolControllerForUnit to a SCSIProtocolController.

 $found_protocol_controllers[] = Associators(

 $node.getObjectPath(),

 “CIM_SCSIProtocolControllerForUnit”,

 “CIM_SCSIProtocolController”,

 “Dependent”,

 “Antecedent”

);

 $found_for_unit_associations[] = References(

 $node.getObjectPath(),

 “CIM_SCSIProtocolController”,

 “Dependent”

);

 // Each LogicalDevice may be handled by multiple controllers.

 for #j in $found_protocol_controllers[] {

 &AddIfNotAlreadyAdded($found_protocol_controllers[#j],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_for_unit_associations[#j],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow an SAPAvailableForElement to a SCSIProtocolEndpoint.

 $found_protocol_endpoints[] = Associators(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_SAPAvailableForElement”,

 “CIM_ProtocolEndpoint”,

 “ManagedElement”,

 “AvailableSAP”

);

 $found_available_associations[] = References(

 $found_protocol_controllers[#j].getObjectPath(),

 “CIM_ProtocolEndpoint”,

 “ManagedElement”

);
564

 Cross Profile Considerations

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032
 // Each controller may multipath through multiple ports.

 for #k in $found_protocol_endpoints[] {

 &AddIfNotAlreadyAdded($found_protocol_endpoints[#k],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_available_associations[#k],

 $links[], #added, #error_code);

 #new_added |= #added;

 // Follow the DeviceSAPImplementation to a LogicalPort.

 // This is a 1:1 relationship.

 $found_ports[] = Associators(

 $found_protocol_endpoints[#k].getObjectPath(),

 “CIM_DeviceSAPImplementation”,

 “CIM_LogicalPort”,

 “Dependent”,

 “Antecedent”

);

 $found_sap_associations[] = References(

 $found_protocol_endpoints.getObjectPath(),

 “CIM_LogicalPort”,

 “Dependent”

);

 &AddIfNotAlreadyAdded($found_ports[0],

 $nodes[], #added, #error_code);

 #new_added |= #added;

 &AddLinkIfNotAlreadyAdded($found_sap_associations[0],

 $links[], #added, #error_code);

 #new_added |= #added;

 } // for #k.

 } // for #j.

 } // for #i.

} // AddToGraphFromLayerStorageLibrary.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 565

Cross Profile Considerations
566

 Indications Profile

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17
18
19

20
21
22
23
24

25
26
27
28
29
EXPERIMENTAL

Clause 50: Indications Profile

50.1 Synopsis
Profile Name: Indications (Component Profile)

Version: 1.6.0

Organization: SNIA

CIM Schema Version: 2.25.0

Related Profiles for Indications: Not defined in this standard.

Central Class: CIM_IndicationService

Scoping Class: CIM_System

Scoping algorithm: HostedService

The SNIA Indications profile is a specialization of the DMTF Indication Profile.

The scoping system is the system that hosts a WBEM server with one or more indication services.

Note: The current version of the DMTF profile allows only one indication service per indication system; the
limitation may be raised in a future version of the profile.

50.2 Description
The SNIA Indications profile is a specialization of the DMTF Indications profile. It adds in the SNIA elements and
constraints. This specialization is for profiles that wiish to conform to both the DMTF Indications and SNIA
Indications profiles. The current SMI-S Indication and Experimental Indication profile are not being changed by the
addition of the SNIA Indications profile.

The intent of the SNIA Indications Profile is to support profiles that want to conform to both the DMTF and SNIA
Indications support. For example, a DMTF autonomous profile that wishes to reference SMI-S component profiles
could reference the SNIA Indications profile to identify support for both the DMTF and SNIA Profiles for Indicaitons.
Similarly, a SNIA autonomous profile that references DMTF component profiles may reference the SNIA
Indications profile as a means of identifying indication support for both DMTF and SNIA Indications.

A SNIA autonomous profile that wishes to support the DMTF Indications would list support for either the SNIA
Indications, the SNIA Indication or the SNIA Experimental Indication profile. If the implementation incorporates a
DMTF component profile that requires indicaitons, then the implementation should support the SNIA Indications
Profile. If the implementation does not incorporate any DMTF component profile that requires indications, then the
implementation may reference either the SNIA Indication or SNIA Experimental Indication profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 567

Indications Profile

30

31

32
33

34
35
36
37
38

39
40

41

42
43
44
50.3 Implementation
Figure 77 illustrates the elements from the DMTF Indications Profile.

To understand Figure 77 refer to the DMTF Indicaitons Profile version 1.2.1. It is provided here as the context for
adding the SNIA elements and constraints.

The Central Class of the DMTF Indications profieis the IndicationService. It represents the current settings of the
indication functions of the WBEM Server. It has an associated IndicationServiceCapabilites that indicate what can
be changed relative to the IndicationService. It also has an associated IndicationServiceSettingData that
represents the default settings for the service. Every time the services is started up, it will adopt the settings as
defined in the IndicationServiceSettingData.

Some classes defined by the DMTF profile are also used by the SNIA extensions, but are not the necessarily the
same usages. The classes of special note are:

• IndicationFilters

• DMTF defines Static and Dynamic Indication Filters. SNIA defines “Pre-defined” and “Client Defined”
IndicationFilters. For the purposes of implementing this profile a “Client Defined” IndicationFilter is equivalent
to a Dynamic IndicationFilter.

Figure 77 - Elements of the DMTF Indications Profile
568

 Indications Profile

45
46
47

48

49
50

51
52
53
54
55
56
57

58
59

60
61

62

63
• A “Pre-defined” IndicationFilter is similar to the DMTF Static IndicationFilter. However, the SNIA Pre-defined
IndicationFilter is a declaration that the implementation of the owning profile provides support for producing
the indication.

• FilterCollections

• DMTF only defines Static FilterCollections (GlobalFilterCollections and ProfileSpecificFilterCollections).
Static FilterCollections have a defined “coverage” that is defined by the referencing profile.

• SNIA defines “Predefined” and “Client defined” FilterCollections. A SNIA “Predefined” FilterCollection is the
collection of all Predefined IndicationFilters supported by the referencing profile implementation. This shall
include all mandatory IndicationFilters of the profile and may include any optional or conditionaI
IndicationFilters of the profile. It may also contain vendor specific Predefined IndicationFitlers.
Client defined FilterCollections are collections of IndicationFilters (Predefined or Client defined) as defined
by a client application. Client defined FilterCollections allow a client application to subscribe to only those
indications that are of interest to the particular application.

It is important to note that a profile implementation that is supporting SNIA Indications profile needs to consider
implementing both the DMTF Static FilterCollections and the SNIA Predefined FilterCollections.

The rest of this profile defines the SNIA extensions to this model and how those extensions relate to the elements
in the DMTF profile.

50.3.1 SNIA Extensions to the DMTF Indications Profile

Figure 78 illustrates the extensions to the DMTF Indications Profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 569

Indications Profile

64
65
66

67
68
69
The first thing to notice in Figure 78 is the System defined in the DMTF Indications profile, when implemented in an
SMI-S environment refers to the System in the Server Profile that hosts the ObjectManager of the CIM Server. This
is not clear in the DMTF Profile, because DMTF does not have a “Server Profile.”

The RegisteredProfile with RegisteredName=”Indications” would have RegisteredOrganization=”DMTF” if the
SNIA extensions are not implemented and RegisteredOrganization=”SNIA” if the SNIA extensions are
implemented.

Figure 78 - The SNIA Extensions to the DMTF Indications Profile
570

 Indications Profile

70
71
72
73
74

75
76
77
78
79
80
81
82

83
84
85

86
87
88
89

90

91
92
93
94
95

96

97
98
99

100

101

102

103

104

105

106

107

108

109

110

111
The DMTF Indications profile provides for the IndicationService, which represents the indication service of the
infrastructure (e.g., the CIMOM). The SNIA_IndicationConfigurationServices represents the indications support
provided by a particular profile implementation (e.g., an Array implementation). Both the IndicationService and the
IndicationConfigurationService have associated Capabilities that reflect the capabilities of the infrastructure and
the specific profile implementation, respectively.

Both the DMTF Indication Profile and the SNIA extensions support the notion of FilterCollections. However, the
formation of the collections are slightly different. The DMTF Indications Profile defines two collections; Global
FilterCollections which would be implemented by the infrastructure and Profile Specific FilterCollections, which
would be implemented by profiles. The SNIA FilterCollections define one FilterCollection per Profile for all
predefined IndicationFilters supported by an implementation (e.g., an Array implementation). In addition, these
FilterCollections are organized into a hierarchy. The top FilterCollection would be for predefined IndicationFilters
for the autonomous profile implementation (e.g., an Array or Fabric Profile implementation). The second level of
the hierarchy would be FilterCollections for any implementations of component profiles.

The SNIA extensions also provide support for client defined FilterCollections. These are FilterCollections explicitly
created by a client application to collect IndicationFilters that the client application wants to subscribe to. Client
defined FilterCollections may collect any predefined IndicationFilters, as well as client defined IndicationFilters.

In addition, the SNIA extensions call for FilterCollections to be hosted by some system. For the SNIA predefined
FilterCollections the HostedCollection would be to the System of the autonomous profile (e.g., Array System or
Fabric AdminDomain). But the SNIA extensions also call for a HostedCollection from the DMTF FilterCollections to
the same system the IndicationService is hosted on.

Also note that SNIA predefined FilterCollections may contain SNIA_IndicationFilterTemplates (see section 50.3.7).

One last point on the SNIA extensions. SNIA defines predefined and client defined IndicationFilters. DMTF defines
static and dynamic IndicationFilters. Both sets are defined in this profile to distinguish application of association
requirements. Generally speaking a predefined IndicationFilter is also a static IndicationFilter and a client defined
IndicationFilter is a dynamic IndicationFilter. However, the SNIA predefined IndicationFilter has the added
semantics of representing a filter that has a provider to support generating the indication called for.

50.3.2CIM_IndicationServiceCapabilities Extensions

DMTF defines this class (and the related CIM_ElementCapabiities) as conditional on support for allowing updating
of the IndicationService. The CIM_IndicationServiceCapabilities shall always be populated, even if all of
FilterCreationEnabledIsSettable, DeliveryRetryAttemptsIsSettable, DeliveryRetryIntervalIsSettable,
SubscriptionRemovalActionIsSettable and SubscriptionRemovalTimeIntervalIsSettable are “false”.

50.3.3 AlertIndication Extensions

The SNIA extensions to the DMTF profile override or add the following properties:

• Overridden Properties

• AlertingManagedElement (overridden)

• AlertType (overridden)

• PerceivedSeverity (overridden)

• SystemName (overridden)

• CorrelatedIndications(overridden)

• OwningEntity (overridden)

• MessageID (overridden)

• MessageArguments(overridden)
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 571

Indications Profile

112

113

114

115

116

117

118

119
120

121
122

123
124

125
126

127

128
129

130

131
132

133

134

135

136

137

138
139

140

141

142
143
• Message (overridden)

• Added Properties

• SystemCreationClassName (added)

• ProviderName (added)

• EventID (added)

• Description (added)

50.3.3.1 AlertingManagedElement encoding in AlertIndication Instances
When encoding the mandatory property “AlertingManagedElement” of an AlertIndication the SNIA extensions
define following rules:

• If the element in question is modeled by the profile implementation, then the format for this property should
be as a Typed WBEM URI as defined in DSP0207.

• If the element in question is not modeled by the profile implementation, then the encoding for this property
should be as meaningful to clients as possible

The DMTF Indications profile only supports the first rule. If the AlertingManagedElement is not modeled, then
DMTF calls for the property to be NULL.

50.3.3.2 AlertType
The SNIA Indications profile defines an definitive list of values for this property. The DMTF Indications profile refers
to DSP0228.

50.3.3.3 PerceivedSeverity
The SNIA Indications profile defines the valid range of values supported for this property. The DMTF Profile does
not, but does not preclude any of the values supported by the SNIA Indications profile.

50.3.3.4 SystemName
The SNIA Indications profile defines the property as:

The scoping System's Name for the Provider generating this Indication.

The SystemName would typically be the name of the system that generates the indication

The DMTF Indications profile defines the property as:

Should be the value of the Name property of the scoping system of the managed element that is the
AlertingManagedElement.

These definitions are not consider in conflict.

EXPERIMENTAL

50.3.3.5 CorrelatedIndications
The SNIA Indications profile considers this property to be Experimental. The DMTF Indications profile does not.
But the property is optional in both profiles.

EXPERIMENTAL
572

 Indications Profile

144

145
146

147

148
149

150

151
152

153

154

155

156

157

158

159
160
161
162

163
164
165

166
167

168

169

170

171
172
173

174

175
176

177

178

179
180
181
182
183
50.3.3.6 MessageArguments
This property is Mandatory for both the DMTF and SNIA Indications profile. It is optional in the SNIA Indication
Profile. If a standard message has no arguments this property should be coded as an empty array.

50.3.3.7 Message
The DMTF Indications Profile defines this property as optional. The SNIA Indications profile promotes this to
Mandatory to be compatible with the SNIA Indication Profile.

50.3.3.8 Additional AlertIndication properties
The SNIA Indications Profile requires the following additional properties not defined in the DMTF Indications Profile
definition of CIM_AlertIndication:

• SystemCreationClassName

• ProviderName

In addition, the SNIA Indications profile defines the following properties as optional:

• EventID

• Description

50.3.4 CIM_IndicationSubscription

The SNIA Indications Profile defines this class as Mandatory. The DMTF Indications Profile defines this as
conditional on support for IndicationFilters, which are optional. The SNIA Indications Profile also defines
IndicationFiltters to be optional, but expects either predefined or client defined filters to exist, so support for the
IndicationSubscription has been defined as Mandatory.

The DMTF Indications Profile introduces the possibility of support for CIM_FilterCollectionSubscription to the
exclusion of CIM_IndicaitonSubscription. The SNIA Indications Profile does not currently have this capability (for
backward compatibility).

In addition, the SNIA Indications profile extends the IndicationSubscription definition to include the following
properties:

• LastIndicationIdentifier

• LastIndicationProductionDateTime

50.3.5 CIM_ListenerDestinations

The DMTF Indications Profile models indication handlers with CIM_ListenerDestinations. The SNIA Indications
Profile uses this for both CIM-XML and WS-Management, but also supports the CIM_ListenerDestinationCIMXML
for backward compatibility with previous releases of the standard.

50.3.6 Handling of Indication Storms

The SNIA Indications Profile extends the DMTF Profile to talk about bellwether events and indications. To contain
the impact of indication storms an implementation can employ additional techniques:

• Use of Bellwether events (if they are defined by the profile)

50.3.6.0.1 Use of Bellwether Events
There are many state changes in the model for a device or application that results in changes in many CIM
instances. For example, the addition of a device or application representation to a CIMOM should result in creation
indications for every single member instance of that device or application. The activation of a ZoneSet from one of
the member Switches in a fabric should result to indication listeners on another Switch's namespace creation
indications for every instance of the new ZoneSet.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 573

Indications Profile

184
185
186

187
188
189
190
191

192
193
194
195
196

197
198
199
200

201

202
203
204
205
206

207
208

209
210
211
212

213
214
215

216

217
218
219
220
221
222
223
224
225
226

227

228
229
The worse case risk is that several of this type of situation may occur simultaneously and result in network storms
and the sudden saturation of the LAN. Additionally, the use of computing resources of the device or application
producing the indication or client receiving the indications may be unacceptably high.

Indications provide the most value when they are used by a client as a mechanism to pick a significant or small
number of changes in CIMOMs of interest. In order to capture a wide variety of changes, any of which may be
pertinent to the client application, the client is likely to create many indication subscriptions and keep them all
active simultaneously. This approach is not problematic because the number of management related changes to
any device or application in the network is usually very small.

As mentioned previously, there are several potential situations where an excessive number of indications can be
produced, thereby potentially overloading the network, originating CIMOM, and receiving client's resources.
There is no need to occur such a risk because it is likely that the client is not going to be interested in all things at
all times. The interest of the client in instance changes usually follows the needs of the current users of that client
application.

Bellwether indications are used by SMI-S designers and individual implementation to signal many instance
changes with one event. A client can assume that some previously defined graph of associated CIM instances
are affected when it receives a bellwether indication. It can then choose, if warranted, to fetch all or some of these
instances. This design prevent the previously mentioned adverse side effects.

Some rules being considered are:

• When a device or application is added to a namespace and there are indication subscription that cover some
or all of the graph of instances added by side effect of the addition, then only a create indication is produced for
the top level object for the device or application, like ComputerSystem, provided that there is an indication
subscription for changes in the top-level object. Similarly, if a device or application is deleted in the same
situation, then only a delete indication will be produced.

• Bellwether indication are mandatory if they exist in SMI-S and will be easily identified as being bellwether
events.

• The classes associated to the bellwether indication will be part of the definition of the indication. The client
can assume that instances of these classes will have been affected and can choose to harvest that data.
The implementation is not required to produce instances of every class listed as per the requirements
defined elsewhere in SMI-S.

• SMI-S Designer's are encouraged to define bellwether indications, which can be of any class of indication, for
major state changes of a model. In the previous examples, the device creation could be a life cycle
indication where changes in ZoneSet change may be best communicated by an Alert Indication.

50.3.6.0.2 Bellwether Indications for ComputerSystem
It is important to not overload a SMI-S client when device or applications are added or removed from CIM Object
Managers. The addition or removal of the representation of a device or application is attributed to the creation or
deletion of a top-level computer system instance. This overloading would arise from a SMI-S Agent sending
creation or deletion indications to every indication destination for all component or dependent instances to the top-
level computer system. For this profile, when a top-level computer system instance is created in the model, the
SMI-S agent shall not produce indications for indication subscriptions, on indications that do not reference the top-
level computer system, that would otherwise receive InstCreation indications. Likewise, for this profile, when a top-
level computer system is deleted from the model, the SMI-S agent shall not produce indications for indication
subscriptions, on indications that do not reference the top-level computer system, that would otherwise receive
InstDeletion indications.

50.3.7 Semi-Fixed Client Specific Indication Filters

The SNIA Indications profile extends the DMTF Indications Profile with support for semi-fixed IndicationFilters via a
SNIA class definition for an IndicationFilterTemplate.
574

 Indications Profile

230

231

232
233
234
235

236

237
238

239
240
241
242

243
244
245

246
247
248

249

250
251
252

253
254
255

256

257
258
259

260
261

262

263
264
265
266

267
268
269
270

271
272
Semi-fixed Client specific IndicationFilters extend the support for indications in the following classes:

• SNIA_IndicationFilterTemplate

This class mirrors the CIM_IndicationFilter, but the Query property supports a query with the string
'SUBSTITUTION_STRING' included in a CQL query. This is a template that may be used by a client
application to create an instance of CIM_IndicationFilter with a client application supplied string in place of
the string 'SUBSTITUTION_STRING'.

• SNIA_IndicationConfigurationCapabilities (and the SupportedFeatures property)

The SupportedFeatures property of SNIA_IndicationConfigurationCapabilities includes the value ‘7’
(“Semi-fixed IndicationFilters”) that indicates semi-fixed IndicationFilters are supported.

When an implementation sets this enumeration, the implementation shall support creation (CreateInstance) of
IndicationFilters that follow a pattern that includes substitution strings as defined in the
SNIA_IndicationFilterTemplate Query property. The client is allowed to replace the substitution string with any
simple expression (including constants).

Semi-fixed IndicationFilterTemplates are documented in this standard with the substitution string identified with the
string ‘SUBSTITUTION_STRING’ in the Query property. For example, the following Query values would indicate a
Semi-fixed IndicationFilterTemplate:

SELECT * FROM CIM_InstDeletion
WHERE SourceInstance ISA CIM_StorageSynchronized AND
OBJECTPATH(SourceInstanceModelpath) = OBJECTPATH(‘SUBSTITUTION_STRING’)

or

SELECT * FROM CIM_InstModification
WHERE SourceInstance ISA CIM_StorageVolume AND
SourceInstance.OperationalStatus = ‘SUBSTITUTION_STRING’

When a semi-fixed IndicationFilterTemplate is defined in this standard, the description column for the CIM Element
for the Indication will identify valid substitutions or will reference an implementation section that identifies the valid
values.

50.3.7.1 Naming Conventions for IndicationFilterTemplates and IndicationFilters
The naming convention for IndicationFilters is consistent with conventions defined for in the DMTF Indications
profile. The SNIA Indications Profile extends this to cover IndicationFilterTemplates and introduces an OrgID of
“SNIA”.

Both IndicationFilters and IndicationFilterTemplates have a Name property. The value of the Name property shall
be formatted as defined by the following ABNF rule:

OrgID ":" RegisteredName ":" UniqueID

Where OrgID identify the business entity owning the referencing profile. OrgID shall include a copyrighted,
trademarked, or otherwise unique name that is owned by that business entity or that is a registered ID assigned to
that business entity by a recognized global authority. In addition, to ensure uniqueness, OrgID shall not contain a
colon (:).

For referencing profiles owned by the SNIA, OrgID shall match "SNIA" for IndicationFilterTemplates defined by the
standard. For vendor unique IndicationFilterTemplates, the OrgID should be a unique name for the vendor. For
client defined IndicationFilters that are based on IndicationFilterTemplates, the OrgID should identify the client
(application) organization.

The RegisteredName shall be the registered name of the referencing profile, as defined by the value of its
CIM_RegisteredProfile.RegisteredName property.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 575

Indications Profile

273

274

275
276
277
278
279

280

281

282
283

284

285
286
287
288
289

290

291
292
293
294
295

296

297
298
299
300
301

302

303
304
305

306

307

308

309
310
311
312
313
314
The UniqueID shall uniquely identify the instance within the referencing profile.

50.3.8 Filter Collections

Both the DMTF and SNIA Indications profiles support FilterCollections. However, their formation is different. That
is, the two profiles define different collections of indications. The DMTF only defines “static” (e.g., pre-defined)
FilterCollections. The SNIA defines support for client defined (e.g., Dyamic) FilterCollections, as well as pre-
defined FilterCollections. Furthermore, the SNIA pre-defined FilterCollections are different from the DMTF static
FilterCollections.

The DMTF defines the following static filter collections:

• Global filter collections [See CIM_FilterCollection (GlobalFilterCollection)]

These are “coverage” filter collections (collections with no members). At least one of the following global
filter collections shall be implemented:

• CollectionName=”DMTF:Indications:GlobalProfileSpecifiedAlertIndicationFilterCollection”

If any alert indications specified in referencing profiles or in this profile are implemented, the
implementation may expose a GlobalFilterCollection instance in the Interop namespace that covers all
alert indications defined in profiles. In implementations where it is not possible to determine whether alert
indications specified in referencing profiles are implemented, the instance may be exposed if the delivery
of alert indications is implemented in general.

• CollectionName=”DMTF:Indications:GlobalProfileSpecifiedLifecycleIndicationFilterCollection”

If any lifecycle indications specified in referencing profiles or in this profile are implemented, the
implementation may expose a GlobalFilterCollection instance in the Interop namespace that covers all
lifecycle indications defined in profiles. In implementations where it is not possible to determine whether
lifecycle indications specified in referencing profiles are implemented, the instance may be exposed if the
delivery of lifecycle indications is implemented in general.

• CollectionName=”DMTF:Indications:GlobalProfileSpecifiedIndicationFilterCollection”

If any indications specified in referencing profiles or in this profile are implemented, the implementation
may expose a GlobalFilterCollection instance in the Interop namespace that covers all indications defined
in profiles. In implementations where it is not possible to determine whether indications specified in
referencing profiles are implemented, the instance may be exposed if the delivery of indications is
implemented in general.

• CollectionName=”DMTF:Indications:GlobalLifecycleIndicationFilterCollection”

If the implementation supports the delivery of lifecycle indications, the implementation shall expose a
GlobalFilterCollection instance in the Interop namespace that covers all lifecycle indications defined in
profiles.

• Optional profile specific filter collections [See CIM_FilterCollection (ProfileSpecificFilterCollection)]

There are two profile specific filter collections for each profile:

• CollectionName=”<OrgID>:<Profile RegisteredName>:ProfileSpecifiedAlertIndicationFilterCollection”

If and only if a referencing profile defines alert indications, the implementation may expose a
ProfileSpecificFilterCollection instance in the Interop namespace that covers all alert indications defined in
that profile. The members of a profile-specific filter collection covering all alert indications defined in a
referencing profile shall be all indication-specific indication filters covering the alert indications defined in
that referencing profile. This definition in effect defines the defined coverage as all alert indications defined
in the referencing profile.
576

 Indications Profile

315

316
317
318
319
320
321

322
323

324

325
326
327
328

329
330
331
332

333
334
335
336

337
338
339

340

341
342
343
• CollectionName=“<OrgID>:<Profile RegisteredName>:ProfileSpecifiedLifecycleIndicationFilterCollection”

If and only if a referencing profile defines lifecycle indications, the implementation may expose a
ProfileSpecificFilterCollection instance in the Interop namespace that covers all lifecycle indications
defined in that profile. The members of a profile-specific filter collection covering all lifecycle indications
defined in a referencing profile shall be all indication-specific indication filters covering the lifecycle
indications defined in that referencing profile or in this profile. This definition in effect defines the defined
coverage as all lifecycle indications defined in the referencing profile.

These filter collections cover indications defined by the profile (as opposed to indications implementated by an
specific profile implementation).

The SNIA Indications Profile extends the DMTF Indications Profile to supports two types of filter collections:

• Predefined Filter Collections - The predefined filter collections augments the Indication Profile support for
predefined indication filters and indication filter templates by collecting them into a structure of collections (one
per profile) that are hosted on the top level system of the autonomous profile. This provides a convenient
means of finding an implementations support for predefined filters.

The collection name for the pre-defined Array filter collection would be “SNIA:Array:Predefined”. The
collection would include all pre-defined indication filters supported by the implementation of the Array
(including vendor specific indication filters). It would not include optional indication filters defined by the
SMI-S Array profile that are not implemented by the implementation.

• Client Defined Filter Collections - The client defined filter collections are collections that are defined by
applications of the standard. Client defined filter collections may include predefined and/or client defined
indication filters and allow the application to collect a set of related indication filters to which the application
wishes to subscribe.

The collection name for the Acme application client defined filter collection might be “Acme:AcmeAlerts” or
“Acme:Array:AcmeAlerts”. In the first case, “AcmeAlerts would need to be unique in the context of the
OrgID “Acme”. In the second case, “Array:AcmeAlerts” would be Acme unique alerts for Array profiles.

50.3.8.1 Predefined Filter Collections
Predefined filter collections are an optional feature of the standard. Support would be indicated via the
IndicationConfigurationCapabilities (see section 50.3.10) in the SupportedFeatures property. If the
SupportedFeatures array includes the value ‘5’ it means the implementation supports predefined filter collections.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 577

Indications Profile

344

345
346

347

348
349
350
351
352

353
354
355
356
357
358
359
360
Figure 79 illustrates the classes associated with predefined FilterCollection support.

Support for predefined filter collections includes instantiations of the following classes and associations to the
model:

• FilterCollection (Predefined)

A predefined FilterCollection collects a set of predefined IndicationFilters. The primary purpose of a
predefined FilterCollection is for an implementation to declare the IndicationFilters that it supports.
Minimally this should include all IndicationFilters that are defined as mandatory for the profile. However, it
may also include optional, conditional or vendor extension IndicationFilters supported by the
implementation.

One predefined FilterCollection is defined for each profile supported by the implementation. The
FilterCollections are organized in a 2 level hierarchy. The top most FilterCollection is the FilterCollection for
the autonomous profile. The name of the FilterCollection (CollectionName property) is of the form
“SNIA:<profile name>:Predefined”. In Figure 79 the autonomous profile is an Array profile. In addition to
collecting predefined IndicationFilters of the autonomous profile, the top level FilterCollection would also
collect FilterCollections for each of the component profiles supported by the in implementation. In
Figure 79 the component profile FilterCollection shown is for the Block Services Package (CollectionName
= “SNIA:Block Services:Predefined”).

Figure 79 - Predefined Filter Collections
578

 Indications Profile

361

362
363

364

365
366
367

368
369
370

371
372
373

374

375
376
377

378

379
380
381
382
• HostedCollection

This associates each filter collection with the top level system for which the collection applies (e.g., the top
level system of the autonomous profile).

• FilterCollectionSubscription

This associates (subscribes) a ListenerDestination (Handler) to a FilterCollection (collection). All indication
filters in the collection will be reported to the ListenerDestination (without the need for individual
subscriptions on the indication filters).

Note: A FilterCollectionSubscription will not return any indications for any
IndicationFilterTemplates in a pre-defined FilterCollection. Templates are only used for
creation of client defined IndicationFilters.

A client may subscribe to the collection of indications rather than subscribing to each individual filter in the
collection. However, a client might prefer to form its own collection of filters that it wants to subscribe to
(see section 50.3.8.2).

• MemberOfCollection

This associates predefined IndicationFilters and predefined component FilterCollections to the
FilterCollections in which they belong. MemberOfCollection associations are static and established by the
implementation.

50.3.8.2 Client Defined Filter Collections
Client defined filter collections are an optional feature of the standard. Support would be indicated via the
IndicationConfigurationCapabilities (see section 50.3.10) in the SupportedFeatures property. If the
SupportedFeatures array includes the value ‘6’ it means the implementation supports client defined filter
collections.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 579

Indications Profile

383

384

385

386
387
388
389

390
391
392

393
394
395
396
397
398
Figure 80 illustrates the classes associated with client defined FilterCollection support.

Support for client defined filter collections includes support of the following classes and associations to the model:

• FilterCollection (Client Defined)

A client defined FilterCollection collects a set of IndicationFilters (or other FilterCollections). The primary
purpose of a client defined FilterCollection is to allow a client to establish a set of indication filters in which
it wishes to subscribe to as a group. The indication filters collected may be either client defined or
predefined. They may include any IndicationFilters supported by the implementation.

Unlike predefined FilterCollections client defined FilterCollections may be organized for the convenience of
the client application. The FilterCollections may be organized in a hierarchy of any number of levels and a
any one FilterCollection need not correspond to a profile.

The name of the FilterCollection (CollectionName property) is of the form “<OrgID:<Unique Name>. In
Figure 80 a top level collection is defined with a lower level FilterCollection. The <OrgID> component
should be a company indicator (e.g., stock ticker). The <Unique Name> part of the name should uniquely
identify the collection within that company. It may be desirable to make the <Unique Name> part of the
CollectionName a compound construction (e.g., <Product Name:Name within Product>). But all that this
standard dictates is that the <OrgID> cannot be “SNIA”.

Figure 80 - Client Defined Filter Collections
580

 Indications Profile

399
400

401

402
403

404

405
406
407

408
409

410

411
412
413

414

415
416
417
418
419
420
A set of methods for creating and maintaining client defined FilterCollections are provided by the
IndicationConfigurationService (see section 50.3.10).

• HostedCollection

This associates each filter collection with the top level system for which the collection applies (e.g., the top
level system of the autonomous profile).

• FilterCollectionSubscription

This associates (subscribes) a ListenerDestination (Handler) to a FilterCollection (collection). All indication
filters in the collection will be reported to the ListenerDestination (without the need for individual
subscriptions on the indication filters.

A client may subscribe to the collection of indications rather than subscribing to each individual filter in the
collection.

• MemberOfCollection

This associates IndicationFilters (predefined or client defined) and other FilterCollections (client defined or
predefined) to higher level FilterCollections. MemberOfCollection is established using methods of the
IndicationConfigurationService (see section 50.3.10).

50.3.9 DMTF and SNIA IndicationFilters

The DMTF Indications Profile defines three types of IndicationFilters (DynamicIndicationFilter,
GlobalIndicationFilter and IndicationSpecificIndicationFilter) and two abstract IndicationFilters from which the three
types are derived (IndicationFilter and StaticIndicationFilter). In addition, the DMTF Indications Profile, itself,
defines two concrete IndicationFilters (SubscriptionRemovalIndication and
ListenerDestinationRemovalIndication).The SNIA defines two additional types of IndicationFilters (pre-defined and
Client Defined). The derivation relationship among these class definitions are shown in Figure 81.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 581

Indications Profile

421
422
423

424
425

426
427
428
429
430
431

432

433
434
435
436

437

438
439
440
The SNIA IndicationFilter (Client Defined) is derived from the DMTF IndicationFilter (DynamicIndicationFilter).
SNIA adds a couple of properties (ElementName and SourceNamespace). The SourceNamespace is deprecated,
but provided by in the client defined IndicationFilter for backward compatibility.

The DMTF IndicationFilter (GlobalIndicationFilter), DMTF IndicationFilter (IndicationSpecificIndicationFilter) and
the SNIA IndicationFilter (pre-defined) are all derived from the DMTF IndicationFilter (StaticIndicationFilter).

The DMTF Indications Profile defines two filters that are specific to the Indications profile. They are the
SubscriptionRemovalIndication and ListenerDestinationRemovalIndication filters. They are derived from both the
DMTF IndicationFilter (IndicationSpecificIndicationFilter) and the SNIA IndicationFilter (pre-defined). The
requirements of these two do not conflict in as much as the Name property conforms to both and the SNIA
IndicationFilter adds properties. The QueryLanguage is coded as ‘DMTF:CQL’, since this does not cause a
backward incompatibility for existing SNIA indications.

50.3.9.1 DMTF and SNIA encoding of QueryLanguage
DMTF and SNIA encode QueryLanguage differently. All DMTF defined IndicationFilters have a QueryLanguage of
‘DMTF:CQL’. SNIA has several encodings of QueryLanguage, one of which is ‘DMTF:CQL’. The SNIA encodings
for QueryLanguage are ‘DMTF:CQL’, ‘WQL’ or ‘SMI-S V1.0’. The ‘WQL’ and ‘SMI-S V1.0’ encodings are
deprecated.

50.3.10 Indication Configuration Services

The SNIA Indications Profile extends the DMTF Indications Profile to cover implementation specific service
methods (and capabilities) and related classes. These define the indications support for a specific implementation
of an autonomous profile (e.g., Array or Fabric).

Figure 81 - Derivation Relationships among IndicationFilters
582

 Indications Profile

441
442

443

444

445

446
447
448
449
450
451
452

453
454

455

456
457
458
459
460
461

462
Figure 82 illustrates the classes associated with support for methods for configuring and testing indications
support.

Support for the Indication Configuration Service add the following classes and associations to the model:

• SNIA_IndicationConfigurationService

This service includes methods for testing a listener, handling the creation and subscription to indications as
one extrinsic method (rather than a set of CreateInstances) and methods for managing client defined filter
collections. The SNIA_IndicationConfigurationService is a service that is specific to a particular profile
implementation and the classes managed are instantiated in the implementation namespace. The
SNIA_IndicationConfigurationService shall be instantiated when the Experimental Indication Profile is
supported, but support for the individual methods are conditional (See the
SNIA_IndicationConfigurationCapabilities).

Note that predefined FilterCollections are not managed by the methods of the indication configuration
services. They are, by their nature, static and maintained by the implementation.

• HostedService

This associates the SNIA_IndicationConfigurationService to the system of the autonomous profile
(referencing profile) for which the service applies. For example, for the Array Profile, the indication
configuration service would be hosted on the top level computer system for the Array. An autonomous
profile shall have exactly one indicaiton configuration service and it shall be hosted on the top level
system. It may not be hosted on non-top-level systems (e.g., component computer systems defined in the
Multiple Computer System Profile).

• SNIA_IndicationConfigurationCapabilities

Figure 82 - Indication Configuration Service Classes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 583

Indications Profile

463
464
465
466

467

468

469

470

471

472
473
474

475
476
477

478
479
480

481
482
483
484

485
486
487
488

489
490
491
492

493
494

495

496
497

498

499
There is one instance of SNIA_IndicationConfigurationCapabilities for an
SNIA_IndicationConfigurationService. These capabilities define the extrinsic methods supported by the
implementation and a set of SupportedFeatures. The possible SupportedSynchronousActions values and
their definitions are as follows:

• ‘2’ (None) - None of the IndicatonConfigurationService methods are supported.

• ‘3’ (Test Listener) - The TestListener method is supported.

• '4' ("Create and Subscribe) - The CreateAndSubscribe method is supported.

• ‘5’ (Filter Collection Methods) - The methods for managing client defined FilterCollections are supported.

The possible SupportedFeatures values and their definitions are as follows:

• ‘2’ (None) - None of the optional features are supported. Specifically, FilterCollections (either predefined or
client defined) are not supported. Filters (either predefined or client defined) are not supported. And semi-
fixed Indication Filters are not supported.

Note: In SMI-S, ‘none’ is only valid for profiles that don’t support indications. Any profile that
supports indications shall support either or both predefined or client defined indication
filters.

• ‘3' (Predefined Filters) - The implementation has populated a set of predefined IndicationFilters for
indications that it supports. These should include those specified by SMI-S, but may include vendor specific
IndicationFilters that the implementation supports.

• ‘4' (Client Defined Filters) - The implementation supports client defined IndicationFilters through
CreateInstance (and possibly through the CreateAndSubscribe method). If SupportedFeatures includes ‘4’,
but SupportedSynchronousActions does not include ‘4’, it means that only CreateInstance is supported for
creation of client defined filters.

• ‘5‘ (Predefined Filter Collections) - The implementation has collected its predefined IndicationFilters into
FilterCollections. Each predefined FilterCollection corresponds to an SMI-S profile (autonomous or
component) and is structured as a two level hierarchy. The top FilterCollection contains the predefined
IndicationFilters of the autonomous profile and FilterCollections for the component profiles.

• ‘6' (Client Defined Filter Collections) - The implementation supports client defined FilterCollections through
CreateInstance (and possibly through the CreateAndSubscribe method). If SupportedFeatures includes ‘6’,
but SupportedSynchronousActions does not include ‘4’, it means that only CreateInstance is supported for
creation of client defined filter collections.

• ‘7' (Semi-fixed Indication Filters) - The implementation supports semi-fixed IndicationFilters, which means
that it can accept client definitions of filters that fit the pattern defined by the semi-fixed IndicationFilter.

• ElementCapabilities

This associates the SNIA_IndicationConfigurationService instance to its
SNIA_IndicationConfigurationCapabilities instance.

• ServiceAffectsElement

This associates the IndicationConfigurationService to client defined FilterCollections it manages.
584

 Indications Profile

500

501

502
503
504
505
506

507
508
509
510
511
512
513
514

515
516
517
518
519

520
521
522
523
524
525
526
527

528
529
530
531
532

533
534
535

536
537
538
539
540
541
542
543
50.3.11 Health and Fault Management Consideration

EXPERIMENTAL

50.3.11.1 Indication Correlation
There are cases where many indications are produced in response to a single event. In fact, the indications
themselves are correctly viewed as presenting an aspect or view of the event itself and not as a comprehensive
representation of the event. AlertIndications provide a means of notification that is direct to the point than life cycle
indications, even though the production of life cycle indications are also important. The subtleties of the effect of
the event are better communicated through life cycle indications.

A given event, like a network port communication failure, can itself be reported as an AlertIndication. It is also
important to communicate the change in status of the port itself through life cycle indications. It is probable that the
network port communication failure will cause some function of the device which contains the point to also fail or
become degraded. The impact of the failure (or significant state or status change) is of great interest to
management clients as it assist in the triage of the error and potentially can also assist HFM aware clients to
contain the failure, fence off the failing component, or even prevent a more serious failure of the system in which
the component participates, like the failure of business function (like closing the book at quarter end or dropping
transactions at Christmas time).

SMI-S provides the mechanism where storage management can be affected without requiring a priori knowledge of
the device or application being managed. In this world, the overall system or service component that is most able
to assess and report the impact of the failure (or significant state or status change) is the managed device or
application itself. Indication correlation provides the mechanism that can be used to asynchronously report the
changes brought about by the event.

The mechanism requires that a single indication be the first reporter of the event. This first reporter may be an
AlertIndication or a life cycle indication. This indication should report the state or status change caused by the
event in the simplest and most direct manner. All other indications that report state or status change and are
associated directly to the first reporter indications should correlated to the first reported indication. Indication
correlation shall be done by the implementation through reporting the IndicationIdentifier of the correlated and
previously produced indications in the CorrelatedIndications array. The elements in the CorrelatedIndications may
be in any order. The linkage of indication thusly correlated is like a one-way linked list. The beginning of the
correlation link is indicated by the nullness of the CorrelatedIndications property.

Indication correlation shall be accomplished in the path of cause and effect or scoping relationships. If indication B
is to correlated to indication A, then the model change reported by B is caused by or is a side-effect of the model
change reported by A. Indication correlation shall not be accomplished by sorting the indications to be correlated
by PerceivedSeverity. That being said, Indication correlation should not be used to report secondary events,
themselves caused by the primary event, and side-effects of the secondary event.

Indication correlation provides important information about the onset of the condition and its immediate impact that
may not be retrievable when the client can react. The spread of the effects of the event within a device or
application can certainly be faster than maximum speed of the management network.

Indication correlation shall be accomplished through scoping relationships, like the part to group component or
dependent to antecedent relationships, or across direct cause and effect relationships for peer components. For
example, given that a network port communication failure within a given device causes changes to the status of
port, the scoping computer system, the port communications statistics, the status of the network pipe, and the
overall communication statistics of the device, then indication correlation shall not report correlation of the network
port communication failure to the changes in the overall communications statistics of the device. This requirement
is necessary to limit the potentially lengthy correlation and impose undue burden on the implementation without
value to the client.

EXPERIMENTAL
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 585

Indications Profile

544

545

546

547
548
549

550

551

552

553

554
555

556

557

558
559

560

561
562
563

564

565

566

567

568

569

570

571

572

573

574

575
576
577
578

579
580
581
582
50.4 Methods

50.4.1 Extrinsic Methods of the Profile

EXPERIMENTAL

50.4.1.1 TestListener Method
The TestListener method allows a client to test that the ListenerDestination is actually reachable from the
implementation. It also provides information, in error cases, on why the test failed (e.g., destination not resolvable,
Port not reachable, certificate errors, etc.).

uint32 IndicationConfigurationService.TestListener(

 [IN] CIM_ListenerDestination REF Desitination);

The TestListener method takes as input a reference to a CIM_ListenerDestination class.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the indication was sent. The implementation will send an
AlertIndication with the standard message MP22 (Listener Destination Test).

1 - The method is not supported (e.g., the provider does not support the function)

4 - Failed. If the return code is 4, it means that the provider was not able to send the indication.

5 - Invalid parameter. The protocol specified is not a recognized protocol or the destination was not in a
valid URI format.

50.4.1.2 CreateAndSubscribe Method
The CreateAndSubscribe method allows a client to create IndicationFilters, ListenerDestinations and Subscriptions
in a single extrinsic call. If the instance supplied as input already exist (e.g., an IndicationFilter, FilterCollection and
ListenerDestination), then the only element created is the subscription.

uint32 IndicationConfigurationService.CreateAndSubscribe(

 [IN, EmbeddedInstance(“CIM_IndicationFilter")]

 string IndicationFilter,

 [IN, EmbeddedInstance(“CIM_FilterCollection")]

 string FilterCollection,

 [IN, EmbeddedInstance(“CIM_ListenerDestination")]

 string ListenerDestination,

 [IN, EmbeddedInstance(“CIM_AbstractIndicationSubscription")]

 string SubscriptionData,

 [OUT] CIM_AbstractIndicationSubscription REF Subscription);

The CreateAndSubscribe method takes as input a set of 4 embedded Instances provided by the client application:

• CIM_IndicationFilter - This would be filled in if the desired output is an instance of
CIM_IndicationSubscription. The method will use properties of the embedded instance to determine if the
IndicationFilter exists. If it does not exist and IndicationConfigurationService.SupportedFeatures includes ‘4’,
then the method will create the instance.

• CIM_FilterCollection - This would be filled in if the desired output is an instance of
CIM_FilterCollectionSubscription. The method will use properties of the embedded instance to determine if
the FilterCollection exists. If it does not exist and IndicationConfigurationService.SupportedFeatures
includes ‘6’, the method will create the instance (but it will be an empty collection).
586

 Indications Profile

583
584

585
586

587
588

589

590

591
592

593

594

595

596
597
598

599

600

601

602

603
604

605
606
607

608
609

610

611

612
613

614
615

616

617
618
619

620

621

622
• CIM_ListenerDestination - The method will use properties of the embedded instance to determine if the
ListenerDestination exists. If it does not exist, the method will create the instance.

• CIM_AbstractIndicationSubscription - As an input embedded instance, the references should be NULL. The
other properties of the instance will be used to establish the properties of the subscription created.

The CreateAndSubscribe method output (Subscription) is a reference to the created subscription which can be
either an IndicationSubscription or a FilterCollectionSubscription.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the subscription (and any related instances) has been created.

1 - Not Supported. The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘4’.

4 - Failed. If the return code is 4, it means that the provider was not able to create the subscription.

5 - Invalid Parameter. The implementation does not recognize the value of a parameter.

50.4.1.3 CreateFilterCollection
The CreateFilterCollection method allows a client to create a client specific collection of IndicationFilters (and/or
other filter collections) for the purpose of subscribing to all collected indications with one subscription to the
FilterCollection.

uint32 IndicationConfigurationService.CreateFilterCollection(

[IN] string FilterCollectionName,

[IN] CIM_ManagedElement REF Members[],

[OUT] CIM_FilterCollection REF FilterCollection);

The CreateFilterCollection method takes as input the name of the collection and a list of members to be added to
the collection:

• FilterCollectionName - FilterCollectionName takes the form ‘OrgID:CollectionID’ where OrgID is the client
vendor and product is part of CollectionID. Predefined collections have an OrgID of ‘SNIA’, so a client
defined filter collection shall not use the prefix ‘SNIA’.

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection. A
Member may be an IndicationFilter (a ManagedElement) or another FilterCollection (a Collection).

The CreateFilterCollection method output (FilterCollection) is a reference to the created FilterCollection.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the FilterCollection has been created and the specified members
have been added to the collection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to create the FilterCollection.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, the
FilterCollectionName has a prefix of ‘SNIA’ or one of the Members is not a CIM_IndicationFilter or
CIM_FilterCollection.

50.4.1.4 AddFilterToCollection
The AddFilterToCollection method allows a client to add members to an existing client defined FilterCollection.

uint32 IndicationConfigurationService.AddFilterToCollection(
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 587

Indications Profile

623

624

625

626
627

628
629

630

631

632

633
634

635
636

637
638

639

640

641

642

643

644

645
646

647
648

649

650

651

652
653

654
655

656
657

658

659

660

661
 [IN] CIM_ManagedElement REF Members[],

 [IN] CIM_FilterCollection REF FilterCollection);

The AddFilterToCollection method takes as input

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection to
be added to the FilterCollection.

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the new members are to
be added.

The AddFilterToCollection method output is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the Members have been added to the FilterCollection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to add the members to the
FilterCollection and none of the additions were done.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, one of the Members is
not a CIM_IndicationFilter or CIM_FilterCollection.

50.4.1.5 RemoveFilterFromCollection
The RemoveFilterFromCollection method allows a client to remove filters from client defined collections.

uint32 IndicationConfigurationService.RemoveFilterFromCollection(

 [IN] CIM_ManagedElement REF Members[],

 [IN] CIM_FilterCollection REF FilterCollection);

The RemoveFilterFromCollection method takes as input

• Members[] - This is a list of references to instances of either CIM_IndicationFilter or CIM_FilterCollection to
be removed to the FilterCollection.

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the members are to be
removed.

The RemoveFilterFromCollection method output is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the Members have been removed to the FilterCollection.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to remove the members to the
FilterCollection and none of the removals were done.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, one of the Members is
not a CIM_IndicationFilter or CIM_FilterCollection.

50.4.1.6 DeleteFilterCollection
The DeleteFilterCollection method allows a client to remove a client defined FilterCollection.

uint32 IndicationConfigurationService.DeleteFilterCollection(

 [IN, Required] CIM_FilterCollection REF FilterCollection.
588

 Indications Profile

662

663

664
665

666
667

668

669

670

671
672

673
674
675

676
677
678

679

680
681
682
683
684

685
686
687

688

689

690

691

692

693

694
695

696
 [IN] boolean RemoveMembers);

The DeleteFilterCollection method takes as input

• FilterCollection - This is a reference to the (Client Defined) FilterCollection to which the members are to be
removed.

• RemoveMembers - This boolean, when “true” means the method should imply removal of existing members
of the collection. When “false”, the method will fail if members exist in the collection.

The DeleteFilterCollection method output (FilterCollection) is simply success or failure.

The return codes that may be produced by this method are:

0 - If a 0 return code is returned, it means the FilterCollection has been deleted.

1 - The method is not supported (e.g., the provider does not support the function). That is,
IndicationConfigurationService.SupportedSynchronousActions does not include ‘5’.

4 - Failed. If the return code is 4, it means that the provider was not able to delete the FilterCollection. For
example, this method will return this error if RemoveMembers is ‘false’ and there are members in the
FilterCollection.

5 - Invalid parameter. A parameter is not recognized as a valid value. For example, the
FilterCollectionName has a prefix of ‘SNIA’. That is, this method will return this error if the application
attempts to delete a predefined FilterCollection.

EXPERIMENTAL

50.4.2 Intrinsic Methods of the Profile

The SNIA Indications Profile extensions to the DMTF profile are mostly populated by providers and is accessible to
clients using basic read and association traversal. However, there are three constructs that may be created by
Clients. These are the FilterCollection, MemberOfCollection and the FilterCollectionSubscription. In addition to
being able to create them, client may delete them (except “pre-defined” filters which cannot be deleted), and a
client may modify any IndicationFilter that was client created.

Note: The IndicationConfigurationService provides extrinsic methods for creating and managing client
defined FilterCollections. The intrinsic methods for creating and maintaining FilterCollections is
provided for clients that have a preference to use of intrinsic methods.

EXPERIMENTAL

50.4.2.1 FilterCollection
The CreateInstance and DeleteInstance operations are supported for client defined FilterCollections.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

On CreateInstance on FilterCollections, the implementation should allow NULL to be specified for key properties
(the InstanceID). If key properties are passed in on the CreateInstance, the implementation may ignore the keys.

If the client supplies an CollectionName, the implementation shall persist the property for later use by the client.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 589

Indications Profile

697
698

699
700
701

702
703
704
705
706

707

708
709
710
711

712

713

714

715

716

717

718
719

720
721
722

723
724
725
726
727

728

729
730

731

732

733

734

735
736

737
738
If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

 occurred).

Note: If a client attempts to create an FilterCollection that already exists (has the same InstanceID), but other
properties are different, then the request will fail. If the Client attempts to create an FilterCollection that
has identical properties to an existing FilterCollection instance, it will succeed and CreateInstance need
not treat the instance as a separate instance.

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified FilterCollection Instance shall have been removed.

The deletion of a FilterCollection instance will cause the automatic deletion of any associated MemberOfCollection
and FilterCollectionSubscription instances.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the filter collection is a pre-defined filter
collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing, duplicate,
unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in
the specified namespace), CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance
does not exist in the specified namespace), CIM_ERR_FAILED (some other unspecified error occurred).

50.4.2.2 MemberOfCollection
The CreateInstance and DeleteInstance operations are supported on MemberOfCollection for associating client
defined FilterCollections and their members.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

An implementation should populate all fields of references (scheme, hostname, port number, namespace, key) in
object path for the instance being created.

The host name portion shall be set to a valid, client-resolvable host name (i.e., DNS) or IPv4 or IPv6 address.
Internal names (e.g., /etc/hosts) are not valid. If host name, then must be FQDN (not a short name). This implies
590

 Indications Profile

739
740

741
742

743
744

745
746
747

748
749
750
751
752

753

754

755

756

757

758

759
760

761
762
763

764
765
766
767
768

769

770
771

772

773

774

775

776
777
the provider shall be configured as a valid DNS client to use host names and cannot rely on an administratively
defined name.

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

Note that for CreateInstance of a MemberOfCollection requires that the FilterCollection instance and the member
instances (FilterCollection or IndicationFilter) exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the FilterCollection referenced is a pre-defined
filter collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing,
duplicate, unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which
this is to be a new Instance does not exist), CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists),
CIM_ERR_FAILED (some other unspecified error occurred).

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified MemberOfCollection Instance shall have been removed.

Deletion of a MemberOfCollection will not cause the deletion of any corresponding FilterCollection or
IndicationFilter instances.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED (the FilterCollection referenced is a pre-defined
filter collection), CIM_ERR_INVALID_NAMESPACE, CIM_ERR_INVALID_PARAMETER (including missing,
duplicate, unrecognized or otherwise incorrect parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not
exist in the specified namespace), CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM
Instance does not exist in the specified namespace), CIM_ERR_FAILED (some other unspecified error occurred).

EXPERIMENTAL

50.4.2.3 FilterCollectionSubscription
The CreateInstance and DeleteInstance operations are supported on FilterCollectionSubscription for associating
client defined FilterCollections with ListenerDestinations.

CreateInstance

<instanceName>CreateInstance (
 [IN] <instance> NewInstance

)

An implementation should populate all fields of references (scheme, hostname, port number, namespace, key) in
object path for the instance being created.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 591

Indications Profile

778
779
780
781

782
783

784
785

786
787
788

789
790
791
792
793

794

795

796

797

798

799

800
801

802
803
804

805
806
807
808
809

810

811

812

813
814
The host name portion shall be set to a valid, client-resolvable host name (i.e., DNS) or IPv4 or IPv6 address.
Internal names (e.g., /etc/hosts) are not valid. If host name, then must be FQDN (not a short name). This implies
the provider shall be configured as a valid DNS client to use host names and cannot rely on an administratively
defined name.

If successful, the return value defines the object path of the new CIM Instance relative to the target Namespace
(i.e., the Model Path).

Note that for CreateInstance of an FilterCollectionSubscription requires that the ListenerDestinationCIMXML
instance and the FilterCollection exist.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class of which this is to be a new Instance does not exist),
CIM_ERR_ALREADY_EXISTS (the CIM Instance already exists), CIM_ERR_FAILED (some other unspecified
error occurred).

DeleteInstance

void DeleteInstance (
 [IN] <instanceName> InstanceName

)

The InstanceName input parameter defines the name (model path) of the Instance to be deleted.

If successful, the specified FilterCollectionSubscription Instance shall have been removed.

Deletion of a FilterCollectionSubscription will not cause the deletion of any corresponding
ListenerDestinationCIMXML or FilterCollection instances.

If unsuccessful, one of the following status codes shall be returned by this method, where the first applicable error
in the list (starting with the first element of the list, and working down) is the error returned. Any additional method-
specific interpretation of the error in is given in parentheses.

CIM_ERR_ACCESS_DENIED, CIM_ERR_NOT_SUPPORTED, CIM_ERR_INVALID_NAMESPACE,
CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise incorrect
parameters), CIM_ERR_INVALID_CLASS (the CIM Class does not exist in the specified namespace),
CIM_ERR_NOT_FOUND (the CIM Class does exist, but the requested CIM Instance does not exist in the specified
namespace), CIM_ERR_FAILED (some other unspecified error occurred).

50.5 Use Cases
The use cases in the following sections illustrate some of the features (and particularly the methods) of this profile.

50.5.1 Testing a Listener Destination

Table 492 identifies the elements of the use case to test whether a listener destination can receive indications from
a CIM Server.

Table 492 - Test that a Listener Destination if Functioning Properly

Use Case Element Description

Summary Given an application that listens for indications, test whether or not a
CIM_Server can successfully communicate with the application.
592

 Indications Profile

815

816

817
818
The use cases in the following sections illustrate some of the features (and particularly the methods) of this profile.

50.5.2 Testing a Listener Destination

Table 492 identifies the elements of the use case to test whether a listener destination can receive indications from
a CIM Server.

Basic Course of Events 1. Start the application that is listening for indications
2. Tell the CIM_Server to send an indication to the listener application
3. Verify the CIM_Server sent the indication
4. Verify that the listening application received the indication

Alternative Paths None

Exception Paths None

Triggers Installing a new or upgraded application that listens for indications.

Assumptions None

Preconditions The CIM Server is operational and supports a profile with support for
the TestListener function.

Postconditions The listener application receives the indication and displays it (or logs
it).

Table 493 - Test that a Listener Destination if Functioning Properly

Use Case Element Description

Summary Given an application that listens for indications, test whether or not a
CIM_Server can successfully communicate with the application.

Basic Course of Events 1. Start the application that is listening for indications
2. Tell the CIM_Server to send an indication to the listener application
3. Verify the CIM_Server sent the indication
4. Verify that the listening application received the indication

Alternative Paths None

Exception Paths None

Triggers Installing a new or upgraded application that listens for indications.

Assumptions None

Preconditions The CIM Server is operational and supports a profile with support for
the TestListener function.

Postconditions The listener application receives the indication and displays it (or logs
it).

Table 492 - Test that a Listener Destination if Functioning Properly

Use Case Element Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 593

Indications Profile

819

820
821

822

823
50.5.3 Discoverying predefined IndicationFilters of an implementation

Table 494 identifies the elements of the use case to discover predefined indication filters supported by a profile
implementation.

50.5.4 Creating a subscription to a predefined IndicationFilter

Table 495 identifies the elements of the use case to create a subscription to a predefined indication filter.

Table 494 - Discovery of Predefined IndicationFilters

Use Case Element Description

Summary Given an implementation of an autonomous Profile and its top level
ComputerSystem, determine any predefined IndicationFilters it has.

Basic Course of Events 1. Determine if the implementation has
IndicationConfigurationCapabilities
2. If it does, verify that it supports Predefined Indications and/or
Predefined FilterCollections
2a. If Predefined FilterCollections are supported, then look for the Top
Level FilterCollection and determine the predefined IndicationFilters
supported
2b. If FilterCollections are not supported (or the
IndicationConfigurationService is not supported), then simply
enumerate CIM_IndicationFilter in the namespace of the top level
ComputerSystem

Alternative Paths None

Exception Paths None

Triggers The administrator (or application) wants to inspect filters that are
declared to be supported by an implementation.

Assumptions None

Preconditions The top level system of the profile has been discovered from profile
registration and ElementConformsToProfile.

Postconditions A list of predefined IndicationFilters (possibly by Profile) is produced.

Table 495 - Create a subscription to a predefined indication filter

Use Case Element Description

Summary Given a ListenerDestination and a predefined indication filter, subscribe
to the filter

Basic Course of Events 1. See if the implementation supports the CreateAndSubscribe method
2. Retrieve the predefined IndicationFilter
2a. If CreateAndSubscribe is supported, copy properties of the
predefined indication filter into and embedded instance and invoke
CreateAndSubscribe passing the Destination of the Listener
2b. If CreateAndSubscribe is not supported, Create the
ListenerDestination and Create the IndicationSubscription

Alternative Paths None

Exception Paths None
594

 Indications Profile

824

825
50.5.5 Creating a client defined indication and subscription

Table 496 identifies the elements of the use case to create an indication filter and subscribe to it.

Triggers Set up a listener to get indications for an indication in the SMI-S
Specification.

Assumptions None

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The subscription is recorded in the CIM Server.

Table 496 - Create an IndicationFilter and subscribe to it

Use Case Element Description

Summary Given a top level system of an autonomous profile and a URI for an
indication listener create a client defined indication and subscribe to it.

Basic Course of Events 1. Get the IndicationConfigurationService if it exists
1b. If not try to do a CreateInstance for the IndicationFilter (if it
succeeds, then continue)
2. If the service exists, get the IndicationConfigurationCapabilities to
find out if the implementation supports client defined IndicationFilters
3. If the capability exists, then do a CreateAndSubscribe for the
indication
3b. Do a CreateInstance on the ListenerDestination and another
CreateInstance on the IndicationSubscription

Alternative Paths 1. Create a FilterCollection and put the client defined indication filter in
that collection

Exception Paths None

Triggers The administrator wants to listen for a specific indication of his/her
choosing.

Assumptions The implementation supports client defined IndicationFilters

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The IndicationFilter is created and a subscription to it is recorded in the
CIM Server.

Table 495 - Create a subscription to a predefined indication filter

Use Case Element Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 595

Indications Profile

826

827

828

829
50.5.6 Creating a semi-fixed indication filter

Table 497 identifies the elements of the use case to create a semi-fixed indication filter..

50.5.7 Creating a FilterCollection

Table 498 identifies the elements of the use case to create a client defined Filter Collection.

Table 497 - Creation of a semi-fixed Indication filters

Use Case Element Description

Summary A client application wants to create an indication filter that has
application specific information to include in the filter.

Basic Course of Events 1. Determine if the implementation supports semi-fixed IndicationFilters
2. Find the semi-fixed IndicationFilter
2a. Look in the ‘SNIA’ FilterCollections if they exist
2b. Enumerate predefined indication filters if not
3. Do a CreateAndSubscribe for the IndicationFilter substituting the
application specific information in the query
3a. Do a CreateInstance on the filter and the subscription if
CreateAndSubscribe is not supported.

Alternative Paths 1. If none of the new functions are supported try to create the filter
using a CreateInstance

Exception Paths None

Triggers The application wants to restrict the number of indications it receives by
adding application specific information to the filter query.

Assumptions The implementation supports semi-fixed IndicationFilters

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The IndicationFilter is created and a subscription to it is recorded in the
CIM Server.

Table 498 - Creation of a client defined FilterCollection

Use Case Element Description

Summary Given a top level system of an autonomous profile and a URI for an
indication listener and a list of IndicationFilter that the administrator
wants to listen for create a client defined FilterCollection and subscribe
to it.

Basic Course of Events 1. Determine if the implementation supports client defined
FilterCollections
1a. If not quit, you have no options.
2. Determine if the implementation supports FilterCollection Methods
2a. If not go to 3a
3. Do a CreateFilterCollection to create the FilterCollection
3a. Do a CreateInstance on the FilterCollection and a bunch of
CreateInstances for the MemberOfCollection associations to each of
the IndicationFilters. And then do a CreateInstance on
FilterCollectionSubscription.
596

 Indications Profile

830

831
50.6 CIM Elements
Table 499 describes the CIM elements for Indications.

Alternative Paths None

Exception Paths None

Triggers The client was subscriptions to IndicationFilters in a client specific list of
filters.

Assumptions None

Preconditions The top level system of the profile and a listener destination for the
application to get the indications.

Postconditions The FilterCollection is created and a subscription to it is recorded in the
CIM Server.

Table 499 - CIM Elements for Indications

Element Name Requirement Description

50.6.1 CIM_AbstractIndicationSubscription
(AbstractSubscription)

Optional CIM_AbstractIndicationSubscription
(AbstractSubscription) is an Abstract class
that holds properties common to
CIM_IndicationSubscription and
CIM_FilterCollectionSubscription.

50.6.2 CIM_AlertIndication (AlertIndication) Optional This is a specialization of the
CIM_AlertIndication class in the DMTF
Indications Profile.

50.6.3 CIM_ConcreteDependency
(ProfileOfFilterCollection)

Mandatory Deprecated. CIM_ConcreteDependency
(ProfileOfFilterCollection) models the
relationship between the a filter collection, and
the referencing profile and the profile
registration of that referencing profile.

50.6.4 CIM_ElementCapabilities
(CapabiliesOfIndicationService)

Mandatory Associates an IndicationServiceCapabilities to
its IndicationService.

50.6.5 CIM_ElementCapabilities (Indication
Config Service to Capabilities)

Mandatory Experimental. This associates the
IndicationConfigurationService to the
IndicationConfigurationCapabilities.

50.6.6 CIM_ElementConformsToProfile
(ElementConformsToProfile)

Mandatory The CIM_ElementConformsToProfile
(ElementConformsToProfile) models the
relationship between an indication service and
a scoping managed element.

Table 498 - Creation of a client defined FilterCollection

Use Case Element Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 597

Indications Profile
50.6.7 CIM_ElementSettingData
(InitialSettingsOfIndicationService)

Conditional Conditional requirement: Support for
instances of
CIM_IndicationServiceSettingData.
CIM_ElementSettingData models the
relationship between an indication service and
its initial settings.

50.6.8 CIM_FilterCollection (Client Defined) Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This is a client defined collection
of IndicationFilters to which a client may
subscribe.

50.6.9 CIM_FilterCollection
(GlobalFilterCollection)

Mandatory Global filter collections address the needs of
clients requiring notifications about large sets
of events.

50.6.10 CIM_FilterCollection (Indications
Predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This is a collection of predefined
IndicationFilters to which a client may
subscribe.

50.6.11 CIM_FilterCollection (Predefined) Optional Experimental. This is an abstract class that
would be specialized for individual profiles, for
profiles that support predefined indication
collections.

50.6.12 CIM_FilterCollection
(ProfileSpecificFilterCollection)

Optional The CIM_FilterCollection
(ProfileSpecificFilterCollection) models profile-
specific filter collections.

50.6.13 CIM_FilterCollection
(StaticFilterCollection)

Optional The Static filter collection is an ABSTRACT
class (for common properties).

50.6.14 CIM_FilterCollectionSubscription
(CollectionSubscription)

Optional This associates the FilterCollection to the
ListenerDestination that wants to receive the
indications defined in the collection.

50.6.15 CIM_HostedCollection (Hosted Client
Filter Collection)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This associates a client defined
FilterCollection to the system in the
referencing profile.

Table 499 - CIM Elements for Indications

Element Name Requirement Description
598

 Indications Profile
50.6.16 CIM_HostedCollection (Hosted
Global FilterCollection or a Profile Specific
FilterCollection)

Conditional Experimental. Conditional requirement:
Support for instances of CIM_FilterCollection
(GlobalFilterCollection) or
CIM_FilterCollection
(ProfileSpecificFilterCollection). This
associates a Global FilterCollection or a
Profile Specific FilterCollection to the system
in the referencing profile.

50.6.17 CIM_HostedCollection (Hosted
Predefined Filter Collection)

Optional Experimental. This associates a Predefined
FilterCollection to the system in the
referencing profile.

50.6.18 CIM_HostedCollection (System to
predefined FilterCollection)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections).

50.6.19 CIM_HostedService
(HostedIndicationService)

Mandatory This associates the IndicationService to its
hosting system.

50.6.20 CIM_HostedService (Indication
Config Service to System)

Mandatory Experimental. This associates the
IndicationConfigurationService to the System
in the referencing profile.

50.6.21 CIM_IndicationFilter
(DynamicIndicationFilter)

Conditional Conditional requirement: The
IndicationService instance has the value
TRUE is set for FilterCreationEnabled.
Dynamic IndicationFilter (Filters that are
created).

50.6.22 CIM_IndicationFilter
(GlobalIndicationFilter)

Mandatory This models a global indication filter for all
indications.

50.6.23 CIM_IndicationFilter
(IndicationSpecificIndicationFilter)

Optional Indication-specific indication filters are a
specialization of static indication filters. They
model indication-specific indication filters for
indications defined in referencing profiles or in
this profile.

50.6.24 CIM_IndicationFilter
(ListenerDestinationRemovalIndication)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion
of a CIM_ListenerDestination instance.

50.6.25 CIM_IndicationFilter
(StaticIndicationFilter)

Optional Static indication filters are provided by an
implementation. Their lifecycle and coverage
is controlled solely by the implementation, and
clients are not able to create or delete static
indication filters.

Table 499 - CIM Elements for Indications

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 599

Indications Profile
50.6.26 CIM_IndicationFilter
(SubscriptionRemovalIndication)

Optional Experimental. This is the 'pre-defined'
CIM_IndicationFilter instance for the deletion
of a CIM_IndicationSubscription or a
CIM_FilterCollectionSubscription instance.

50.6.27 CIM_IndicationFilter (client defined) Optional This is for 'client defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

50.6.28 CIM_IndicationFilter (pre-defined) Optional This is for 'pre-defined' CIM_IndicationFilter
instances. CIM_IndicationFilter defines the
value and format of an indication filter string.

50.6.29 CIM_IndicationService
(IndicationService)

Mandatory An indication service is a component within an
implementation that is responsible for
delivering indications to listeners.

50.6.30 CIM_IndicationServiceCapabilities
(IndicationServiceCapabilities)

Mandatory CIM_IndicationServiceCapabilities is an
optional element that represents the
capabilities of the CIM_IndicationService
instance.

50.6.31 CIM_IndicationServiceSettingData
(IndicationServiceInitialSettings)

Optional CIM_IndicationServiceSettingData is used to
represent the initial configuration of the
CIM_IndicationService instance.

50.6.32 CIM_IndicationSubscription
(FilterSubscription)

Optional This association defines a subscription to a
specific IndicationFilter instance by a specific
indication handler (as represented by a
ListenerDestination instance).

50.6.33 CIM_InstCreation Optional CIM_InstCreation is an indication of the
creation of a CIM instance. It would be
generated when an instance of the
SourceInstance class is created (either
explicitly or implicitly).

50.6.34 CIM_InstDeletion Optional CIM_InstDeletion is an indication of the
Deletion of a CIM instance. It would be
generated when an instance of the
SourceInstance class is deleted from the
model (either explicitly or implicitly).

50.6.35 CIM_InstIndication
(LifecycleIndication)

Optional The CIM_InstIndication (LifecycleIndication)
models lifecycle indications of CIM instances.

50.6.36 CIM_InstModification Optional CIM_InstModification is an indication of the
modification or change to a CIM instance. It
would be generated when an instance of the
SourceInstance class is modified or changed
(either explicitly or implicitly).

50.6.37 CIM_ListenerDestination
(ListenerDestination)

Mandatory CIM_ListenerDestination
(ListenerDestination) models listener
destinations.

Table 499 - CIM Elements for Indications

Element Name Requirement Description
600

 Indications Profile
50.6.38 CIM_ListenerDestinationCIMXML
(Indication Handler)

Mandatory Deprecated. A
CIM_ListenerDestinationCIMXML describes
the destination for CIM Export Messages to be
delivered via CIM-XML.

50.6.39 CIM_MemberOfCollection (Client
Defined Filter Collection to Filters)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='6' (Client Defined Filter
Collections). This associates a client defined
FilterCollection to the Filters in the collection.

50.6.40 CIM_MemberOfCollection
(FilterCollectionInFilterCollection)

Optional CIM_MemberOfCollection models the
relationship between a filter collection and its
contained other filter collections.

50.6.41 CIM_MemberOfCollection
(IndicationFilterInFilterCollection)

Optional CIM_MemberOfCollection models the
relationship between a filter collection and its
contained indication filters.

50.6.42 CIM_MemberOfCollection
(Predefined Filter Collection to Indications
Filters)

Conditional Experimental. Conditional requirement:
Required if the Experimental Indication Profile
is supported and the
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='5' (Predefined Filter
Collections). This associates the Indications
predefined FilterCollection to the predefined
Filters supported by the implementation.

50.6.43 CIM_OwningCollectionElement
(IndicationServiceOfFilterCollection)

Mandatory CIM_OwningCollectionElement
(IndicationServiceOfFilterCollection) models
the relationship with between a filter collection
and the indication service that owns the filter
collection.

50.6.44 CIM_ServiceAffectsElement
(IndicationServiceOfIndicationFilter)

Mandatory CIM_ServiceAffectsElement is used to
associate instances of CIM_IndicationFilter
with an instance of CIM_IndicationService.

50.6.45 CIM_ServiceAffectsElement
(IndicationServiceOfListenerDestination)

Mandatory CIM_ServiceAffectsElement
(IndicationServiceOfListenerDestination)
models the relationship between indication
services and the listener destinations they
manage.

50.6.46
SNIA_IndicationConfigurationCapabilities
(IndicationConfigurationCapabilities)

Mandatory Experimental. This is the capabilities of the
implementation of indications.

50.6.47 SNIA_IndicationConfigurationService
(IndicationConfigurationService)

Mandatory Experimental. This is the indication services of
the implementation.

Table 499 - CIM Elements for Indications

Element Name Requirement Description
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 601

Indications Profile

832

833
834

835

836

837

838
50.6.1 CIM_AbstractIndicationSubscription (AbstractSubscription)

CIM_AbstractIndicationSubscription (AbstractSubscription) is an Abstract class that holds properties common to
CIM_IndicationSubscription and CIM_FilterCollectionSubscription.

Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 500 describes class CIM_AbstractIndicationSubscription (AbstractSubscription).

50.6.48 SNIA_IndicationFilterTemplate (semi-
fixed)

Conditional Experimental. Conditional requirement:
Required if
SNIA_IndicationConfigurationCapabilities.Sup
portedFeatures='7' (Semi-fixed Indication
Filters). This is a template for 'semi-fixed'
IndicationFilter instances.

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA
CIM_AbstractIndicationSubscription

Optional CQL -

SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ListenerDestination

Optional CQL -

Table 500 - SMI Referenced Properties/Methods for CIM_AbstractIndicationSubscription
(AbstractSubscription)

Properties Flags Requirement Description & Notes

OnFatalErrorPolicy Mandatory The value of the OnFatalErrorPolicy property shall indicate
the behavior that the implementation exposes with respect
to represented subscriptions in case of failures that imply
that some aspect of indication generation processing or
indication delivery is no longer functioning and indications
may be lost. This shall be the default behavior.

OtherOnFatalErrorPo
licy

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.OnFatalErrorPolicy = 1.Value
shall be non-Null if the value of the OnFatalErrorPolicy
property is 1 (Other).

FailureTriggerTimeInt
erval

Mandatory Value shall be the minimum delay before the policy
indicated by the value of the OnFatalErrorPolicy property is
applied.

SubscriptionState Mandatory See CIM schema definition.

OtherSubscriptionSta
te

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.SubscriptionState = 1.Value
shall be non-Null if the value of the SubscriptionState
property is 1 (Other).

Table 499 - CIM Elements for Indications

Element Name Requirement Description
602

 Indications Profile
RepeatNotificationPo
licy

Mandatory The value of the RepeatNotificationPolicy property shall
indicate the policy that the implementation applies with
respect to the avoidance of repeated indication delivery of
repeated indications. The possible values are 2 (None), 3
(Suppress) or 4 (Delay).

RepeatNotificationInt
erval

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4. If
the implementation applies the
SuppressRepeatNotificationPolicy feature for the
represented subscription, as indicated by the value 3
(Suppress) for the RepeatNotification property, the value of
the RepeatNotificationInterval property shall be the length
of the time interval in seconds that the implementation
waits after initial delivery of a number of repeated
indications as indicated by the value of the
RepeatNotificationCount property before delivering the next
repeated indication.

If the implementation applies the
DelayRepeatNotificationPolicy feature for the represented
subscription, as indicated by the value 4 (Delay) for the
RepeatNotification property, the value of the
RepeatNotificationInterval property shall be the length of
the monitoring time interval in seconds during which the
implementation monitors the indication gate referenced by
the subscription for a number of additional repeated
indications. Furthermore, only if during that monitoring
interval at least the number of repeated indications as
indicated by the value of the RepeatNotificationCount
accrue, delivers only the first indication as a substitute for
all the repeated indications accrued during the monitoring
time interval.

RepeatNotificationGa
p

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy =
4.The value of the RepeatNotificationGap property shall be
the length of the delay time interval in seconds that the
implementation waits after delivering the first of a number of
repeated indications that accrued during the monitoring
time interval, before starting another monitoring time
interval with respect to implementations of the
DelayRepeatNotificationPolicy feature.

Table 500 - SMI Referenced Properties/Methods for CIM_AbstractIndicationSubscription
(AbstractSubscription)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 603

Indications Profile

839

840

841
842
843

844
50.6.2 CIM_AlertIndication (AlertIndication)

This is a specialization of the CIM_AlertIndication class in the DMTF Indications Profile.

CIM_AlertIndication is subclassed from CIM_ProcessIndication. The class definition specializes the
CIM_AlertIndication definition in the Indications profile. Properties or methods not inherited are marked accordingly
as '(overridden)' or '(added)' in the left most column.

Requirement: Optional

RepeatNotificationCo
unt

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4. If
the implementation applies the
SuppressRepeatNotificationPolicy feature for the
represented subscription, as indicated by the value 3
(Suppress) for the RepeatNotification property, the value of
the RepeatNotificationCount property shall be the number
of repeated indications that the implementation delivers
before suppressing the delivery of further repeated
indications within the time interval exposed by the value of
the RepeatNotificationInterval property.

If the implementation applies the
DelayRepeatNotificationPolicy feature for the represented
subscription, as indicated by the value 4 (Delay) for the
RepeatNotification property, the value of the
RepeatNotificationCount property shall be the number of
repeated indications that the implementation is required to
monitor and delay during the monitoring time interval
exposed by the value of the RepeatNotificationInterval
property. Only if during that monitoring time interval the
number of accrued repeated indications reaches that
number, the implementation shall deliver the first of
repeated indication as a substitute for the accrued repeated
indications. In other words, the quotient of the values of the
RepeatNotificationCount and the RepeatNotificationInterval
properties expresses a rate of repeated indications that
must have been reached or exceeded during the
monitoring time interval before one indication is delivered at
the end of the monitoring time interval.

Filter Mandatory Key: Value shall reference the IndicationFilter instance or
the StaticFilterCollection instance.

Handler Mandatory Key: Value shall reference the ListenerDestination
instance.

Table 500 - SMI Referenced Properties/Methods for CIM_AbstractIndicationSubscription
(AbstractSubscription)

Properties Flags Requirement Description & Notes
604

 Indications Profile

845
 Table 501 describes class CIM_AlertIndication (AlertIndication).

Table 501 - SMI Referenced Properties/Methods for CIM_AlertIndication (AlertIndication)

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory See CIM schema definition.

IndicationTime N Mandatory See CIM schema definition.

IndicationFilterName Mandatory Experimental. The value of the IndicationFilterName
property shall contain the name of the indication emitter
that the indication passed before being delivered to the
listeners subscribed to that indication emitter. For indication
filters, the name is exposed by the value of the Name
property in representing IndicationFilter instances. For filter
collections, the name is exposed by the value of the
CollectionName property in representing FilterCollection
instances.

SequenceContext Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceContext property shall
contain the sequence context portion of the sequence
identifier; see the CIM schema description for a
recommended format and structure. The value of the
SequenceContext property shall be identical for all
indications delivered to a particular listener while the
representing listener destination is defined within the
implementation. This definition is required to remain
effective over restarts of the implementation environment.

SequenceNumber Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceNumber property shall
contain the sequence number portion of the sequence
identifier. The value of the SequenceNumber property shall
be unique for each indication delivered to a particular
listener while the listener destination is defined within the
implementation; see the CIM schema description for
required value constraints. This definition is required to
remain effective over restarts of the implementation
environment.

AlertingManagedEle
ment (overridden)

Mandatory The identifying information of the entity for which this
Indication is generated.

If the element in question is modeled by the profile
implementation, then the format for this property should be
as a Typed WBEM URI as defined in DSP0207.

AlertingElementForm
at

Mandatory Value shall match 2 (CIMObjectPath)'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 605

Indications Profile
AlertType
(overridden)

Mandatory This shall be 1|2|3|4|5|6|7|8 ('Other' | 'Communications
Alert' | 'Quality of Service Alert' | 'Processing Error' | 'Device
Alert' | 'Environmental Alert' | 'Model Change' | 'Security
Alert')

SMI-S defines the valid range of values in this property.

PerceivedSeverity
(overridden)

Mandatory This shall be 0|1|2|3|4|5|6|7 ('Unknown', 'Other' |
'Information' | 'Degraded/Warning' | 'Minor' | 'Major' |
'Critical' | 'Fatal/NonRecoverable')

SMI-S defines the valid range of values supported for
this property.

ProbableCause Mandatory See CIM schema definition.

SystemName
(overridden)

Mandatory The scoping System's Name for the Provider generating
this Indication.

The SystemName would typically be the name of the
system that generates the indication.

The SMI-S definition is slightly different from the DMTF
definition.

CorrelatedIndications
(overridden)

Optional Experimental. IndicationIdentifiers whose notifications are
correlated with this one

SMI-S defines this property as Experimental.

OtherAlertType Conditional Conditional requirement: Support for the AlertType = 1.See
CIM schema definition.

OtherSeverity Conditional Conditional requirement: Support for the Severity = 1.If
PerceivedSeverity matches 1 (Other), this property is
mandatory.

ProbableCauseDescr
iption

Conditional Conditional requirement: Support for the ProbableCause =
1.See CIM schema definition.

OwningEntity
(overridden)

N Mandatory SMI-S allows this property to be NULL.

MessageID
(overridden)

N Mandatory SMI-S allows this property to be NULL.

MessageArguments
(overridden)

N Mandatory An array of strings that contain the dynamic content of the
message.

This was defined as Optional in previous versions of
SMI-S.

SMI-S allows this property to be NULL.

Table 501 - SMI Referenced Properties/Methods for CIM_AlertIndication (AlertIndication)

Properties Flags Requirement Description & Notes
606

 Indications Profile

846

847
848
849

850

851

852

853

854

855

856
857
858
859

860

861

862

863
50.6.3 CIM_ConcreteDependency (ProfileOfFilterCollection)

Deprecated. Each StaticFilterCollection instance representing a filter collection defined in a referencing profile shall
be associated through a ProfileOfFilterCollection instance with the ProfileRegistration instance representing the
implemented version of the referencing profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 502 describes class CIM_ConcreteDependency (ProfileOfFilterCollection).

50.6.4 CIM_ElementCapabilities (CapabiliesOfIndicationService)

SMI-S defines this class as Mandatory. DMTF allows the IndicationServiceCapabilities and this association
to be absent if the service cannot be modified. The class definition specializes the CIM_ElementCapabilities
definition in the Indications profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Message
(overridden)

N Mandatory The formatted message (including the
MessageArguments).

SMI-S defines this property as Mandatory.

SMI-S allows this property to be NULL.

SystemCreationClas
sName (added)

Mandatory

ProviderName
(added)

Mandatory

EventID (added) Optional

Description (added) Optional A free form text description.

Table 502 - SMI Referenced Properties/Methods for CIM_ConcreteDependency (ProfileOfFilter-
Collection)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Value shall reference the ProfileRegistration instance.

Dependent Mandatory Value shall reference the StaticFilterCollection instance.

Table 501 - SMI Referenced Properties/Methods for CIM_AlertIndication (AlertIndication)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 607

Indications Profile

864

865

866

867

868

869

870
871
872

873

874

875

876

877
Table 503 describes class CIM_ElementCapabilities (CapabiliesOfIndicationService).

50.6.5 CIM_ElementCapabilities (Indication Config Service to Capabilities)

Experimental. This associates the IndicationConfigurationService to the IndicationConfigurationCapabilities.

Requirement: Mandatory

Table 504 describes class CIM_ElementCapabilities (Indication Config Service to Capabilities).

50.6.6 CIM_ElementConformsToProfile (ElementConformsToProfile)

Each IndicationService instance representing an indication service shall be associated through an
ElementConformsToProfile instance with exactly one IndicationProfileRepresentation instance representing the
implemented version of this profile providing the indication service.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 505 describes class CIM_ElementConformsToProfile (ElementConformsToProfile).

Table 503 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (CapabiliesOfIndi-
cationService)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory Value shall reference a single IndicationService instance.

Capabilities Mandatory Value shall reference the IndicationServiceCapabilities
instance representing the capabilities of the indication
service identified by the value of ManagedElement.

Table 504 - SMI Referenced Properties/Methods for CIM_ElementCapabilities (Indication Config
Service to Capabilities)

Properties Flags Requirement Description & Notes

Capabilities Mandatory The indication capabilities instance associated with the
indication configuration service.

ManagedElement Mandatory The indication configuration service.

Table 505 - SMI Referenced Properties/Methods for CIM_ElementConformsToProfile (Element-
ConformsToProfile)

Properties Flags Requirement Description & Notes

ManagedElement Mandatory The CIM_IndicationService instance that represents the
available Indication Service of the implementation..

ConformantStandard Mandatory RegisteredProfile instance describing the DMTF Indications
profile.
608

 Indications Profile

878

879
880

881

882

883

884

885

886

887

888
889
890

891
892

893
50.6.7 CIM_ElementSettingData (InitialSettingsOfIndicationService)

CIM_ElementSettingData is used to associate an instance of CIM_IndicationServiceSettingData with an instance
of CIM_IndicationService.

This should be implemented if the IndicationServiceSettingData is instantiated.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Support for instances of CIM_IndicationServiceSettingData.

Table 506 describes class CIM_ElementSettingData (InitialSettingsOfIndicationService).

50.6.8 CIM_FilterCollection (Client Defined)

Experimental. This is a client defined collection of IndicationFilters to which a client may subscribe. An
implementation would indicate support for client defined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported='6' (Client Defined Filter Collections).

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 507 describes class CIM_FilterCollection (Client Defined).

Table 506 - SMI Referenced Properties/Methods for CIM_ElementSettingData (InitialSettingsOfIn-
dicationService)

Properties Flags Requirement Description & Notes

IsDefault Mandatory Value shall be 1 (Is Default).

IsNext Mandatory Value shall be 1 (Is Next).

ManagedElement Mandatory Value shall reference an IndicationService instance.

SettingData Mandatory Value shall reference the IndicationServiceInitialSettings
instance that represents the initial settings of the indication
service identified by the value of ManagedElement.

Table 507 - SMI Referenced Properties/Methods for CIM_FilterCollection (Client Defined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be constructed using the
following algorithm: <OrgID>:<CollectionID> where OrgID
and CollectionID are separated by a colon ':'. OrgID should
identify the client business entity that created the collection.
OrgID should include a copyrighted, trademarked, or
otherwise unique name that is owned by that client
business entity or that is a registered ID assigned to that
business entity by a recognized global authority.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 609

Indications Profile

894

895
896
897

898

899

900

901

902

903

904

905

906

907

908
909
910

911
912
50.6.9 CIM_FilterCollection (GlobalFilterCollection)

Global filter collections address the needs of clients requiring notifications about large sets of events. Global filter
collections are a specialization of static filter collections. The defined coverage of global filter collections covers
large sets of indications, such as

All alert indications

All alert indications specified in profiles

All lifecycle indications

All lifecycle indications specified in profiles.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 508 describes class CIM_FilterCollection (GlobalFilterCollection).

50.6.10 CIM_FilterCollection (Indications Predefined FilterCollection)

Experimental. This is a collection of predefined IndicationFilters to which a client may subscribe. A SNIA
Indications implementation shall indicate support for predefined FilterCollections by the
SNIA_IndicationConfigurationCapabilities.FeaturesSupported = '5' (Predefined Filter Collections).

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 508 - SMI Referenced Properties/Methods for CIM_FilterCollection (GlobalFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.13 CIM_FilterCollection
(StaticFilterCollection).

CollectionName Mandatory This shall be
"DMTF:Indications:GlobalProfileSpecifiedAlertIndicationFilt
erCollection",
"DMTF:Indications:GlobalProfileSpecifiedLifecycleIndicatio
nFilterCollection",
"DMTF:Indications:GlobalProfileSpecifiedIndicationFilterCo
llection" or
"DMTF:Indications:GlobalLifecycleIndicationFilterCollection
".
610

 Indications Profile

913

914

915
916
917

918

919

920

921
922
923
924
925

926

927

928

929
Table 509 describes class CIM_FilterCollection (Indications Predefined FilterCollection).

50.6.11 CIM_FilterCollection (Predefined)

Experimental. This is an abstract class that would be specialized for individual profiles, for profiles that support
predefined indication collections. For example, see Storage Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.10 CIM_FilterCollection (Indications Predefined FilterCollection).

Requirement: Optional

Table 510 describes class CIM_FilterCollection (Predefined).

50.6.12 CIM_FilterCollection (ProfileSpecificFilterCollection)

The CIM_FilterCollection (ProfileSpecificFilterCollection) models profile-specific filter collections. Profile-specific
filter collection address the needs of clients requiring notifications about events reported by the indications
specified in a particular profile. Profile specific filter collections are static filter collections. The defined coverage of
a profile-specific filter collection covers all indications of a particular type (that is, all alert indications or all lifecycle
indications) defined in a profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 509 - SMI Referenced Properties/Methods for CIM_FilterCollection (Indications Predefined
FilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be
'SNIA:Indications:Predefined'.

Table 510 - SMI Referenced Properties/Methods for CIM_FilterCollection (Predefined)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

CollectionName Mandatory The value of CollectionName shall be constructed using the
following algorithm: <OrgID>:<Profile Name>'Predefined'
where OrgID, the Profile Name and 'Predefined' are
separated by a colon ':'.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 611

Indications Profile

930

931

932

933

934

935

936

937

938

939
940
941

942

943

944

945
Table 511 describes class CIM_FilterCollection (ProfileSpecificFilterCollection).

50.6.13 CIM_FilterCollection (StaticFilterCollection)

The Static filter collection is an ABSTRACT class (for common properties).

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 512 describes class CIM_FilterCollection (StaticFilterCollection).

50.6.14 CIM_FilterCollectionSubscription (CollectionSubscription)

SNIA defines this class as Experimental. The class definition specializes the CIM_FilterCollectionSubscription
definition in the Indications profile. Properties or methods not inherited are marked accordingly as '(overridden)' or
'(added)' in the left most column.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 511 - SMI Referenced Properties/Methods for CIM_FilterCollection (ProfileSpecificFilterCol-
lection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory See the InstanceID definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.13 CIM_FilterCollection
(StaticFilterCollection).

CollectionName Mandatory The CollectionName property shall be of the form:

OrgID ":" RegisteredName ":" "ProfileSpecified" Type
"IndicationFilterCollection"

Where Type shall be "Alert" in case the represented profile-
specific filter collection covers all alert indications, and shall
be "Lifecycle" in case the represented profile-specific filter
collection covers all lifecycle indications.

Table 512 - SMI Referenced Properties/Methods for CIM_FilterCollection (StaticFilterCollection)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key: See CIM schema description.

CollectionName Mandatory The value of the CollectionName property shall be
formatted as follows:

OrgID ":" RegisteredName ":" UniqueID.
612

 Indications Profile

946
 Table 513 describes class CIM_FilterCollectionSubscription (CollectionSubscription).

Table 513 - SMI Referenced Properties/Methods for CIM_FilterCollectionSubscription (Collection-
Subscription)

Properties Flags Requirement Description & Notes

OnFatalErrorPolicy Mandatory See the OnFatalErrorPolicy definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

OtherOnFatalErrorPo
licy

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.OnFatalErrorPolicy = 1. See
the OtherOnFatalErrorPolicy definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

FailureTriggerTimeInt
erval

Mandatory See the FailureTriggerTimeInterval definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

SubscriptionState Mandatory See the SubscriptionState definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

OtherSubscriptionSta
te

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.SubscriptionState = 1. See the
OtherSubscriptionState definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationPo
licy

Mandatory See the RepeatNotificationPolicy definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationInt
erval

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationInterval definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 613

Indications Profile

947

948

949
950

951

952

953
954

955
956
50.6.15 CIM_HostedCollection (Hosted Client Filter Collection)

Experimental. This associates a client defined FilterCollection to the system in the referencing profile.

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 514 describes class CIM_HostedCollection (Hosted Client Filter Collection).

50.6.16 CIM_HostedCollection (Hosted Global FilterCollection or a Profile Specific FilterCollection)

Experimental. This associates a Global FilterCollection or a Profile Specific FilterCollection to the system in the
referencing profile.

Requirement: Support for instances of CIM_FilterCollection (GlobalFilterCollection) or CIM_FilterCollection
(ProfileSpecificFilterCollection).

RepeatNotificationGa
p

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationGap definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationCo
unt

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationCount definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

Filter (overridden) Mandatory Reference to the FilterCollection.

Handler (overridden) Mandatory Reference to the ListenerDestination.

Table 514 - SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Client Filter
Collection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the FilterCollection.

Antecedent Mandatory Reference to the conforming System that hosts the
collection.

Table 513 - SMI Referenced Properties/Methods for CIM_FilterCollectionSubscription (Collection-
Subscription)

Properties Flags Requirement Description & Notes
614

 Indications Profile

957
958

959

960

961

962

963

964

965
966

967

968

969

970

971
Table 515 describes class CIM_HostedCollection (Hosted Global FilterCollection or a Profile Specific
FilterCollection).

50.6.17 CIM_HostedCollection (Hosted Predefined Filter Collection)

Experimental. This associates a Predefined FilterCollection to the system in the referencing profile.

Requirement: Optional

Table 516 describes class CIM_HostedCollection (Hosted Predefined Filter Collection).

50.6.18 CIM_HostedCollection (System to predefined FilterCollection)

Experimental.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 517 describes class CIM_HostedCollection (System to predefined FilterCollection).

50.6.19 CIM_HostedService (HostedIndicationService)

CIM_HostedService is used to relate the CIM_IndicationService instance to its scoping CIM_System instance.

Created By: Static
Modified By: Static

Table 515 - SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Global Filter-
Collection or a Profile Specific FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the Global FilterCollection or a Profile Specific
FilterCollection.

Antecedent Mandatory Reference to the System that hosts the collection.

Table 516 - SMI Referenced Properties/Methods for CIM_HostedCollection (Hosted Predefined
Filter Collection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the Predefined FilterCollection.

Antecedent Mandatory Reference to the conforming System that hosts the
collection.

Table 517 - SMI Referenced Properties/Methods for CIM_HostedCollection (System to predefined
FilterCollection)

Properties Flags Requirement Description & Notes

Dependent Mandatory Reference to the predefined FilterCollection for the
Indications implementation.

Antecedent Mandatory Reference to the System of the referencing profile.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 615

Indications Profile

972

973

974

975

976

977

978

979

980
981
982
983

984

985

986

987
Deleted By: Static
Requirement: Mandatory

Table 518 describes class CIM_HostedService (HostedIndicationService).

50.6.20 CIM_HostedService (Indication Config Service to System)

Experimental. This associates the IndicationConfigurationService to the System in the referencing profile.

Requirement: Mandatory

Table 519 describes class CIM_HostedService (Indication Config Service to System).

50.6.21 CIM_IndicationFilter (DynamicIndicationFilter)

Indication filters shall be represented by CIM_IndicationFilter instances. If a particular indication filter is
represented, it shall be represented by exactly one IndicationFilter instance in the Interop namespace. In addition,
it may be represented by other IndicationFilter instances in application namespaces; these instances shall have the
same key properties as the one in the Interop namespace.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: The IndicationService instance has the value TRUE is set for FilterCreationEnabled.

Table 518 - SMI Referenced Properties/Methods for CIM_HostedService (HostedIndicationSer-
vice)

Properties Flags Requirement Description & Notes

Antecedent Mandatory Value shall reference the CIM_System instance
representing the indication system hosting the indication
service identified by the value of Dependent.

Dependent Mandatory Value shall reference an CIM_IndicationService instance
representing an indication service.

Table 519 - SMI Referenced Properties/Methods for CIM_HostedService (Indication Config Ser-
vice to System)

Properties Flags Requirement Description & Notes

Antecedent Mandatory The hosting system.

Dependent Mandatory The Indication configuration service hosted on the system.
616

 Indications Profile

988
 Table 520 describes class CIM_IndicationFilter (DynamicIndicationFilter).

Table 520 - SMI Referenced Properties/Methods for CIM_IndicationFilter (DynamicIndicationFil-
ter)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Shall be populated by the WBEM server with the class
name of the scoping system.

CreationClassName Mandatory Shall be populated by the WBEM server with the name of
the class of which this is an instance.

SystemName Mandatory Shall be populated by the WBEM server with the name of
the scoping system.

Name Mandatory The Name property shall be formatted as follows: <OrgID>
':' <RegisteredName> ':' <uniqueID>. For referencing
profiles owned by DMTF, the value shall be formatted as
follows:'DMTF:' <RegisteredName> ':' <uniqueID>.

Query Mandatory The value of the Query property be a properly formed query
statement conformant to the requirements of the query
language identified by the value of the QueryLanguage
property that states the coverage of the indication filter.

QueryLanguage Mandatory The value of the QueryLanguage property shall identify the
query language in which the query statement exposed by
the value of the Query property is expressed.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 617

Indications Profile

989

990
991

992

993

994

995
50.6.22 CIM_IndicationFilter (GlobalIndicationFilter)

The CIM_IndicationFilter (GlobalIndicationFilter) would be implemented if the WBEM server supports the delivery
of indications. Global indication filters are a specialization of static indication filters.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

SourceNamespaces Mandatory A non-Null value of this property is required for
IndicationFilter instances in the Interop namespace; for
IndicationFilter instances in other namespaces it is
optional.

If not Null, the value of the SourceNamespaces[] array
property shall contain the names of local namespaces that
are considered as potential indication origin namespaces
during indication filtering. The value shall not be an empty
array.

It is not required that the local namespaces identified by
elements of value of the SourceNamespaces[] array
property exist. If a non-existing local namespace is
identified, no indications can originate out of that non-
existing namespace; consequently, that element does not
have an effect on indication filtering. However, if the
identified namespace is added to the implementation at a
later point in time, per the requirements of indications
originating out of that namespace are to be considered for
indication filtering from then on.

The value elements of the SourceNamespaces[] array
property shall be formatted using the format that the
implementation uses for value of the Name property in
instances of the CIM_Namespace class that represent
namespaces.

IndividualSubscriptio
nSupported

Mandatory The value of the IndividualSubscriptionSupported property
shall be True if the FilterSubscription feature is
implemented, and is supported for the represented
indication filter; otherwise, the value shall be False.

Table 520 - SMI Referenced Properties/Methods for CIM_IndicationFilter (DynamicIndicationFil-
ter)

Properties Flags Requirement Description & Notes
618

 Indications Profile

996

997

998
999

1000

1001

1002

1003
Table 521 describes class CIM_IndicationFilter (GlobalIndicationFilter).

50.6.23 CIM_IndicationFilter (IndicationSpecificIndicationFilter)

The CIM_IndicationFilter (IndicationSpecificIndicationFilter) would be implemented if indications defined in a
referencing profile or in this profile are implemented.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 521 - SMI Referenced Properties/Methods for CIM_IndicationFilter (GlobalIndicationFilter)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Name Mandatory This shall be 'DMTF:Indications:GlobalAlertIndicationFilter',
'DMTF:Indications:GlobalInstCreationIndicationFilter',
'DMTF:Indications:GlobalInstDeletionIndicationFilter' or
'DMTF:Indications:GlobalInstModificationIndicationFilter'.

Query Mandatory This shall be 'SELECT * FROM CIM_AlertIndication',
'Select * from CIM_InstCreation', 'Select * from
CIM_InstDeletion' or 'Select * from CIM_InstModification'.

QueryLanguage Mandatory See the QueryLanguage definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SourceNamespaces Mandatory See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

IndividualSubscriptio
nSupported

Mandatory See the IndividualSubscriptionSupported definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 619

Indications Profile

1004
 Table 522 describes class CIM_IndicationFilter (IndicationSpecificIndicationFilter).

Table 522 - SMI Referenced Properties/Methods for CIM_IndicationFilter (IndicationSpecificIndi-
cationFilter)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Name Mandatory OVERRIDE: The value of the Name property shall be
formatted as defined by the following ABNF rule:

OrgID ":" RegisteredName ":" IndicationAdaptationName
"Filter" ["/" MessageIdentification]

IndicationAdaptationName shall be the name of the
indication adaptation defined in the profile.

The MessageIdentification suffix only applies for the
representation of indication-specific indication filters
covering alert indications modeled by an adaptation based
on the AlertIndication adaptation. In this case for each alert
indication defined by an alert message reference in the
profile, a specific IndicationSpecificIndicationFilter instance
is defined, where MessageIdentification shall be set to the
OwningEntity concatenated with the MessageID.

Query Mandatory OVERRIDE: The value of the Query property shall be the
event definition query statement of the indication
adaptation defined in the referencing profile or in this
profile.

QueryLanguage Mandatory See the QueryLanguage definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SourceNamespaces Mandatory See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

IndividualSubscriptio
nSupported

Mandatory See the IndividualSubscriptionSupported definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).
620

 Indications Profile

1005

1006
1007

1008

1009

1010

1011

1012
50.6.24 CIM_IndicationFilter (ListenerDestinationRemovalIndication)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a CIM_ListenerDestination
instance. This would typically occur as a result of an invocation of DeleteInstance operation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 523 describes class CIM_IndicationFilter (ListenerDestinationRemovalIndication).

Table 523 - SMI Referenced Properties/Methods for CIM_IndicationFilter (ListenerDestinationRe-
movalIndication)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Name Mandatory This shall be
'DMTF:Indications:ListenerDestinationRemovalIndicationFil
ter'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.28
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_ListenerDestination.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.28 CIM_IndicationFilter (pre-
defined).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 621

Indications Profile

1013

1014
1015
1016

1017

1018

1019

1020

1021
50.6.25 CIM_IndicationFilter (StaticIndicationFilter)

Static indication filters are uniquely identified by means of a naming convention that involves the name of the
organization defining the profile, the name of this profile and a string that is required to be unique within the
implementation of this profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 524 describes class CIM_IndicationFilter (StaticIndicationFilter).

Table 524 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StaticIndicationFilter)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Shall be populated by the WBEM server with the class
name of the scoping system.

CreationClassName Mandatory Shall be populated by the WBEM server with the name of
the class of which this is an instance.

SystemName Mandatory Shall be populated by the WBEM server with the name of
the scoping system.

Name Mandatory The Name property shall be formatted as follows: <OrgID>
':' <RegisteredName> ':' <uniqueID>. For referencing
profiles owned by DMTF, the value shall be formatted as
follows:'DMTF:' <RegisteredName> ':' <uniqueID>.

Query Mandatory The value of the Query property be a properly formed query
statement conformant to the requirements of the query
language identified by the value of the QueryLanguage
property that states the coverage of the indication filter.

QueryLanguage Mandatory The value of the QueryLanguage property shall identify the
query language in which the query statement exposed by
the value of the Query property is expressed.

In referencing profiles owned by DMTF, the value shall be
"DMTF:CQL", thereby requiring CQL as the query
language.
622

 Indications Profile

1022

1023
1024
1025

1026

1027

1028

1029
50.6.26 CIM_IndicationFilter (SubscriptionRemovalIndication)

Experimental. This is the 'pre-defined' CIM_IndicationFilter instance for the deletion of a
CIM_IndicationSubscription or a CIM_FilterCollectionSubscription instance. This would typically occur as a result
of an invocation of DeleteInstance operation.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

SourceNamespaces Mandatory A non-Null value of this property is required for
IndicationFilter instances in the Interop namespace; for
IndicationFilter instances in other namespaces it is
optional.

If not Null, the value of the SourceNamespaces[] array
property shall contain the names of local namespaces that
are considered as potential indication origin namespaces
during indication filtering. The value shall not be an empty
array.

It is not required that the local namespaces identified by
elements of value of the SourceNamespaces[] array
property exist. If a non-existing local namespace is
identified, no indications can originate out of that non-
existing namespace; consequently, that element does not
have an effect on indication filtering. However, if the
identified namespace is added to the implementation at a
later point in time, per the requirements of indications
originating out of that namespace are to be considered for
indication filtering from then on.

The value elements of the SourceNamespaces[] array
property shall be formatted using the format that the
implementation uses for value of the Name property in
instances of the CIM_Namespace class that represent
namespaces.

IndividualSubscriptio
nSupported

Mandatory The value of the IndividualSubscriptionSupported property
shall be True if the FilterSubscription feature is
implemented, and is supported for the represented
indication filter; otherwise, the value shall be False.

Table 524 - SMI Referenced Properties/Methods for CIM_IndicationFilter (StaticIndicationFilter)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 623

Indications Profile

1030

1031

1032
1033
1034
1035
1036

1037

1038

1039

1040
Table 525 describes class CIM_IndicationFilter (SubscriptionRemovalIndication).

50.6.27 CIM_IndicationFilter (client defined)

CIM_IndicationFilter (Client Defined) is a specialization of CIM_IndicationFilter (DynamicIndicationFilter).
CIM_IndicationFilter instances that are 'client defined' are IndicationFilters that are be created by a client using
CreateInstance. If a profile implementation can support client defined IndicationFilters, the implementation would
support 'client defined' IndicationFilter instances. The implementation shall support 'client defined' filters that are
defined by SMI-S profile as mandatory, but may also support additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance

Table 525 - SMI Referenced Properties/Methods for CIM_IndicationFilter (SubscriptionRemovalIn-
dication)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Name Mandatory This shall be
'DMTF:Indications:SubscriptionRemovalIndicationFilter'.

SourceNamespace N Optional Deprecated. See the SourceNamespace definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.28
CIM_IndicationFilter (pre-defined).

SourceNamespaces N Mandatory Experimental. See the SourceNamespaces definition in
section Storage Management Technical Specification, Part
2 Common Profiles, 1.6.0 Rev 4 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Query Mandatory SELECT * FROM CIM_InstDeletion WHERE
SourceInstance ISA CIM_AbstractIndicationSubscription.

QueryLanguage Mandatory This shall be 'DMTF:CQL'.

ElementName N Optional See the ElementName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.28 CIM_IndicationFilter (pre-
defined).
624

 Indications Profile

1041

1042
Requirement: Optional

Table 526 describes class CIM_IndicationFilter (client defined).

Table 526 - SMI Referenced Properties/Methods for CIM_IndicationFilter (client defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.21 CIM_IndicationFilter
(DynamicIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.21 CIM_IndicationFilter
(DynamicIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.21 CIM_IndicationFilter
(DynamicIndicationFilter).

Name Mandatory See the Name definition in section Storage Management
Technical Specification, Part 2 Common Profiles, 1.6.0 Rev
4 50.6.21 CIM_IndicationFilter (DynamicIndicationFilter).

SourceNamespace N Optional Deprecated. ADD: For instances in the InteropNamespace,
this shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Mandatory See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.21 CIM_IndicationFilter
(DynamicIndicationFilter).

Query Mandatory See the Query definition in section Storage Management
Technical Specification, Part 2 Common Profiles, 1.6.0 Rev
4 50.6.21 CIM_IndicationFilter (DynamicIndicationFilter).

QueryLanguage Mandatory OVERRIDE: For SNIA profiles, this shall be 'DMTF:CQL'
for CQL queries, but may be 'WQL' or 'SMI-S V1.0'. WQL
and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName Optional ADD: A Client Defined user friendly string that identifies the
Indication Filter.

IndividualSubscriptio
nSupported

Mandatory Experimental. See the IndividualSubscriptionSupported
definition in section Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 4 50.6.21
CIM_IndicationFilter (DynamicIndicationFilter).
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 625

Indications Profile

1043

1044
1045
1046
1047
1048

1049

1050

1051

1052

1053

1054
50.6.28 CIM_IndicationFilter (pre-defined)

CIM_IndicationFilter (pre-defined) is a specialization of CIM_IndicationFilter (StaticIndicationFilter).
CIM_IndicationFilter instances that are 'pre-defined' are IndicationFilters that are populated automatically by the
profile provider. If a profile implementation cannot support client defined IndicationFilters, the implementation can
populate its model with 'pre-defined' IndicationFilter instances. 'Pre-defined' filters shall include those that are
required by the profile, but may also contain additional filters supported by the implementation.

CIM_IndicationFilter is subclassed from CIM_ManagedElement.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 527 describes class CIM_IndicationFilter (pre-defined).

Table 527 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory See the SystemCreationClassName definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

CreationClassName Mandatory See the CreationClassName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

SystemName Mandatory See the SystemName definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Name Mandatory See the Name definition in section Storage Management
Technical Specification, Part 2 Common Profiles, 1.6.0 Rev
4 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).

SourceNamespace N Optional Deprecated. ADD: For instances in the InteropNamespace,
this shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Mandatory See the SourceNamespaces definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.25 CIM_IndicationFilter
(StaticIndicationFilter).

Query Mandatory See the Query definition in section Storage Management
Technical Specification, Part 2 Common Profiles, 1.6.0 Rev
4 50.6.25 CIM_IndicationFilter (StaticIndicationFilter).
626

 Indications Profile

1055

1056
1057

1058
1059

1060

1061

1062

1063

1064
50.6.29 CIM_IndicationService (IndicationService)

Within an implementation there shall be exactly one indication service. That indication service shall be represented
by an IndicationService instance in the Interop namespace.

Several of the properties of this class are marked as modifiable (Flag="M"). To determine if these properties may
be modified see CIM_IndicationServiceCapabilities.

Created By: Static
Modified By: ModifyInstance
Deleted By: Static
Requirement: Mandatory

Table 528 describes class CIM_IndicationService (IndicationService).

QueryLanguage Mandatory OVERRIDE: For SNIA profiles, this shall be 'DMTF:CQL'
for CQL queries, but may be 'WQL' or 'SMI-S V1.0'. WQL
and SMI-S V1.0 are deprecated in favor of 'DMTF:CQL'.

ElementName N Optional ADD: SMI-S does not specify this property for pre-defined
IndicationFilters.

IndividualSubscriptio
nSupported

Mandatory Experimental. See the IndividualSubscriptionSupported
definition in section Storage Management Technical
Specification, Part 2 Common Profiles, 1.6.0 Rev 4 50.6.25
CIM_IndicationFilter (StaticIndicationFilter).

Table 528 - SMI Referenced Properties/Methods for CIM_IndicationService (IndicationService)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Key.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

FilterCreationEnable
d

M Mandatory A value of False indicates that the Dynamic Indicatoin
Filters feature is not supported, a value of True indicates
that the feature is supported.

DeliveryRetryAttempt
s

M Mandatory The number of retry attempts after the initial attempt.

DeliveryRetryInterval M Mandatory The minimal time interval in seconds that the
implementation waits before delivering an indication to a
particular listener destination after a previous delivery
failure.

Table 527 - SMI Referenced Properties/Methods for CIM_IndicationFilter (pre-defined)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 627

Indications Profile

1065

1066
1067
1068

1069

1070

1071

1072

1073
50.6.30 CIM_IndicationServiceCapabilities (IndicationServiceCapabilities)

SNIA defines this as Mandatory. DMTF defines this class as Optional. The class definition specializes the
CIM_IndicationServiceCapabilities definition in the Indications profile. Properties or methods not inherited are
marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 529 describes class CIM_IndicationServiceCapabilities (IndicationServiceCapabilities).

SubscriptionRemoval
Action

M Mandatory The removal action for subscriptions after two failed
indication deliveries where the time interval between the
failed deliveries, without any intermediate successful
indication delivery, exceeds the timeout reflected by the
value of the SubscriptionRemovalTimeInterval property.

SubscriptionRemoval
TimeInterval

M Mandatory The minimum time interval that implementations shall wait
after two failed indication deliveries without any
intermediate successful indication delivery, before
performing the activity designated by the value of the
SubscriptionRemovalAction property.

Table 529 - SMI Referenced Properties/Methods for CIM_IndicationServiceCapabilities (Indica-
tionServiceCapabilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Shall specify the unique identifier for an instance of this
class within the Implementation namespace.

FilterCreationEnable
dIsSettable

Mandatory Value shall indicate whether the implementation supports
modification of the FilterCreationEnabled property of the
associated IndicationService instance.

DeliveryRetryAttempt
sIsSettable

Mandatory Value shall indicate whether the implementation supports
modification of the DeliveryRetryAttempts property of the
associated IndicationService instance.

DeliveryRetryIntervalI
sSettable

Mandatory Value shall indicate whether the implementation supports
modification of the DeliveryRetryInterval property of the
associated IndicationService instance.

SubscriptionRemoval
ActionIsSettable

Mandatory Value shall indicate whether the implementation supports
modification of the SubscriptionRemovalAction property of
the associated IndicationService instance.

SubscriptionRemoval
TimeIntervalIsSettabl
e

Mandatory Value shall indicate whether the implementation supports
modification of the SubscriptionRemovalTimeInterval
property of the associated IndicationService instance.

Table 528 - SMI Referenced Properties/Methods for CIM_IndicationService (IndicationService)

Properties Flags Requirement Description & Notes
628

 Indications Profile

1074

1075
1076
1077

1078
1079

1080

1081

1082

1083

1084
50.6.31 CIM_IndicationServiceSettingData (IndicationServiceInitialSettings)

CIM_IndicationServiceSettingData models initial settings for indication services. The initial settings of an indication
service are the settings that apply at the point in time when the WBEM server hosting the indication service initially
starts up the indication service.

This class would be implemented if the initial settings of the indication service deviate from the default settings for
properties specified by the DMTF Indications Profile.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 530 describes class CIM_IndicationServiceSettingData (IndicationServiceInitialSettings).

MaxListenerDestinati
ons

Mandatory Value shall indicate the maximum number of listener
destinations.

MaxActiveSubscriptio
ns

Mandatory Value shall indicate the maximum number of active
subscriptions.

SubscriptionsPersist
ed

Mandatory Value shall indicate whether subscriptions are persisted
across restarts of the indication service.

Table 530 - SMI Referenced Properties/Methods for CIM_IndicationServiceSettingData (Indica-
tionServiceInitialSettings)

Properties Flags Requirement Description & Notes

InstanceID Mandatory Key.

FilterCreationEnable
d

Mandatory Value shall be the default value for the
FilterCreationEnabled property in the associated
IndicationService instance.

DeliveryRetryAttempt
s

Mandatory Value shall be the default value for the
DeliveryRetryAttempts property in the associated
IndicationService instance.

DeliveryRetryInterval Mandatory Value shall be the default value for the
DeliveryRetryInterval property in the associated
IndicationService instance.

SubscriptionRemoval
Action

Mandatory Value shall be the default value for the
SubscriptionRemovalAction property in the associated
IndicationService instance.

SubscriptionRemoval
TimeInterval

Mandatory Value shall be the default value for the
SubscriptionRemovalTimeInterval property in the
associated IndicationService instance.

Table 529 - SMI Referenced Properties/Methods for CIM_IndicationServiceCapabilities (Indica-
tionServiceCapabilities)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 629

Indications Profile

1085

1086
1087

1088
1089

1090
1091
1092

1093

1094

1095

1096

1097
50.6.32 CIM_IndicationSubscription (FilterSubscription)

This association defines a subscription to a specific IndicationFilter instance by a specific indication handler (as
represented by a ListenerDestinationCIMXML or CIM_ListenerDestinationWSManagement instance)

SMI-S defines this class as Mandatory (DMTF defines it as conditional on the existence of an
IndicationFilter associated to the IndicationService)

A CIM_IndicationSubscription is subclassed from CIM_AbstractIndicationSubscription. The class definition
specializes the CIM_IndicationSubscription definition in the Indications profile. Properties or methods not inherited
are marked accordingly as '(overridden)' or '(added)' in the left most column.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Optional

Table 531 describes class CIM_IndicationSubscription (FilterSubscription).

Table 531 - SMI Referenced Properties/Methods for CIM_IndicationSubscription (FilterSubscrip-
tion)

Properties Flags Requirement Description & Notes

OnFatalErrorPolicy Mandatory See the OnFatalErrorPolicy definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

OtherOnFatalErrorPo
licy

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.OnFatalErrorPolicy = 1. See
the OtherOnFatalErrorPolicy definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

FailureTriggerTimeInt
erval

Mandatory See the FailureTriggerTimeInterval definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

SubscriptionState Mandatory See the SubscriptionState definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

OtherSubscriptionSta
te

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.SubscriptionState = 1. See the
OtherSubscriptionState definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).
630

 Indications Profile
RepeatNotificationPo
licy

Mandatory See the RepeatNotificationPolicy definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationInt
erval

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationInterval definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationGa
p

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationGap definition in section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

RepeatNotificationCo
unt

Conditional Conditional requirement: Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 3.
or Support for the
CIM_IndicationSubscription.RepeatNotificationPolicy = 4.
See the RepeatNotificationCount definition in section
Storage Management Technical Specification, Part 2
Common Profiles, 1.6.0 Rev 4 50.6.1
CIM_AbstractIndicationSubscription
(AbstractSubscription).

LastIndicationIdentifi
er (added)

Optional Experimental. The IndicationIdentifier of the last indication
produced for this subscription regardless if that indication
were delivered

SMI-S defines this property for backward compatibility
(DMTF does not define a use of this property).

LastIndicationProduc
tionDateTime (added)

Optional Experimental. The date and time of the production of the
last indication produced for this subscription regardless if
that indication were delivered

SMI-S defines this property for backward compatibility
(DMTF does not define a use of this property).

Filter (overridden) Mandatory

Handler (overridden) Mandatory

Table 531 - SMI Referenced Properties/Methods for CIM_IndicationSubscription (FilterSubscrip-
tion)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 631

Indications Profile

1098

1099

1100

1101

1102

1103

1104

1105
50.6.33 CIM_InstCreation

CIM_InstCreation notifies a handler when a new instance (of a class defined in the Filter QueryString) is created.

CIM_InstCreation is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 532 describes class CIM_InstCreation.

Table 532 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory See CIM schema definition.

IndicationTime Mandatory See CIM schema definition.

IndicationFilterName Mandatory The value of the IndicationFilterName property shall
contain the name of the indication emitter that the indication
passed before being delivered to the listeners subscribed to
that indication emitter. For indication filters, the name is
exposed by the value of the Name property in representing
IndicationFilter instances. For filter collections, the name is
exposed by the value of the CollectionName property in
representing FilterCollection instances.

SequenceContext Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceContext property shall
contain the sequence context portion of the sequence
identifier; see the CIM schema description for a
recommended format and structure. The value of the
SequenceContext property shall be identical for all
indications delivered to a particular listener while the
representing listener destination is defined within the
implementation. This definition is required to remain
effective over restarts of the implementation environment.

SequenceNumber Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceNumber property shall
contain the sequence number portion of the sequence
identifier. The value of the SequenceNumber property shall
be unique for each indication delivered to a particular
listener while the listener destination is defined within the
implementation; see the CIM schema description for
required value constraints. This definition is required to
remain effective over restarts of the implementation
environment.
632

 Indications Profile

1106

1107

1108

1109

1110

1111

1112

1113
50.6.34 CIM_InstDeletion

CIM_InstDeletion notifies a handler when a new instance (of a class defined in the Filter QueryString) is deleted.

CIM_InstDeletion is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 533 describes class CIM_InstDeletion.

SourceInstance Mandatory The value of the SourceInstance property shall be an
embedded instance of the class selected in the query
statement defining the event. The embedded instance shall
be a copy of the instance for that the lifecycle indication is
reported. If the query statement specifies a specific
selection of properties (other than '*'), then the set of
properties contained in the embedded instance shall be
limited to those selected; otherwise, the embedded
instance shall at least contain values for each of the
properties required by the related adaptation of the
selected class in the same referencing profile.

SourceInstanceMode
lPath

Mandatory The value of the SourceInstanceModelPath property shall
refer to the same instance that is copied as an embedded
instance through the value of the SourceInstance property.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

Table 533 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory See CIM schema definition.

IndicationTime Mandatory See CIM schema definition.

IndicationFilterName Mandatory The value of the IndicationFilterName property shall
contain the name of the indication emitter that the indication
passed before being delivered to the listeners subscribed to
that indication emitter. For indication filters, the name is
exposed by the value of the Name property in representing
IndicationFilter instances. For filter collections, the name is
exposed by the value of the CollectionName property in
representing FilterCollection instances.

Table 532 - SMI Referenced Properties/Methods for CIM_InstCreation

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 633

Indications Profile

1114

1115
50.6.35 CIM_InstIndication (LifecycleIndication)

Requirement: Optional

SequenceContext Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceContext property shall
contain the sequence context portion of the sequence
identifier; see the CIM schema description for a
recommended format and structure. The value of the
SequenceContext property shall be identical for all
indications delivered to a particular listener while the
representing listener destination is defined within the
implementation. This definition is required to remain
effective over restarts of the implementation environment.

SequenceNumber Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceNumber property shall
contain the sequence number portion of the sequence
identifier. The value of the SequenceNumber property shall
be unique for each indication delivered to a particular
listener while the listener destination is defined within the
implementation; see the CIM schema description for
required value constraints. This definition is required to
remain effective over restarts of the implementation
environment.

SourceInstance Mandatory The value of the SourceInstance property shall be an
embedded instance of the class selected in the query
statement defining the event. The embedded instance shall
be a copy of the instance for that the lifecycle indication is
reported. If the query statement specifies a specific
selection of properties (other than '*'), then the set of
properties contained in the embedded instance shall be
limited to those selected; otherwise, the embedded
instance shall at least contain values for each of the
properties required by the related adaptation of the
selected class in the same referencing profile.

SourceInstanceMode
lPath

Mandatory The value of the SourceInstanceModelPath property shall
refer to the same instance that is copied as an embedded
instance through the value of the SourceInstance property.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

Table 533 - SMI Referenced Properties/Methods for CIM_InstDeletion

Properties Flags Requirement Description & Notes
634

 Indications Profile

1116
 Table 534 describes class CIM_InstIndication (LifecycleIndication).

Table 534 - SMI Referenced Properties/Methods for CIM_InstIndication (LifecycleIndication)

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory See CIM schema definition.

IndicationTime N Mandatory See CIM schema definition.

IndicationFilterName Mandatory Experimental. The value of the IndicationFilterName
property shall contain the name of the indication emitter
that the indication passed before being delivered to the
listeners subscribed to that indication emitter. For indication
filters, the name is exposed by the value of the Name
property in representing IndicationFilter instances. For filter
collections, the name is exposed by the value of the
CollectionName property in representing FilterCollection
instances.

SequenceContext Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceContext property shall
contain the sequence context portion of the sequence
identifier; see the CIM schema description for a
recommended format and structure. The value of the
SequenceContext property shall be identical for all
indications delivered to a particular listener while the
representing listener destination is defined within the
implementation. This definition is required to remain
effective over restarts of the implementation environment.

SequenceNumber Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceNumber property shall
contain the sequence number portion of the sequence
identifier. The value of the SequenceNumber property shall
be unique for each indication delivered to a particular
listener while the listener destination is defined within the
implementation; see the CIM schema description for
required value constraints. This definition is required to
remain effective over restarts of the implementation
environment.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 635

Indications Profile

1117

1118
1119
1120

1121

1122

1123

1124

1125

1126
50.6.36 CIM_InstModification

CIM_InstModification notifies a handler when a new instance (of a class defined in the Filter QueryString) is
modified or changed. To avoid undue effort on Providers, the select list (in the query filter) for this indication should
only call for properties that are needed.

CIM_InstModification is subclassed from CIM_InstIndication.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 535 describes class CIM_InstModification.

SourceInstance Mandatory The value of the SourceInstance property shall be an
embedded instance of the class selected in the query
statement defining the event. The embedded instance shall
be a copy of the instance for that the lifecycle indication is
reported. If the query statement specifies a specific
selection of properties (other than '*'), then the set of
properties contained in the embedded instance shall be
limited to those selected; otherwise, the embedded
instance shall at least contain values for each of the
properties required by the related adaptation of the
selected class in the same referencing profile.

SourceInstanceMode
lPath

Mandatory The value of the SourceInstanceModelPath property shall
refer to the same instance that is copied as an embedded
instance through the value of the SourceInstance property.

Table 535 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes

IndicationIdentifier Mandatory See CIM schema definition.

IndicationTime Mandatory See CIM schema definition.

IndicationFilterName Mandatory The value of the IndicationFilterName property shall
contain the name of the indication emitter that the indication
passed before being delivered to the listeners subscribed to
that indication emitter. For indication filters, the name is
exposed by the value of the Name property in representing
IndicationFilter instances. For filter collections, the name is
exposed by the value of the CollectionName property in
representing FilterCollection instances.

Table 534 - SMI Referenced Properties/Methods for CIM_InstIndication (LifecycleIndication)

Properties Flags Requirement Description & Notes
636

 Indications Profile

1127

1128
1129
50.6.37 CIM_ListenerDestination (ListenerDestination)

CIM_ListenerDestination instances shall be represented by ListenerDestination instances. If a particular listener
destination is represented, it shall be represented by exactly one ListenerDestination instance in the Interop

SequenceContext Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceContext property shall
contain the sequence context portion of the sequence
identifier; see the CIM schema description for a
recommended format and structure. The value of the
SequenceContext property shall be identical for all
indications delivered to a particular listener while the
representing listener destination is defined within the
implementation. This definition is required to remain
effective over restarts of the implementation environment.

SequenceNumber Conditional Conditional requirement: The
CIM_IndicationService.DeliveryRetryAttempts is greater
than 0. The value of the SequenceNumber property shall
contain the sequence number portion of the sequence
identifier. The value of the SequenceNumber property shall
be unique for each indication delivered to a particular
listener while the listener destination is defined within the
implementation; see the CIM schema description for
required value constraints. This definition is required to
remain effective over restarts of the implementation
environment.

SourceInstance Mandatory The value of the SourceInstance property shall be an
embedded instance of the class selected in the query
statement defining the event. The embedded instance shall
be a copy of the instance for that the lifecycle indication is
reported. If the query statement specifies a specific
selection of properties (other than '*'), then the set of
properties contained in the embedded instance shall be
limited to those selected; otherwise, the embedded
instance shall at least contain values for each of the
properties required by the related adaptation of the
selected class in the same referencing profile.

SourceInstanceMode
lPath

Mandatory The value of the SourceInstanceModelPath property shall
refer to the same instance that is copied as an embedded
instance through the value of the SourceInstance property.

CorrelatedIndications Optional IndicationIdentifiers whose notifications are correlated with
this one.

PreviousInstance Optional A copy of the 'previous' instance whose change generated
the Indication. PreviousInstance contains 'older' values of
an instance's properties (as compared to SourceInstance),
selected by the IndicationFilter's Query.

Table 535 - SMI Referenced Properties/Methods for CIM_InstModification

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 637

Indications Profile

1130
1131

1132

1133

1134

1135

1136

1137

1138

1139
1140

1141

1142

1143

1144

1145
namespace. In addition, it may be represented by other ListenerDestination instances in application namespaces;
these instances shall have the same key properties as the one in the Interop namespace.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Mandatory

Table 536 describes class CIM_ListenerDestination (ListenerDestination).

50.6.38 CIM_ListenerDestinationCIMXML (Indication Handler)

Deprecated.

SMI-S defines the specific subclasses of CIM_ListenerDestination supported by SMI-S (DMTF only defines
CIM_ListenerDestination)

CIM_ListenerDestinationCIMXML is subclassed from CIM_ListenerDestination.

Created By: CreateInstance
Modified By: Static
Deleted By: DeleteInstance
Requirement: Mandatory

Table 536 - SMI Referenced Properties/Methods for CIM_ListenerDestination (ListenerDestina-
tion)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

SystemName Mandatory Key.

CreationClassName Mandatory Key.

Name Mandatory Key.

PersistenceType N Mandatory The value of the PersistenceType property shall describe
the durability of the represented listener destination. The
property values shall be constrained to 3 (Transient), 2
(Permanent), and NULL.

ElementName Mandatory See CIM schema description.

Destination N Mandatory The value of the Destination property shall identify the
listener represented by the listener destination. A value of
NULL for the Destination property indicates a free listener
destination.

Protocol Mandatory See CIM schema description.
638

 Indications Profile

1146

1147

1148

1149
1150

1151

1152

1153
1154
1155
Table 537 describes class CIM_ListenerDestinationCIMXML (Indication Handler).

50.6.39 CIM_MemberOfCollection (Client Defined Filter Collection to Filters)

Experimental. This associates a client defined FilterCollection to the Filters in the collection.

Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='6' (Client Defined Filter
Collections).

Table 538 describes class CIM_MemberOfCollection (Client Defined Filter Collection to Filters).

50.6.40 CIM_MemberOfCollection (FilterCollectionInFilterCollection)

Each FilterCollection instance representing a filter collection that contains filter collections shall be associated
through a CIM_MemberOfCollection (FilterCollectionInFilterCollection) instance with each of the FilterCollection
instances representing a contained filter collection.

Table 537 - SMI Referenced Properties/Methods for CIM_ListenerDestinationCIMXML (Indication
Handler)

Properties Flags Requirement Description & Notes

ElementName Mandatory A client defined user friendly string that identifies the
CIMXML Listener destination.

SystemCreationClas
sName

Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

SystemName Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

CreationClassName Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

Name Mandatory Shall be populated by the WBEM server with the class
name of the scoping system. If the client supplies a value,
the WBEM server shall ignore it.

PersistenceType Mandatory For SMI-S, this shall be 2|3 ('permanent' | 'transient').

Destination Mandatory The destination URL to which CIM-XML Export Messages
are to be delivered. The scheme prefix shall be consistent
with the DMTF CIM-XML specifications.If a scheme prefix
is not specified, the scheme \http:\'shallbeassumed.'

Protocol Mandatory For CIM-XML, this shall be '2' (CIM-XML).

Table 538 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Client Defined Fil-
ter Collection to Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Client Defined FilterCollection.

Member Mandatory Reference to an IndicationFilter or FilterCollection.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 639

Indications Profile

1156

1157

1158

1159

1160

1161

1162
1163
1164

1165

1166

1167

1168

1169

1170

1171
1172

1173
1174
Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 539 describes class CIM_MemberOfCollection (FilterCollectionInFilterCollection).

50.6.41 CIM_MemberOfCollection (IndicationFilterInFilterCollection)

Each FilterCollection instance representing a filter collection that contains indication filters shall be associated
through an CIM_MemberOfCollection (IndicationFilterInFilterCollection) instance with each of the IndicationFilter
instances representing contained indication filters.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Optional

Table 540 describes class CIM_MemberOfCollection (IndicationFilterInFilterCollection).

50.6.42 CIM_MemberOfCollection (Predefined Filter Collection to Indications Filters)

Experimental. This associates the Indications predefined FilterCollection to the predefined Filters supported by the
implementation.

Requirement: Required if the Experimental Indication Profile is supported and the
SNIA_IndicationConfigurationCapabilities.SupportedFeatures='5' (Predefined Filter Collections).

Table 539 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (FilterCollectionIn-
FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Value shall reference a FilterCollection instance
representing a filter collection.

Member Mandatory Value shall reference a FilterCollection instance
representing a contained filter collection.

Table 540 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (IndicationFilterIn-
FilterCollection)

Properties Flags Requirement Description & Notes

Collection Mandatory Value shall reference a FilterCollection instance
representing a filter collection.

Member Mandatory Value shall reference an IndicationFilter instance
representing a contained indication filters.
640

 Indications Profile

1175

1176

1177
1178

1179

1180

1181

1182

1183

1184

1185
1186
1187

1188

1189

1190

1191
Table 541 describes class CIM_MemberOfCollection (Predefined Filter Collection to Indications Filters).

50.6.43 CIM_OwningCollectionElement (IndicationServiceOfFilterCollection)

Each FilterCollection instance shall be associated with exactly one IndicationService instance through a
CIM_OwningCollectionElement (IndicationServiceOfFilterCollection) instance.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 542 describes class CIM_OwningCollectionElement (IndicationServiceOfFilterCollection).

50.6.44 CIM_ServiceAffectsElement (IndicationServiceOfIndicationFilter)

Each IndicationFilter instance representing an indication filter shall be associated through an
CIM_ServiceAffectsElement (IndicationServiceOfIndicationFilter) instance with the IndicationService instance
representing the indication service that manages the indication filter.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 541 - SMI Referenced Properties/Methods for CIM_MemberOfCollection (Predefined Filter
Collection to Indications Filters)

Properties Flags Requirement Description & Notes

Collection Mandatory Reference to the Indications predefined FilterCollection.

Member Mandatory Reference to the predefined IndicationFilters of the
Indications implementation.

Table 542 - SMI Referenced Properties/Methods for CIM_OwningCollectionElement (Indication-
ServiceOfFilterCollection)

Properties Flags Requirement Description & Notes

OwningElement Mandatory Value shall reference the IndicationService instance
representing the indication service owning the filter
collection represented by the value of OwnedElement.

OwnedElement Mandatory Value shall reference a FilterCollection instance.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 641

Indications Profile

1192

1193

1194
1195
1196

1197

1198

1199

1200

1201

1202

1203

1204

1205
Table 543 describes class CIM_ServiceAffectsElement (IndicationServiceOfIndicationFilter).

50.6.45 CIM_ServiceAffectsElement (IndicationServiceOfListenerDestination)

Each ListenerDestination instance representing a listener destination shall be associated through an
IndicationServiceOfListenerDestination instance with the IndicationService instance representing the indication
service that manages the listener destination.

Created By: Static
Modified By: Static
Deleted By: Static
Requirement: Mandatory

Table 544 describes class CIM_ServiceAffectsElement (IndicationServiceOfListenerDestination).

50.6.46 SNIA_IndicationConfigurationCapabilities (IndicationConfigurationCapabilities)

Experimental. This is the capabilities of the implementation of indications.

Requirement: Mandatory

Table 545 describes class SNIA_IndicationConfigurationCapabilities (IndicationConfigurationCapabilities).

Table 543 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (IndicationServi-
ceOfIndicationFilter)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Value shall reference the IndicationService instance
representing the indication service managing the indication
filter represented by the value of AffectedElement.

AffectedElement Mandatory Value shall reference an IndicationFilter instance
representing a managed indication filter.

Table 544 - SMI Referenced Properties/Methods for CIM_ServiceAffectsElement (IndicationServi-
ceOfListenerDestination)

Properties Flags Requirement Description & Notes

AffectingElement Mandatory Value shall reference the IndicationService instance
representing the indication service managing the listener
destination represented by the value of AffectedElement.

AffectedElement Mandatory Value shall reference an ListenerDestination instance
representing a managed listener destination.

Table 545 - SMI Referenced Properties/Methods for SNIA_IndicationConfigurationCapabilities
(IndicationConfigurationCapabilities)

Properties Flags Requirement Description & Notes

InstanceID Mandatory

ElementName Optional This is a user friendly name of the capabilities instance.
642

 Indications Profile

1206

1207

1208

1209

1210

1211
1212
1213
1214
50.6.47 SNIA_IndicationConfigurationService (IndicationConfigurationService)

Experimental. This is the indication services of the implementation.

Requirement: Mandatory

Table 546 describes class SNIA_IndicationConfigurationService (IndicationConfigurationService).

50.6.48 SNIA_IndicationFilterTemplate (semi-fixed)

Experimental. IndicationFilter instances that are 'semi-fixed' are IndicationFilters that are be created by a client
using CreateInstance, but they follow a pattern defined by an IndicationFilterTemplate. If a profile implementation
can support semi-fixed IndicationFilters, the implementation would support 'semi-fixed' IndicationFilterTemplate
instances. The implementation shall support 'semi-fixed' filters that are defined by SMI-S profile as mandatory.

SupportedFeatures Mandatory This may be any or all of the following values: '2' (none), '3'
(Predefined Filters), '4' (Client Defined Filters), '5'
(Predefined Filter Collections), '6' (Client Defined Filter
Collections) or '7' (Semi-fixed Indication Filters).

SupportedSynchrono
usActions

Mandatory This shall be '2' (none), '3' (Test Listener), '4' ("Create and
Subscribe) or '5' (Filter Collection Methods).

Table 546 - SMI Referenced Properties/Methods for SNIA_IndicationConfigurationService (Indica-
tionConfigurationService)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory

TestListener() Optional A method for testing if the listener can receive indications.

CreateAndSubscribe(
)

Optional A method for creating a Filter and subscribing to it.

CreateFilterCollectio
n()

Optional A method for creating a FilterCollection and adding initial
members.

AddFilterToCollection
()

Optional A method for adding members to a client defined
FilterCollection.

RemoveFilterFromCo
llection()

Optional A method for removing members from a client defined
FilterCollection.

DeleteFilterCollection
()

Optional A method for Deleting a FilterCollection.

Table 545 - SMI Referenced Properties/Methods for SNIA_IndicationConfigurationCapabilities
(IndicationConfigurationCapabilities)

Properties Flags Requirement Description & Notes
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 643

Indications Profile

1215

1216

1217

1218

1219
1220

1221
SNIA_IndicationFilterTemplate is subclassed from CIM_ManagedElement.

Created By: CreateInstance
Modified By: ModifyInstance
Deleted By: DeleteInstance
Requirement: Required if SNIA_IndicationConfigurationCapabilities.SupportedFeatures='7' (Semi-fixed Indication
Filters).

Table 547 describes class SNIA_IndicationFilterTemplate (semi-fixed).

EXPERIMENTAL

Table 547 - SMI Referenced Properties/Methods for SNIA_IndicationFilterTemplate (semi-fixed)

Properties Flags Requirement Description & Notes

SystemCreationClas
sName

Mandatory

CreationClassName Mandatory

SystemName Mandatory

Name Mandatory This shall take the form OrgID ":" RegisteredName ":"
UniqueID. For more details, see section Storage
Management Technical Specification, Part 2 Common
Profiles, 1.6.0 Rev 4 43.1.4.1 Naming Conventions for
IndicationFilterTemplates and IndicationFilters.

SourceNamespace N Optional Deprecated. For instances in the InteropNamespace, this
shall be the namespace where the indications are to
originate. For instances in the implementation namespace
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

SourceNamespaces N Optional Experimental. For instances in the InteropNamespace, this
should be all the namespaces where the indications may
originate. For instances in the implementation namespaces
where the indications are to originate (e.g., the namespace
of the profile that supports the filter), this may be NULL to
indicate the Filter is registered in the Namespace where the
indications originate.

Query Mandatory A string that specifies a template (in QueryLanguage terms
with SUBSTITUTION_STRINGs) what IndicationFilters
may be created from this template.

QueryLanguage Mandatory This shall be 'DMTF:CQL' for CQL queries with substitution.

ElementName Optional A Client Defined user friendly string that identifies the
Indication Filter.
644

 Annex A (informative) SMI-S Information Model

1

2
3
4
5
6

7
8
9

Annex A (informative) SMI-S Information Model

This standard is based on DMTF’s CIM schema, version 2.29. The DMTF schema is available in the
machinereadable Managed Object Format (MOF) format. DMTF MOFs are simultaneously released both as an
"Experimental" and a "Final" version of the schema. This provides developers with early access to experimental
parts of the models. Both versions are available at
 http://www.dmtf.org/standards/cim/cim_schema_v2290

Most SMI-S Profiles are primarily based on the DMTF Final MOFs. Content marked as “Experimental” or
“Implemented” may be based on DMTF’s Experimental MOFs. Some SMI-S Experimental Profiles may also use
classes with a SNIA_ prefix; MOFs from these classes are available from SNIA.
 SMI-S 1.6.0 Revision 4 SNIA Technical Position 645

http://www.dmtf.org/standards/cim/cim_schema_v2290

646

	Revision History
	List of Tables
	List of Figures
	Foreword
	Clause 1: Scope
	Clause 2: Normative References
	2.1 Approved References
	2.2 DMTF References (Final)
	2.3 IETF References (Standards or Draft Standards)
	2.4 References under development
	2.5 Other References

	Clause 3: Definitions, Symbols, Abbreviations, and Conventions
	3.1 General
	3.2 Terms

	Clause 4: Profile Introduction
	4.1 Profile Overview
	4.1.1 Terminology

	4.2 Format for Profile Specifications

	Clause 5: Recipe Overview
	5.1 Recipe Concepts
	5.2 Recipe Pseudo Code Conventions
	5.2.1 Overview
	5.2.2 General Syntax
	5.2.3 CIM related variable and methods
	5.2.4 Data Structure
	5.2.5 Operations
	5.2.6 Control Operations
	5.2.7 Functions
	5.2.8 Exception Handling
	5.2.9 Built-in Functions
	5.2.10 Extrinsic method calls

	Clause 6: Generic Target Ports Profile
	6.1 Synopsis
	6.2 Description
	6.3 Implementation
	6.3.1 Modeling SCSI/SB Logical Units

	6.4 Methods of the Profile
	6.4.1 Extrinsic Methods
	6.4.2 Intrinsic Methods

	6.5 Use Cases
	6.6 CIM Elements
	6.6.1 CIM_DeviceSAPImplementation
	6.6.2 CIM_HostedAccessPoint
	6.6.3 CIM_LogicalPort
	6.6.4 CIM_ProtocolEndpoint
	6.6.5 CIM_SystemDevice (Port)

	Clause 7: Parallel SCSI (SPI) Target Ports Profile
	7.1 Synopsis
	7.2 Description
	7.3 Implementation
	7.4 Health and Fault Management
	7.5 Methods
	7.5.1 Extrinsic Methods of this Subprofile

	7.6 CIM Elements
	7.6.1 CIM_DeviceSAPImplementation
	7.6.2 CIM_HostedAccessPoint
	7.6.3 CIM_SCSIProtocolEndpoint
	7.6.4 CIM_SPIPort
	7.6.5 CIM_SystemDevice (Port)

	Clause 8: FC Target Ports Profile
	8.1 Synopsis
	8.2 Description
	8.3 Implementation
	8.3.1 SMI-S 1.0 backwards compatibility

	8.4 Durable Names and Correlatable IDs of the Subprofile
	8.5 Health and Fault Management
	8.6 Supported Profiles and Packages
	8.7 Extrinsic Methods of this Subprofile
	8.8 Client Considerations and Recipes
	8.9 CIM Elements
	8.9.1 CIM_DeviceSAPImplementation
	8.9.2 CIM_FCPort
	8.9.3 CIM_HostedAccessPoint
	8.9.4 CIM_ProtocolControllerForPort
	8.9.5 CIM_SCSIProtocolEndpoint
	8.9.6 CIM_SystemDevice (Port)

	Clause 9: iSCSI Target Ports Subprofile
	9.1 Synopsis
	9.2 Description
	9.3 Implementation
	9.3.1 Mapping and Masking Considerations
	9.3.2 Settings
	9.3.3 Durable Names and Correlatable IDs of the Subprofile

	9.4 Health and Fault Management
	9.5 Supported Subprofiles and Packages
	9.6 Methods of this Subprofile
	9.6.1 CreateiSCSINode
	9.6.2 DeleteiSCSINode
	9.6.3 CreateiSCSIProtocolEndpoint
	9.6.4 DeleteiSCSIProtocolEndpoint
	9.6.5 BindiSCSIProtocolEndpoint

	9.7 Client Considerations and Recipes
	9.7.1 Discover the iSCSI Target Port capabilities.
	9.7.2 Identify the iSCSI Nodes in a target system.
	9.7.3 Identify the iSCSI Ports on an given iSCSI node.
	9.7.4 Identify the iSCSI sessions existing on an iSCSI node.
	9.7.5 Create an iSCSI Target Node on an iSCSI Network Entity
	9.7.6 Create an iSCSI Target Port on an iSCSI target node.
	9.7.7 Add a Network Portal to a Target Port.
	9.7.8 Determine the health of Nodes in a target system.
	9.7.9 Determine the health of a Session on a target system.
	9.7.10 Configure the default settings for Sessions created in a target computer system.
	9.7.11 Configure default settings for Connections on Network Portals used by an iSCSIProtocolEndpoint.
	9.7.12 Get the statistics for a Session on a target system
	9.7.13 Configure Enable/disable header and data digest

	9.8 CIM Elements
	9.8.1 CIM_BindsTo (TCPProtocolEndpoint to IPProtocolEndpoint)
	9.8.2 CIM_BindsTo (iSCSIProtocolEndpoint to TCPProtocolEndpoint)
	9.8.3 CIM_ConcreteDependency
	9.8.4 CIM_DeviceSAPImplementation (EthernetPort to IPProtocolEndpoint)
	9.8.5 CIM_DeviceSAPImplementation (EthernetPort to iSCSIProtocolEndpoint)
	9.8.6 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to System)
	9.8.7 CIM_ElementCapabilities (iSCSIConfigurationCapabilities to iSCSIConfigurationService)
	9.8.8 CIM_ElementSettingData (iSCSIConnectionSettings to TCPProtocolEndpoint)
	9.8.9 CIM_ElementSettingData (iSCSIConnectionSettings to iSCSIProtocolEndpoint)
	9.8.10 CIM_ElementSettingData (iSCSISessionSettings to SCSIProtocolController)
	9.8.11 CIM_ElementSettingData (iSCSISessionSettings to System)
	9.8.12 CIM_ElementSettingData (iSCSISessionSettings to iSCSIProtocolEndpoint)
	9.8.13 CIM_ElementStatisticalData (iSCSILoginStatistics to SCSIProtocolController)
	9.8.14 CIM_ElementStatisticalData (iSCSISessionFailures to SCSIProtocolController)
	9.8.15 CIM_ElementStatisticalData (iSCSISessionStatistics to iSCSISession)
	9.8.16 CIM_EndpointOfNetworkPipe (iSCSIConnection to TCPProtocolEndpoint)
	9.8.17 CIM_EndpointOfNetworkPipe (iSCSISession to iSCSIProtocolEndpoint)
	9.8.18 CIM_EthernetPort
	9.8.19 CIM_HostedAccessPoint (System to IPProtocolEndpoint)
	9.8.20 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)
	9.8.21 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)
	9.8.22 CIM_HostedCollection
	9.8.23 CIM_HostedService
	9.8.24 CIM_IPProtocolEndpoint
	9.8.25 CIM_MemberOfCollection
	9.8.26 CIM_NetworkPipeComposition
	9.8.27 CIM_SAPAvailableForElement
	9.8.28 CIM_SCSIProtocolController
	9.8.29 CIM_SystemDevice (System to EthernetPort)
	9.8.30 CIM_SystemDevice (System to SCSIProtocolController)
	9.8.31 CIM_SystemSpecificCollection
	9.8.32 CIM_TCPProtocolEndpoint
	9.8.33 CIM_iSCSICapabilities
	9.8.34 CIM_iSCSIConfigurationCapabilities
	9.8.35 CIM_iSCSIConfigurationService
	9.8.36 CIM_iSCSIConnection
	9.8.37 CIM_iSCSIConnectionSettings
	9.8.38 CIM_iSCSILoginStatistics
	9.8.39 CIM_iSCSIProtocolEndpoint
	9.8.40 CIM_iSCSISession
	9.8.41 CIM_iSCSISessionFailures
	9.8.42 CIM_iSCSISessionSettings
	9.8.43 CIM_iSCSISessionStatistics

	Clause 10: Serial Attached SCSI (SAS) Target Port Subprofile
	10.1 Synopsis
	10.2 Description
	10.2.1 Health and Fault Management

	10.3 Methods
	10.3.1 Extrinsic Methods of this Subprofile
	10.3.2 Intrinsic Methods of this Subprofile

	10.4 Client Considerations and Recipes
	10.5 CIM Elements
	10.5.1 CIM_ConcreteComponent
	10.5.2 CIM_DeviceSAPImplementation
	10.5.3 CIM_HostedAccessPoint
	10.5.4 CIM_SASPort
	10.5.5 CIM_SCSIProtocolEndpoint
	10.5.6 CIM_SystemDevice (Port)
	10.5.7 CIM_SystemDevice (SAS PHY)
	10.5.8 SNIA_SASPHY

	Clause 11: Serial ATA (SATA) Target Ports Profile
	11.1 Synopsis
	11.2 Description
	11.2.1 Health and Fault Management

	11.3 Methods of this Subprofile
	11.4 Client Considerations and Recipes
	11.5 CIM Elements
	11.5.1 CIM_ATAPort
	11.5.2 CIM_ATAProtocolEndpoint
	11.5.3 CIM_DeviceSAPImplementation
	11.5.4 CIM_HostedAccessPoint
	11.5.5 CIM_SystemDevice (Port)

	Clause 12: SB Target Ports Profile
	12.1 Synopsis
	12.2 Description
	12.3 Implementation
	12.4 Health and Fault Management Consideration
	12.5 Cascading Considerations
	12.6 Methods of the Profile
	12.6.1 Extrinsic Methods of the Profile
	12.6.2 Intrinsic Methods of the Profile

	12.7 Client Considerations and Recipes
	12.8 CIM Elements
	12.8.1 CIM_DeviceSAPImplementation
	12.8.2 CIM_FCPort
	12.8.3 CIM_HostedAccessPoint
	12.8.4 CIM_SystemDevice (Port)
	12.8.5 SNIA_SBProtocolEndpoint

	Clause 13: Direct Attach (DA) Ports Profile
	13.1 Description
	13.2 Health and Fault Management
	13.3 Supported Profiles and Packages
	13.4 Extrinsic Methods
	13.5 Client Considerations and Recipes
	13.6 Registered Name and Version
	13.7 CIM Elements
	13.7.1 CIM_DAPort
	13.7.2 CIM_DeviceSAPImplementation
	13.7.3 CIM_HostedAccessPoint
	13.7.4 CIM_SCSIProtocolEndpoint
	13.7.5 CIM_SystemDevice (Port)

	Clause 14: Generic Initiator Ports Profile
	14.1 Synopsis
	14.2 Description
	14.3 Implementation
	14.3.1 Remote Device Models
	14.3.2 Health and Fault Management Considerations
	14.3.3 Cascading Considerations

	14.4 Methods
	14.4.1 Extrinsic Methods of this Profile
	14.4.2 Intrinsic Methods of this Profile

	14.5 Use Cases
	14.6 CIM Elements
	14.6.1 CIM_ConnectivityCollection
	14.6.2 CIM_DeviceSAPImplementation
	14.6.3 CIM_ElementStatisticalData (Port Statistics)
	14.6.4 CIM_HostedAccessPoint (Initiator)
	14.6.5 CIM_HostedAccessPoint (Target)
	14.6.6 CIM_HostedCollection (Connectivity Collection)
	14.6.7 CIM_LogicalPort
	14.6.8 CIM_MemberOfCollection (Connectivity Collection)
	14.6.9 CIM_ProtocolEndpoint (Initiator)
	14.6.10 CIM_ProtocolEndpoint (Target)
	14.6.11 CIM_SystemDevice (Initiator Ports)
	14.6.12 SNIA_LogicalPortStatistics

	Clause 15: Parallel SCSI (SPI) Initiator Ports Profile
	15.1 Synopsis
	15.2 Description
	15.3 Implementation
	15.3.1 Health and Fault Management Considerations
	15.3.2 Cascading Considerations

	15.4 Methods
	15.4.1 Extrinsic Methods of this Profile
	15.4.2 Intrinsic Methods of this Profile

	15.5 Detailed Use Cases and Recipes
	15.6 CIM Elements
	15.6.1 CIM_ConnectivityCollection
	15.6.2 CIM_DeviceSAPImplementation
	15.6.3 CIM_ElementStatisticalData (Port Statistics)
	15.6.4 CIM_HostedAccessPoint (Initiator)
	15.6.5 CIM_HostedAccessPoint (Target)
	15.6.6 CIM_HostedCollection (Connectivity Collection)
	15.6.7 CIM_MemberOfCollection (Connectivity Collection)
	15.6.8 CIM_SCSIInitiatorTargetLogicalUnitPath
	15.6.9 CIM_SCSIProtocolEndpoint (Initiator)
	15.6.10 CIM_SCSIProtocolEndpoint (Target)
	15.6.11 CIM_SPIPort
	15.6.12 CIM_SystemDevice (Initiator Ports)
	15.6.13 SNIA_LogicalPortStatistics

	Clause 16: iSCSI Initiator Port Profile
	16.1 Synopsis
	16.2 Description
	16.3 Implementation
	16.3.1 Health and Fault Management Considerations
	16.3.2 Cascading Considerations

	16.4 Methods
	16.4.1 Extrinsic Methods of this Profile
	16.4.2 Intrinsic Methods of this Profile

	16.5 Detailed Use Cases and Recipes
	16.6 CIM Elements
	16.6.1 CIM_BindsTo (Host Hardware RAID Controller)
	16.6.2 CIM_DeviceSAPImplementation (IPProtocolEndpoint to EthernetPort)
	16.6.3 CIM_DeviceSAPImplementation (iSSIProtocolEndpoint to EthernetPort)
	16.6.4 CIM_EthernetPort (Host Hardware RAID Controller)
	16.6.5 CIM_HostedAccessPoint (System to IPProtocolEndpoint)
	16.6.6 CIM_HostedAccessPoint (System to TCPProtocolEndpoint)
	16.6.7 CIM_HostedAccessPoint (System to iSCSIProtocolEndpoint)
	16.6.8 CIM_IPProtocolEndpoint (Host Hardware RAID Controller)
	16.6.9 CIM_LogicalDevice (Host Hardware RAID Controller)
	16.6.10 CIM_SystemDevice (System to EthernetPort)
	16.6.11 CIM_SystemDevice (System to LogicalDevice)
	16.6.12 CIM_TCPProtocolEndpoint (Host Hardware RAID Controller)
	16.6.13 CIM_iSCSIProtocolEndpoint (Host Hardware RAID Controller)

	Clause 17: FC Initiator Ports Profile
	17.1 Synopsis
	17.2 Description
	17.3 Implementation
	17.3.1 Port Statistics
	17.3.2 Logical Port Group (FC Node)
	17.3.3 Health and Fault Management Considerations
	17.3.4 Cascading Considerations

	17.4 Methods
	17.4.1 Extrinsic Methods of this Profile
	17.4.2 Intrinsic Methods of this Profile

	17.5 Use Cases
	17.5.1 Get the statistics for each FC port

	17.6 CIM Elements
	17.6.1 CIM_ConnectivityCollection
	17.6.2 CIM_DeviceSAPImplementation
	17.6.3 CIM_ElementStatisticalData (Port Statistics)
	17.6.4 CIM_FCPort
	17.6.5 CIM_FCPortStatistics
	17.6.6 CIM_HostedAccessPoint (Initiator)
	17.6.7 CIM_HostedAccessPoint (Target)
	17.6.8 CIM_HostedCollection (Connectivity Collection)
	17.6.9 CIM_MemberOfCollection (Connectivity Collection)
	17.6.10 CIM_ProtocolControllerForPort
	17.6.11 CIM_SCSIInitiatorTargetLogicalUnitPath
	17.6.12 CIM_SCSIProtocolController
	17.6.13 CIM_SCSIProtocolEndpoint (Initiator)
	17.6.14 CIM_SCSIProtocolEndpoint (Target)
	17.6.15 CIM_SystemDevice (Initiator Ports)

	Clause 18: SAS Initiator Ports Profile
	18.1 Synopsis
	18.2 Description
	18.2.1 Health and Fault Management Considerations

	18.3 Methods of the profile
	18.4 Client Considerations and Recipes
	18.5 CIM Elements
	18.5.1 CIM_ATAProtocolEndpoint (Initiator)
	18.5.2 CIM_BindsTo
	18.5.3 CIM_ConcreteComponent
	18.5.4 CIM_ConnectivityCollection
	18.5.5 CIM_DeviceSAPImplementation
	18.5.6 CIM_ElementStatisticalData (PHY Statistics)
	18.5.7 CIM_ElementStatisticalData (Port Statistics)
	18.5.8 CIM_HostedAccessPoint (Initiator)
	18.5.9 CIM_HostedAccessPoint (Target)
	18.5.10 CIM_HostedCollection (Connectivity Collection)
	18.5.11 CIM_MemberOfCollection (Connectivity Collection)
	18.5.12 CIM_SASPort
	18.5.13 CIM_SCSIInitiatorTargetLogicalUnitPath
	18.5.14 CIM_SCSIProtocolEndpoint (Initiator)
	18.5.15 CIM_SCSIProtocolEndpoint (Target)
	18.5.16 CIM_SystemDevice (Initiator PHY)
	18.5.17 CIM_SystemDevice (Initiator Ports)
	18.5.18 SNIA_LogicalPortStatistics
	18.5.19 SNIA_SASPHY
	18.5.20 SNIA_SASPhyStatistics

	Clause 19: ATA Initiator Ports Profile
	19.1 Synopsis
	19.2 Description
	19.3 Implementation
	19.3.1 Health and Fault Management Consideration
	19.3.2 Cascading Considerations

	19.4 Methods of the Profile
	19.4.1 Extrinsic Methods of the Profile
	19.4.2 Intrinsic Methods of this Profile

	19.5 Client Considerations and Recipes
	19.6 CIM Elements
	19.6.1 CIM_ATAInitiatorTargetLogicalUnitPath
	19.6.2 CIM_ATAPort
	19.6.3 CIM_ATAProtocolEndpoint (Initiator)
	19.6.4 CIM_ATAProtocolEndpoint (Target)
	19.6.5 CIM_ConnectivityCollection
	19.6.6 CIM_DeviceSAPImplementation
	19.6.7 CIM_ElementStatisticalData (Port Statistics)
	19.6.8 CIM_HostedAccessPoint (Initiator)
	19.6.9 CIM_HostedAccessPoint (Target)
	19.6.10 CIM_HostedCollection (Connectivity Collection)
	19.6.11 CIM_MemberOfCollection (Connectivity Collection)
	19.6.12 CIM_SystemDevice (Initiator Ports)
	19.6.13 SNIA_LogicalPortStatistics

	Clause 20: FC-SB-x Initiator Ports Profile
	20.1 Synopsis
	20.2 Description
	20.3 Implementation
	20.3.1 Health and Fault Management Considerations
	20.3.2 Cascading Considerations

	20.4 Methods
	20.4.1 Extrinsic Methods of the Profile
	20.4.2 Intrinsic Methods of this Profile

	20.5 Client Considerations and Recipes
	20.6 CIM Elements
	20.6.1 CIM_ConnectivityCollection
	20.6.2 CIM_DeviceSAPImplementation
	20.6.3 CIM_ElementStatisticalData (Port Statistics)
	20.6.4 CIM_FCPort
	20.6.5 CIM_HostedAccessPoint (Initiator)
	20.6.6 CIM_HostedAccessPoint (Target)
	20.6.7 CIM_HostedCollection (Connectivity Collection)
	20.6.8 CIM_MemberOfCollection (Connectivity Collection)
	20.6.9 CIM_SystemDevice (Initiator Ports)
	20.6.10 SNIA_LogicalPortStatistics
	20.6.11 SNIA_SBInitiatorTargetLogicalUnitPath
	20.6.12 SNIA_SBProtocolEndpoint (Initiator)
	20.6.13 SNIA_SBProtocolEndpoint (Target)

	Clause 21: Backend Ports Subprofile
	Clause 22: FCoE Initiator Ports Profile
	22.1 Synopsis
	22.2 Description
	22.3 Implementation
	22.3.1 Relationship to Storage HBA Profile
	22.3.2 Optional target model
	22.3.3 Port Statistics
	22.3.4 Logical Port Group (FC Node)
	22.3.5 Health and Fault Management Considerations
	22.3.6 Cascading Considerations

	22.4 Methods
	22.4.1 Extrinsic Methods of this Profile
	22.4.2 Intrinsic Methods of this Profile

	22.5 Detailed Use Cases and Recipes
	22.6 CIM Elements
	22.6.1 CIM_ConnectivityCollection
	22.6.2 CIM_DeviceSAPImplementation
	22.6.3 CIM_ElementStatisticalData (Port Statistics)
	22.6.4 CIM_EthernetPort
	22.6.5 CIM_FCPort
	22.6.6 CIM_FCPortStatistics
	22.6.7 CIM_HostedAccessPoint (Initiator)
	22.6.8 CIM_HostedAccessPoint (Target)
	22.6.9 CIM_HostedCollection (Connectivity Collection)
	22.6.10 CIM_HostedCollection (FC Node)
	22.6.11 CIM_HostedDependency (NetworkPort to FCPort)
	22.6.12 CIM_LogicalPortGroup
	22.6.13 CIM_MemberOfCollection (Connectivity Collection)
	22.6.14 CIM_MemberOfCollection (FC Node)
	22.6.15 CIM_ProtocolEndpoint (Initiator)
	22.6.16 CIM_ProtocolEndpoint (Target)
	22.6.17 CIM_SCSIInitiatorTargetLogicalUnitPath
	22.6.18 CIM_SCSIProtocolEndpoint (Initiator)
	22.6.19 CIM_SCSIProtocolEndpoint (Target)
	22.6.20 CIM_SystemDevice (Ethernet Port)
	22.6.21 CIM_SystemDevice (Initiator Ports)

	Clause 23: Access Points Subprofile
	23.1 Description
	23.2 Health and Fault Management Considerations
	23.3 Cascading Considerations
	23.4 Supported Subprofiles and Packages
	23.5 Methods of this Profile
	23.6 Client Considerations and Recipes
	23.7 Registered Name and Version
	23.8 CIM Elements
	23.8.1 CIM_HostedAccessPoint
	23.8.2 CIM_RemoteServiceAccessPoint
	23.8.3 CIM_SAPAvailableForElement

	Clause 24: Cascading Subprofile
	24.1 Description
	24.1.1 Instance Diagrams

	24.2 Health and Fault Management Considerations
	24.2.1 Reporting Health of Leaf Systems, Resources and Object Managers
	24.2.2 Cascading Indications of Health

	24.3 Cascading Considerations
	24.4 Supported Subprofiles and Packages
	24.5 Methods of this Subprofile
	24.5.1 Allocate
	24.5.2 Deallocate

	24.6 Client Considerations and Recipes
	24.6.1 Recipe MPCP01: Determining Resources used by cascading Profiles
	24.6.2 Recipe MPCP02: Monitoring the existence of Cascading Profiles
	24.6.3 OPTIONAL: Recipe MPCP03: Allocation of Leaf Resources
	24.6.4 OPTIONAL: Recipe MPCP04: Deallocation of Leaf Resources
	24.6.5 Recipe MPCP05: Monitoring the existence of “Stitching” between Profiles
	24.6.6 Supported SNIA_CascadingCapabilities Patterns

	24.7 Registered Name and Version
	24.8 CIM Elements
	24.8.1 CIM_ComputerSystem (Leaf System)
	24.8.2 CIM_Dependency (Object Managers)
	24.8.3 CIM_Dependency (Profile to Object Manager)
	24.8.4 CIM_Dependency (Systems)
	24.8.5 CIM_ElementCapabilities
	24.8.6 CIM_ElementConformsToProfile (Leaf)
	24.8.7 CIM_HostedCollection (Allocated Resources)
	24.8.8 CIM_HostedCollection (Remote Resources)
	24.8.9 CIM_HostedService (Allocation Service)
	24.8.10 CIM_HostedService (Object Manager)
	24.8.11 CIM_LogicalDisk
	24.8.12 CIM_LogicalIdentity (General)
	24.8.13 CIM_LogicalIdentity (LogicalDisk)
	24.8.14 CIM_LogicalIdentity (StorageVolume)
	24.8.15 CIM_MemberOfCollection (Allocated Resources)
	24.8.16 CIM_MemberOfCollection (Remote Resources)
	24.8.17 CIM_Namespace (Leaf)
	24.8.18 CIM_NamespaceInManager (Leaf)
	24.8.19 CIM_ObjectManager (Leaf)
	24.8.20 CIM_RegisteredProfile (Leaf)
	24.8.21 CIM_RemoteServiceAccessPoint (Leaf)
	24.8.22 CIM_SAPAvailableForElement
	24.8.23 CIM_StorageVolume
	24.8.24 CIM_SystemDevice (Leaf Devices)
	24.8.25 SNIA_AllocatedResources
	24.8.26 SNIA_AllocationService
	24.8.27 SNIA_CascadingCapabilities
	24.8.28 SNIA_RemoteResources

	Clause 25: Health Package
	25.1 Description
	25.1.1 Error Reporting Mechanism
	25.1.2 Event Reporting Mechanism
	25.1.3 Standard Events
	25.1.4 Reporting Health
	25.1.5 Computer System Operational Status
	25.1.6 Event Reporting
	25.1.7 Fault Region
	25.1.8 RelatedElementCausingError
	25.1.9 HealthState

	25.2 Health and Fault Management Considerations
	25.3 Cascading Considerations
	25.4 Supported Subprofiles and Packages
	25.5 Client Considerations and Recipes
	25.6 Registered Name and Version
	25.7 CIM Elements
	25.7.1 CIM_ComputerSystem
	25.7.2 CIM_LogicalDevice
	25.7.3 CIM_RelatedElementCausingError

	Clause 26: Job Control Subprofile
	26.1 Description
	26.1.1 Instance Diagram
	26.1.2 MethodResult
	26.1.3 OperationalStatus for Jobs
	26.1.4 JobState for Jobs
	26.1.5 Determining How Long a Job Remains after Execution

	26.2 Health and Fault Management
	26.3 Cascading Considerations
	26.4 Support Subprofiles and Packages
	26.5 Methods of the Profile
	26.5.1 Job Modification
	26.5.2 Getting Error Conditions from Jobs
	26.5.3 Suspending, Killing or Terminating a Job

	26.6 Client Considerations and Recipes
	26.7 Registered Name and Version
	26.8 CIM Elements
	26.8.1 CIM_AffectedJobElement
	26.8.2 CIM_AssociatedJobMethodResult
	26.8.3 CIM_ConcreteJob
	26.8.4 CIM_MethodResult
	26.8.5 CIM_OwningJobElement

	Clause 27: Location Subprofile
	27.1 Description
	27.1.1 Instance Diagram

	27.2 Health and Fault Management Considerations
	27.3 Cascading Considerations
	27.4 Supported Subprofiles and Packages
	27.5 Methods of the Profile
	27.6 Client Considerations and Recipes
	27.7 Registered Name and Version
	27.8 CIM Elements
	27.8.1 CIM_Location
	27.8.2 CIM_PhysicalElementLocation

	Clause 28: Extra Capacity Set Subprofile
	Clause 29: Cluster Subprofile
	Clause 30: Multiple Computer System Subprofile
	30.1 Description
	30.1.1 Top Level System
	30.1.2 Non-Top-Level Systems
	30.1.3 Types of RedundancySets
	30.1.4 Multiple Tiers of Systems
	30.1.5 Associations between ComputerSystems and other Logical Elements
	30.1.6 Associations between ComputerSystems and PhysicalPackages and Products
	30.1.7 Storage Systems without Multiple Systems
	30.1.8 Durable Names and Correlatable IDs of the Subprofile

	30.2 Health and Fault Management Considerations
	30.3 Cascading Considerations
	30.4 Supported Subprofiles and Packages
	30.5 Methods of the Profile
	30.6 Client Considerations and Recipes
	30.6.1 Find Top-level Computer Systems
	30.6.2 Find the Top-level Computer System for any LogicalDevice

	30.7 Registered Name and Version
	30.8 CIM Elements
	30.8.1 CIM_ComponentCS
	30.8.2 CIM_ComputerSystem (Non-Top-Level System)
	30.8.3 CIM_ConcreteIdentity
	30.8.4 CIM_IsSpare
	30.8.5 CIM_MemberOfCollection
	30.8.6 CIM_RedundancySet

	Clause 31: Physical Package Package
	31.1 Description
	31.1.1 Well Defined Subcomponents
	31.1.2 Multiple Product Identities

	31.2 Health and Fault Management Considerations
	31.3 Cascading Considerations
	31.4 Supported Subprofiles and Packages
	31.5 Methods of this Profile
	31.6 Client Considerations and Recipes
	31.6.1 Find Asset Information
	31.6.2 Finding Product information
	31.6.3 Finding Asset information

	31.7 Registered Name and Version
	31.8 CIM Elements
	31.8.1 CIM_Container
	31.8.2 CIM_LogicalIdentity
	31.8.3 CIM_PhysicalElementLocation
	31.8.4 CIM_PhysicalPackage (Component)
	31.8.5 CIM_PhysicalPackage (System)
	31.8.6 CIM_Product (Component)
	31.8.7 CIM_Product (System)
	31.8.8 CIM_ProductParentChild
	31.8.9 CIM_ProductPhysicalComponent (Component)
	31.8.10 CIM_ProductPhysicalComponent (System)
	31.8.11 CIM_SystemPackaging (Component)
	31.8.12 CIM_SystemPackaging (System)

	Clause 32: Power Supply Profile
	32.1 Synopsis
	32.2 Description
	32.3 Implementation
	32.3.1 Health and Fault Management Consideration
	32.3.2 Cascading Considerations

	32.4 Methods
	32.5 Use Cases
	32.6 CIM Elements
	32.6.1 CIM_ElementCapabilities
	32.6.2 CIM_EnabledLogicalElementCapabilities
	32.6.3 CIM_IsSpare
	32.6.4 CIM_MemberOfCollection
	32.6.5 CIM_OwningCollectionElement
	32.6.6 CIM_PowerSupply
	32.6.7 CIM_RedundancySet
	32.6.8 CIM_SuppliesPower
	32.6.9 CIM_SystemDevice

	Clause 33: Fan Profile
	33.1 Synopsis
	33.2 Description
	33.3 Implementation
	33.3.1 Health and Fault Management Consideration
	33.3.2 Cascading Considerations

	33.4 Methods
	33.5 Use Cases
	33.6 CIM Elements
	33.6.1 CIM_AssociatedCooling
	33.6.2 CIM_AssociatedSensor
	33.6.3 CIM_ElementCapabilities
	33.6.4 CIM_EnabledLogicalElementCapabilities
	33.6.5 CIM_Fan
	33.6.6 CIM_IsSpare
	33.6.7 CIM_MemberOfCollection
	33.6.8 CIM_NumericSensor
	33.6.9 CIM_OwningCollectionElement
	33.6.10 CIM_RedundancySet
	33.6.11 CIM_Sensor
	33.6.12 CIM_SystemDevice

	Clause 34: Sensors Profile
	34.1 Synopsis
	34.2 Description
	34.3 Implementation
	34.3.1 Health and Fault Management Consideration
	34.3.2 Cascading Considerations

	34.4 Methods
	34.5 Use Cases
	34.6 CIM Elements
	34.6.1 CIM_AssociatedSensor
	34.6.2 CIM_ElementCapabilities
	34.6.3 CIM_EnabledLogicalElementCapabilities
	34.6.4 CIM_NumericSensor
	34.6.5 CIM_Sensor
	34.6.6 CIM_SystemDevice

	Clause 35: Base Server Profile
	35.1 Synopsis
	35.2 Description
	35.3 Implementation
	35.3.1 HBA Instrumentation
	35.3.2 Host Hardware RAID Instrumentation
	35.3.3 Storage Enclosure Instrumentation
	35.3.4 Health and Fault Management Consideration
	35.3.5 Cascading Considerations

	35.4 Methods
	35.5 Use Cases
	35.6 CIM Elements
	35.6.1 CIM_ComputerSystem
	35.6.2 CIM_ComputerSystemPackage
	35.6.3 CIM_ElementCapabilities
	35.6.4 CIM_EnabledLogicalElementCapabilities
	35.6.5 CIM_HostedService
	35.6.6 CIM_PhysicalPackage
	35.6.7 CIM_ServiceAffectsElement
	35.6.8 CIM_TimeService

	Clause 36: Media Access Device Profile
	36.1 Synopsis
	36.2 Description
	36.2.1 Location Indicator
	36.2.2 Media Access Device Online/Offline

	36.3 Implementation
	36.3.1 Health and Fault Management Consideration
	36.3.2 Cascading Considerations
	36.3.3 Hot swap insertion or Removal of Drives

	36.4 Methods
	36.4.1 Request State Change

	36.5 Use Cases
	36.6 CIM Elements
	36.6.1 CIM_EnabledLogicalElementCapabilities
	36.6.2 CIM_HostedAccessPoint
	36.6.3 CIM_MediaAccessDevice
	36.6.4 CIM_PhysicalPackage
	36.6.5 CIM_ProtocolEndpoint
	36.6.6 CIM_Realizes
	36.6.7 CIM_SAPAvailableForElement
	36.6.8 CIM_SystemDevice

	Clause 37: Storage Enclosure Profile
	37.1 Synopsis
	37.2 Description
	37.2.1 Guidelines related to Referencing Profiles
	37.2.2 Examples of Storage Enclosure Configurations

	37.3 Implementation
	37.3.1 Health and Fault Management Consideration
	37.3.2 Cascading Considerations
	37.3.3 Enclosure Elements
	37.3.4 Storage Elements
	37.3.5 Physical Assets

	37.4 Methods
	37.4.1 Extrinsic Methods of the Profile
	37.4.2 Intrinsic Methods of this Profile

	37.5 Use Cases
	37.6 CIM Elements
	37.6.1 CIM_ConfigurationReportingService
	37.6.2 CIM_HostedService

	Clause 38: Software Subprofile
	38.1 Description
	38.2 Health and Fault Management Considerations
	38.3 Cascading Considerations
	38.4 Supported Subprofiles, and Packages
	38.5 Methods of the Profile
	38.6 Client Considerations and Recipes
	38.7 Registered Name and Version
	38.8 CIM Elements
	38.8.1 CIM_InstalledSoftwareIdentity
	38.8.2 CIM_SoftwareIdentity

	Clause 39: Software Inventory Profile
	39.1 Synopsis
	39.2 Description
	39.2.1 Relationship to the SMI-S Software Profile

	39.3 Implementation
	39.3.1 Software Installation and Update
	39.3.2 Health and Fault Management Consideration
	39.3.3 Cascading Considerations

	39.4 Methods
	39.5 Use Cases
	39.6 CIM Elements
	39.6.1 CIM_ElementSoftwareIdentity
	39.6.2 CIM_HostedAccessPoint
	39.6.3 CIM_HostedCollection
	39.6.4 CIM_InstalledSoftwareIdentity
	39.6.5 CIM_MemberOfCollection
	39.6.6 CIM_OrderedComponent
	39.6.7 CIM_OrderedDependency
	39.6.8 CIM_SAPAvailableForElement
	39.6.9 CIM_SoftwareIdentity
	39.6.10 CIM_SoftwareIdentityResource
	39.6.11 CIM_SystemSpecificCollection

	Clause 40: Server Profile
	40.1 Description
	40.1.1 Model Overview
	40.1.2 Use of model fields to Populate the SLP template
	40.1.3 Support for Indications
	40.1.4 Security Background

	40.2 Health and Fault Management
	40.3 Cascading Considerations
	40.4 Supported Subprofiles and Packages
	40.5 Methods of the Profile
	40.6 Client Considerations and Recipes
	40.6.1 Segregate a SAN Device Type

	40.7 Registered Name and Version
	40.8 CIM Elements
	40.8.1 CIM_CIMXMLCommunicationMechanism
	40.8.2 CIM_CommMechanismForManager
	40.8.3 CIM_HostedAccessPoint
	40.8.4 CIM_HostedService
	40.8.5 CIM_Namespace
	40.8.6 CIM_NamespaceInManager
	40.8.7 CIM_ObjectManager
	40.8.8 CIM_ObjectManagerCommunicationMechanism
	40.8.9 CIM_System

	Clause 41: Profile Registration Profile
	41.1 Synopsis
	41.2 Description
	41.3 Implementation
	41.3.1 ElementConformsToProfile Association
	41.3.2 Associations between Autonomous and Component Profile
	41.3.3 The SMI-S Registered Profile
	41.3.4 Health and Fault Management Consideration
	41.3.5 Cascading Considerations

	41.4 Methods
	41.5 Use Cases
	41.5.1 Using the CIM Server Model to Determine SNIA Profiles Supported
	41.5.2 Recipe Assumptions
	41.5.3 Find Servers Supporting a Given Profile
	41.5.4 Enumerate Profiles Supported by a Given CIM Server
	41.5.5 Identify the ManagedElement Defined by a Profile
	41.5.6 Determine the SNIA Version of a Profile
	41.5.7 Find all Profiles on a Server

	41.6 CIM Elements
	41.6.1 CIM_ElementConformsToProfile (Associates Domain object (e.g. System) to RegisteredProfile)
	41.6.2 CIM_ElementConformsToProfile (Associates RegisteredProfiles for SMI-S and domain profiles)
	41.6.3 CIM_ElementSoftwareIdentity (Profile and SW identity)
	41.6.4 CIM_ElementSoftwareIdentity (Subprofile and SW identity)
	41.6.5 CIM_Product
	41.6.6 CIM_ProductSoftwareComponent
	41.6.7 CIM_ReferencedProfile
	41.6.8 CIM_RegisteredProfile (Domain Registered Profile)
	41.6.9 CIM_RegisteredProfile (The SMI-S Registered Profile)
	41.6.10 CIM_RegisteredSubProfile
	41.6.11 CIM_SoftwareIdentity
	41.6.12 CIM_SubProfileRequiresProfile

	Clause 42: Indication Profile
	42.1 Description
	42.1.1 IndicationFilter Names
	42.1.2 Basic Indication Classes and Association
	42.1.3 Life Cycle Indications
	42.1.4 AlertIndications
	42.1.5 Indication Delivery
	42.1.6 Instrumentation Requirements

	42.2 Health and Fault Management Considerations
	42.2.1 Elements Reporting Health
	42.2.2 Health State Transformations and Dependencies
	42.2.3 Standard Errors Produced
	42.2.4 Cause and effect associations
	42.2.5 Indication Correlation

	42.3 Cascading Considerations
	42.4 Supported Profiles, Subprofiles and Packages
	42.5 Methods of the Profile
	42.5.1 Extrinsic Methods of the Profile
	42.5.2 Intrinsic Methods of the Profile

	42.6 Client Considerations and Recipes
	42.6.1 Use of Profile Specific Recipes
	42.6.2 General Client Considerations
	42.6.3 Discovery of Implementation variations
	42.6.4 Client Defined Filters
	42.6.5 Creation of IndicationFilter and ListenerDestination Instances
	42.6.6 Creation of IndicationSubscription Instances
	42.6.7 Determine if the indication subscription requested already exists
	42.6.8 Listenable Instance Notification
	42.6.9 Life Cycle Event Subscription Description
	42.6.10 Subscription for alert indications
	42.6.11 Listenable Interface Modification Notification
	42.6.12 Subscribe for Lifecycle Events where OperationalStatus Changes

	42.7 Registered Name and Version
	42.8 CIM Elements
	42.8.1 CIM_AlertIndication
	42.8.2 CIM_IndicationFilter (client defined)
	42.8.3 CIM_IndicationFilter (pre-defined)
	42.8.4 CIM_IndicationSubscription
	42.8.5 CIM_InstCreation
	42.8.6 CIM_InstDeletion
	42.8.7 CIM_InstModification
	42.8.8 CIM_ListenerDestinationCIMXML (Indication Handler)

	Clause 43: Experimental Indication Profile
	43.1 Description
	43.1.1 Basic Indication Classes and Association
	43.1.2 AlertingManagedElement encoding in AlertIndication Instances
	43.1.3 Instrumentation Requirements
	43.1.4 Semi-Fixed Client Specific Indication Filters
	43.1.5 Filter Collections
	43.1.6 Indication Configuration Services

	43.2 Fault Management Considerations
	43.2.1 Indication Correlation

	43.3 Cascading Considerations
	43.4 Supported Profiles, Subprofiles and Packages
	43.5 Methods of the Profile
	43.5.1 Extrinsic Methods of the Profile
	43.5.2 Intrinsic Methods of the Profile

	43.6 Client Considerations and Recipes
	43.6.1 Testing a Listener Destination
	43.6.2 Discovering predefined IndicationFilters of an implementation
	43.6.3 Creating a subscription to a predefined IndicationFilter
	43.6.4 Creating a client defined indication and subscription
	43.6.5 Creating a semi-fixed indication filter
	43.6.6 Creating a FilterCollection

	43.7 Registered Name and Version
	43.8 CIM Elements
	43.8.1 CIM_AlertIndication
	43.8.2 CIM_ElementCapabilities (Indication Config Service to Capabilities)
	43.8.3 CIM_FilterCollection (Client Defined)
	43.8.4 CIM_FilterCollectionSubscription (Filter Collection Subscription)
	43.8.5 CIM_HostedCollection (Hosted Filter Collection)
	43.8.6 CIM_HostedService (Indication Config Service to System)
	43.8.7 CIM_IndicationFilter (client defined)
	43.8.8 CIM_IndicationFilter (pre-defined)
	43.8.9 CIM_IndicationSubscription
	43.8.10 CIM_InstCreation
	43.8.11 CIM_InstDeletion
	43.8.12 CIM_InstModification
	43.8.13 CIM_ListenerDestinationCIMXML (Indication Handler)
	43.8.14 CIM_ListenerDestinationWSManagement (WS-Man Indication Handler)
	43.8.15 CIM_MemberOfCollection (Filter Collection to Filters)
	43.8.16 SNIA_IndicationConfigurationCapabilities
	43.8.17 SNIA_IndicationConfigurationService
	43.8.18 SNIA_IndicationFilterTemplate (semi-fixed)

	Clause 44: Object Manager Adapter Subprofile
	44.1 Description
	44.1.1 Instance Diagram

	44.2 Health and Fault Management
	44.3 Cascading Considerations
	44.4 Supported Subprofiles and Packages
	44.5 Methods of the Profile
	44.6 Client Considerations and Recipes
	44.7 Registered Name and Version
	44.8 CIM Elements
	44.8.1 CIM_CommMechanismForObjectManagerAdapter
	44.8.2 CIM_ObjectManagerAdapter

	Clause 45: Proxy Server System Management Subprofile
	45.1 Description
	45.1.1 Relationship to Server Profile
	45.1.2 Model
	45.1.3 Creation Considerations

	45.2 Health and Fault Management Consideration
	45.3 Cascading Considerations
	45.4 Supported Profiles, Subprofiles, and Packages
	45.5 Methods of the Profile
	45.5.1 AddSystem
	45.5.2 DiscoverSystems
	45.5.3 RemoveSystem

	45.6 Client Considerations and Recipes
	45.6.1 Use Case 1: Add Device
	45.6.2 Use Case 2: Remove Device

	45.7 Registered Name and Version
	45.8 CIM Elements
	45.8.1 CIM_HostedService
	45.8.2 SNIA_SystemRegistrationCapabilities
	45.8.3 SNIA_SystemRegistrationService

	Clause 46: Device Credentials Subprofile
	46.1 Description
	46.1.1 Instance Diagram

	46.2 Health and Fault Management Considerations
	46.3 Cascading Considerations
	46.4 Supported Subprofiles and Packages
	46.5 Extrinsic Methods of this Profile
	46.6 Client Considerations and Recipes
	46.7 Registered Name and Version
	46.8 CIM Elements
	46.8.1 CIM_HostedService
	46.8.2 CIM_SharedSecret
	46.8.3 CIM_SharedSecretIsShared
	46.8.4 CIM_SharedSecretService

	Clause 47: Miscellaneous Security Profiles
	Clause 48: Operational Power Profile
	48.1 Synopsis
	48.2 Description
	48.2.1 Overview

	48.3 Implementation
	48.3.1 Model Overview
	48.3.2 Element Types
	48.3.3 Power Metric Attributes
	48.3.4 Bulk Retrieval
	48.3.5 Default Manifest Collection
	48.3.6 Client Defined Manifest Collection
	48.3.7 Capabilities Support for Operational Power Profile
	48.3.8 Health and Fault Management Consideration
	48.3.9 Cascading Considerations

	48.4 Methods of the Profile
	48.4.1 Extrinsic Methods of the Profile
	48.4.2 Intrinsic Methods of this Profile

	48.5 Use Cases
	48.5.1 Client Considerations and Recipes

	48.6 CIM Elements
	48.6.1 CIM_ElementCapabilities
	48.6.2 CIM_ElementStatisticalData (Component System Stats)
	48.6.3 CIM_ElementStatisticalData (Top Level System Stats)
	48.6.4 CIM_ElementStatisticalData (Volume Stats)
	48.6.5 CIM_HostedCollection (Client Defined)
	48.6.6 CIM_HostedCollection (Default)
	48.6.7 CIM_HostedCollection (Systemto StatisticsCollection)
	48.6.8 CIM_HostedService
	48.6.9 CIM_MemberOfCollection (DeviceSet)
	48.6.10 CIM_MemberOfCollection (Member of client defined collection)
	48.6.11 CIM_MemberOfCollection (Member of pre-defined collection)
	48.6.12 CIM_MemberOfCollection (Member of statistics collection)
	48.6.13 CIM_StatisticsCollection
	48.6.14 SNIA_DeviceSet (Provider Defined)
	48.6.15 SNIA_OperationalPowerManifest (Client Defined)
	48.6.16 SNIA_OperationalPowerManifest (Provider Support)
	48.6.17 SNIA_OperationalPowerManifestCollection (Client Defined)
	48.6.18 SNIA_OperationalPowerManifestCollection (Provider Defined)
	48.6.19 SNIA_OperationalPowerStatisticalData
	48.6.20 SNIA_OperationalPowerStatisticsCapabilities
	48.6.21 SNIA_OperationalPowerStatisticsService

	Clause 49: Cross Profile Considerations
	49.1 Overview
	49.2 HBA model
	49.3 Switch Model
	49.3.1 Recipes

	49.4 Array Model
	49.5 Storage Virtualization Model
	49.6 Fabric Topology (HBA, Switch, Array)
	49.6.1 Logical Device Composition

	Clause 50: Indications Profile
	50.1 Synopsis
	50.2 Description
	50.3 Implementation
	50.3.1 SNIA Extensions to the DMTF Indications Profile
	50.3.2 CIM_IndicationServiceCapabilities Extensions
	50.3.3 AlertIndication Extensions
	50.3.4 CIM_IndicationSubscription
	50.3.5 CIM_ListenerDestinations
	50.3.6 Handling of Indication Storms
	50.3.7 Semi-Fixed Client Specific Indication Filters
	50.3.8 Filter Collections
	50.3.9 DMTF and SNIA IndicationFilters
	50.3.10 Indication Configuration Services
	50.3.11 Health and Fault Management Consideration

	50.4 Methods
	50.4.1 Extrinsic Methods of the Profile
	50.4.2 Intrinsic Methods of the Profile

	50.5 Use Cases
	50.5.1 Testing a Listener Destination
	50.5.2 Testing a Listener Destination
	50.5.3 Discoverying predefined IndicationFilters of an implementation
	50.5.4 Creating a subscription to a predefined IndicationFilter
	50.5.5 Creating a client defined indication and subscription
	50.5.6 Creating a semi-fixed indication filter
	50.5.7 Creating a FilterCollection

	50.6 CIM Elements
	50.6.1 CIM_AbstractIndicationSubscription (AbstractSubscription)
	50.6.2 CIM_AlertIndication (AlertIndication)
	50.6.3 CIM_ConcreteDependency (ProfileOfFilterCollection)
	50.6.4 CIM_ElementCapabilities (CapabiliesOfIndicationService)
	50.6.5 CIM_ElementCapabilities (Indication Config Service to Capabilities)
	50.6.6 CIM_ElementConformsToProfile (ElementConformsToProfile)
	50.6.7 CIM_ElementSettingData (InitialSettingsOfIndicationService)
	50.6.8 CIM_FilterCollection (Client Defined)
	50.6.9 CIM_FilterCollection (GlobalFilterCollection)
	50.6.10 CIM_FilterCollection (Indications Predefined FilterCollection)
	50.6.11 CIM_FilterCollection (Predefined)
	50.6.12 CIM_FilterCollection (ProfileSpecificFilterCollection)
	50.6.13 CIM_FilterCollection (StaticFilterCollection)
	50.6.14 CIM_FilterCollectionSubscription (CollectionSubscription)
	50.6.15 CIM_HostedCollection (Hosted Client Filter Collection)
	50.6.16 CIM_HostedCollection (Hosted Global FilterCollection or a Profile Specific FilterCollection)
	50.6.17 CIM_HostedCollection (Hosted Predefined Filter Collection)
	50.6.18 CIM_HostedCollection (System to predefined FilterCollection)
	50.6.19 CIM_HostedService (HostedIndicationService)
	50.6.20 CIM_HostedService (Indication Config Service to System)
	50.6.21 CIM_IndicationFilter (DynamicIndicationFilter)
	50.6.22 CIM_IndicationFilter (GlobalIndicationFilter)
	50.6.23 CIM_IndicationFilter (IndicationSpecificIndicationFilter)
	50.6.24 CIM_IndicationFilter (ListenerDestinationRemovalIndication)
	50.6.25 CIM_IndicationFilter (StaticIndicationFilter)
	50.6.26 CIM_IndicationFilter (SubscriptionRemovalIndication)
	50.6.27 CIM_IndicationFilter (client defined)
	50.6.28 CIM_IndicationFilter (pre-defined)
	50.6.29 CIM_IndicationService (IndicationService)
	50.6.30 CIM_IndicationServiceCapabilities (IndicationServiceCapabilities)
	50.6.31 CIM_IndicationServiceSettingData (IndicationServiceInitialSettings)
	50.6.32 CIM_IndicationSubscription (FilterSubscription)
	50.6.33 CIM_InstCreation
	50.6.34 CIM_InstDeletion
	50.6.35 CIM_InstIndication (LifecycleIndication)
	50.6.36 CIM_InstModification
	50.6.37 CIM_ListenerDestination (ListenerDestination)
	50.6.38 CIM_ListenerDestinationCIMXML (Indication Handler)
	50.6.39 CIM_MemberOfCollection (Client Defined Filter Collection to Filters)
	50.6.40 CIM_MemberOfCollection (FilterCollectionInFilterCollection)
	50.6.41 CIM_MemberOfCollection (IndicationFilterInFilterCollection)
	50.6.42 CIM_MemberOfCollection (Predefined Filter Collection to Indications Filters)
	50.6.43 CIM_OwningCollectionElement (IndicationServiceOfFilterCollection)
	50.6.44 CIM_ServiceAffectsElement (IndicationServiceOfIndicationFilter)
	50.6.45 CIM_ServiceAffectsElement (IndicationServiceOfListenerDestination)
	50.6.46 SNIA_IndicationConfigurationCapabilities (IndicationConfigurationCapabilities)
	50.6.47 SNIA_IndicationConfigurationService (IndicationConfigurationService)
	50.6.48 SNIA_IndicationFilterTemplate (semi-fixed)

	Annex A (informative) SMI-S Information Model

