
Limitless Analytics
with Azure Synapse
An end-to-end analytics service for data processing,
management, and ingestion for BI and ML requirements

Lim
itless A

nalytics
w

ith A
zure Synapse

Prashant Kum
ar M

ishra

Things you will learn:

• Explore the necessary considerations
for data ingestion and orchestration
while building analytical pipelines

• Understand pipelines and activities
in Synapse pipelines and use
them to construct end-to-end
data-driven work ows

• Query data using various coding
languages on Azure Synapse

• Focus on Synapse SQL and Synapse Spark
• Manage and monitor resource utilization

and query activity in Azure Synapse
• Connect Power BI workspaces with Azure

Synapse and create or modify reports
directly from Synapse Studio

• Create and manage IP  rewall rules in
Azure Synapse

Azure Synapse Analytics, which Microsoft describes as the next evolution of Azure SQL Data
Warehouse, is a limitless analytics service that brings enterprise data warehousing and big data
analytics together. With this book, you’ll learn how to discover insights from your data eff ectively
using this platform.

The book starts with an overview of Azure Synapse Analytics, its architecture, and how it can
be used to improve business intelligence and machine learning capabilities. Next, you’ll go on to
choose and set up the correct environment for your business problem. You’ll also learn a variety of
ways to ingest data from various sources and orchestrate the data using transformation techniques
off ered by Azure Synapse. Later, you’ll explore how to handle both relational and non-relational
data using the SQL language. As you progress, you’ll perform real-time streaming and execute data
analysis operations on your data using various languages, before going on to apply ML techniques
to derive accurate and granular insights from data. Finally, you’ll discover how to protect sensitive
data in real time by using security and privacy features.

By the end of this Azure book, you’ll be able to build end-to-end analytics solutions while focusing
on data prep, data management, data warehousing, and AI tasks.

Limitless Analytics
with Azure Synapse

Prashant Kumar Mishra
 Foreword by Mukesh Kumar (Principal Group Engineering Architect Manager, Microsoft)

Limitless Analytics
with Azure Synapse

An end-to-end analytics service for data
processing, management, and ingestion for
BI and ML requirements

Prashant Kumar Mishra

BIRMINGHAM—MUMBAI

Limitless Analytics with Azure Synapse
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Sunith Shetty
Senior Editor: David Sugarman
Content Development Editor: Nathanya Dias
Technical Editor: Arjun Varma
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: June 2021
Production reference: 1131022

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-565-9
www.packt.com

http://www.packt.com

Foreword
I would like to start by saying that data is the new currency for all enterprises across all
industries as well as in the government sector. Digital transformations are rampant across
every customer segment and data-first modernization is critical, whether for business
transformation or legacy modernization. Microsoft's data products and the Azure platform
are being widely used for true digital transformation as they provide a single pane of
glass to store, analyze, and get better insights into data. For Azure Synapse Analytics,
the emphasis on it being a platform rather than a product is key to underscore, as Azure
Synapse is an amalgamation of big data analytics with an enterprise data warehouse that
enables you to perform limitless analytics on your data at scale without worrying about any
infrastructure management overhead.

In this book, Prashant Kumar Mishra, an engineering architect and my colleague at Azure
Data Product Engineering, leads you on a journey to learn Azure Synapse from scratch.
He explains dedicated SQL pools, serverless SQL pools, and Spark pools in detail. He has
also covered data integration, visualization, and machine learning operations with Azure
Synapse in this book.

This book is a step-by-step guide for beginners. You will find easy-to-understand guidance
on the features available in Azure Synapse. You will also learn how to secure the data stored
in Azure Synapse and how to perform backup and restore operations for high availability as
well as disaster recovery solutions.

I have been in the industry for more than 20 years now and I have never seen people be
as keen on digital modernization as they are now. In this era, Microsoft has done a great
job of introducing Azure Synapse to the world as the best analytics solution. I moved to
Microsoft approximately 7 years ago, but I have always been an avid admirer of Microsoft's
data services, and I take immense pride in saying that Microsoft provides you with all the
solutions you need for your data-related problems.

On this note, I would like to thank Prashant for writing this book. This book will definitely
give you the full picture of how all of Microsoft's data services are stitched together by
Azure Synapse.

Mukesh Kumar
Principal Group Engineering Architect Manager, Microsoft

Contributors

About the author
Prashant Kumar Mishra is an engineering architect at Microsoft. He has more than
10 years of professional expertise in the Microsoft data and AI segment as a developer,
consultant, and architect. He has been focused on Microsoft Azure Cloud technologies for
several years now and has helped various customers in their data journey. He prefers to
share his knowledge with others to make the data community stronger day by day through
his blogs and meetup groups.

I wish to thank those people who have been close to me and supported me,
especially my wife, Saranya, who inspired me to write this book, my parents
(Mr. Mohan Mishra and Mrs. Uma Devi), my in-laws (Mr. Ravichander T
and Mrs. Kalai Ravi), and my sisters (Supriya and Diya), who have always

stood by me in all my decisions and endeavors.

I can't end this note without mentioning my small, cute Maltese, Toffee,
who brings joy to our lives every day.

About the reviewer
Amit Navgire is a computer science postgraduate, a Microsoft Certified Trainer, and
a Microsoft Certified Azure Data Engineer. He currently works as a data architect
and brings with him 13+ years of extensive experience in designing, architecting, and
implementing enterprise-scale data warehouse solutions using Azure, SQL Server,
MSBI, and so on. He is quite popular in the world of Azure training, with more than
25,000 students enrolled in his courses, which are published on various online platforms,
including Udemy and Coursera, as well as on his website.

About the contributor
Saranya Ravichander is a senior cloud solution architect at Microsoft and also a
Microsoft Certified Trainer. She has been working on the Microsoft technology stack for
more than 10 years, with a large part of this time devoted to Microsoft Azure, focusing on
designing, architecting, and implementing enterprise-scale application development and
DevOps workloads.

Table of Contents
Preface

Section 1: The basics and key concepts

1
Introduction to Azure Synapse

Technical requirements� 4
Introducing the components of
Azure Synapse� 4
Creating a Synapse workspace� 5

Understanding Azure Data Lake� 12
Exploring Synapse Studio� 15
Summary� 20

2
Considerations for your compute environment

Technical requirements� 22
Introducing SQL Pool� 22
Creating a SQL pool� 22
Understanding Synapse SQL Pool
architecture and components� 29
Examining DWUs� 31
Understanding distributions in
Synapse SQL Pool� 33
Understanding partitions in Synapse
SQL Pool� 37
Using temporary tables in Synapse
SQL Pool� 39
Discovering the benefits of Synapse
SQL Pool� 40

Understanding Synapse SQL on-
demand� 41
SQL on-demand architecture and
components� 41
Learning about the benefits of
Synapse SQL
on-demand� 44

Understanding Spark pool� 44
Spark pool architecture and components�45
Creating a Synapse Spark pool� 47
Learning about the benefits of a
Synapse Spark pool� 51

Summary� 52

ii Table of Contents

Section 2: Data Ingestion and Orchestration

3
Bringing your data to Azure Synapse

Technical requirements� 56
Using Synapse pipelines to
import data� 57
Bringing data to your Synapse
SQL pool using Copy Data tool� 58
Using Azure Data Factory to
import data� 72
Using SQL Server Integration
Services to import data� 81

Using a COPY statement to
import data� 89
Loading data from a public storage
account� 90
Loading data from a private storage
account using an SAS token� 91
Using authentication mechanisms� 94

Summary� 95

4
Using Synapse pipelines to orchestrate your data

Technical requirements� 98
Introducing Synapse pipelines� 99
Integration runtime� 100
Activities� 101
Pipelines� 102
Triggers� 102

Creating linked services� 106
Defining source and target

datasets� 109
Using various activities in
Synapse pipelines� 113
Scheduling Synapse pipelines� 120
Creating pipelines using
samples� 124
Summary� 127

5
Using Synapse Link with Azure Cosmos DB

Technical requirements� 130
Enabling the analytical store in
Cosmos DB� 130
Data storage� 132
Transactional store� 133
Analytical store� 134

Querying the Cosmos DB
analytical store� 135
Querying with Azure Synapse Spark� 135
Querying with Azure Synapse SQL
Serverless� 141

Summary� 144

Table of Contents iii

Section 3: Azure Synapse for Data Scientists
and Business Analysts

6
Working with T-SQL in Azure Synapse

Technical requirements� 148
Supporting T-SQL language
elements in a Synapse SQL pool�148
CTEs� 149
SELECT – OVER clause� 150
Using dynamic SQL in Synapse SQL� 154
Learning GROUP BY options in Synapse
SQL� 155
Using T-SQL loops in Synapse SQL� 157

Creating stored procedures and
views in Synapse SQL� 158
Stored procedures� 158

Views� 162

Optimizing transactions in
Synapse SQL� 163
Supporting system views in a
Synapse SQL pool� 166
Using T-SQL queries on semi-
structured and unstructured
data� 168
Reading Parquet files� 168
Reading JSON documents� 169
External tables� 173

Summary� 176

7
Working with R, Python, Scala, .NET, and Spark SQL in
Azure Synapse

Technical requirements� 178
Using Azure Open Datasets� 179
Using sample scripts� 185
PySpark (Python)� 186

Spark (Scala)� 190
.NET Spark (C#)� 192
Spark SQL � 194

Summary� 198

8
Integrating a Power BI workspace with Azure Synapse

Technical requirements� 200
Connecting to a Power BI
workspace� 200

Creating your own dashboard
on Azure Synapse� 203
Creating new Power BI datasets� 203
Creating Power BI reports� 209

iv Table of Contents

Connecting Azure Synapse data
to Power BI Desktop� 211
Connecting to a Synapse-dedicated
SQL pool� 214

Connecting to a Synapse serverless
SQL pool� 216

Summary� 220

9
Perform real-time analytics on streaming data

Technical requirements� 222
Understanding various
architecture and components� 222
Bringing data to Azure Synapse� 225
Using Azure Stream Analytics� 225
Using Azure Databricks� 229

Implementation of real-time

analytics on streaming data� 231
Ingesting data to Cosmos DB� 232
Accessing data from the Azure Cosmos
DB analytical store in Azure Synapse� 234
Loading data to a Spark DataFrame� 236
Creating visualizations� 236

Summary� 240

10
Generate powerful insights on Azure Synapse using Azure ML

Technical requirements� 242
Preparing the environment� 242
Creating a Text Analytics resource in
the Azure portal� 243
Creating an Anomaly Detector
resource in the
Azure portal� 244
Creating an Azure key vault� 246

Creating an Azure ML linked
service in
Azure Synapse� 249

Machine learning capabilities in
Azure Synapse� 252
Data ingestion and orchestration� 253
Data preparation and exploration� 253
Training machine learning models� 255

Use cases with Cognitive
Services� 263
Sentiment analysis� 263
Anomaly detection� 265

Summary� 267

Table of Contents v

Section 4: Best practices

11
Performing backup and restore in Azure Synapse analytics

Technical requirements� 272
Creating restore points� 272
Automatic restore points� 272
User-defined restore points� 274

Geo-backups and disaster
recovery� 277

Geo-redundant restore through the
Azure portal� 278
Geo-redundant restore through
PowerShell� 279

Cross-subscription restore� 281
Summary� 281

12
Securing data on Azure Synapse

Implementing network security�284
Managed workspace virtual network� 284
Private endpoint for SQL on-demand� 287
IP firewall rules� 290
SQL authorization� 293
Azure Active Directory authorization� 295
Implementing RBAC in a Synapse SQL
pool� 296

Enabling threat protection� 300
Azure SQL auditing� 300
Azure Defender for SQL � 302

Understanding information
protection� 305
Summary� 306

13
Managing and monitoring Synapse workloads

Technical requirements� 308
Managing Synapse resources� 308
Analytics pools � 309
External connections � 315
Integration � 318
Security� 321
Source control� 326

Monitoring Synapse workloads� 329
Integration� 330

Activities� 330
Analytics pools� 331

Managing maintenance
schedules� 332
Creating alerts for Azure
Synapse Analytics� 334
Summary� 338

vi Table of Contents

14
Coding best practices

Technical requirements� 340
Implementing best practices for
a Synapse dedicated SQL pool� 340
Maintaining statistics� 340
Using correct distribution for your
tables� 342
Using partitioning� 342
Using an adequate column size� 344
Advantages of using a minimum
transaction size� 344
Using PolyBase to load data� 344
Reorganizing and rebuilding indexes� 345
Materialized views� 346
Using an appropriate resource class� 347

Implementing best practices for
a Synapse serverless SQL pool� 349
Selecting the region to create a
serverless SQL pool� 349
Files for querying� 349
Using CETAS to enhance query
performance� 350

Implementing best practices for
a Synapse Spark pool� 351
Configuring the Auto-pause setting � 351
Enhancing Apache Spark performance� 352

Summary� 357
Why subscribe?� 359

Other Books You May Enjoy
Index

Preface
Azure Synapse Analytics is an analytics platform offered by the Microsoft Azure cloud
platform. This book will help you understand the basic concepts of Azure Synapse and get
you familiar with how it works in practice, step by step. This book has been written in simple
language and with plenty of diagrams to make it easier for you to understand the concepts.

Each main topic has a whole chapter dedicated to it, such that even the minor concepts
are explained in detail. You just need to have a basic knowledge of SQL Data Warehouse
and Azure generally to follow the topics in this book.

To fully understand Azure Synapse, you need to understand a few other technologies as
well, such as Power BI, Azure Data Factory, and Azure Machine Learning. I have tried to
cover these services and how they are integrated together with Azure Synapse. Overall,
this book should leave anyone well equipped to start working on Azure's analytics
platform within a week.

Who this book is for
This book is a must-buy for anyone who works with Azure's data services. However,
anyone working with or studying big data will also find it helpful. AWS or Google data
architects will also find this book very helpful in terms of comparing Synapse with their
own big data analytics platforms. You need to have a basic knowledge of dedicated SQL
pool and be familiar with Azure to understand all the concepts in this book. Some of the
chapters are specific to data orchestration, Azure Machine Learning, and Power BI, so if
you have prior knowledge of these topics, it will be easier for you to learn all the concepts
covered in this book.

What this book covers
Chapter 1, Introduction to Azure Synapse, provides an overview of all the components that
make up the Synapse workspace: dedicated SQL pool, Spark pools, Synapse pipelines,
Azure Machine Learning, and Power BI. In this chapter, you will learn the basics of
Synapse and how to create your first Synapse workspace.

viii Preface

Chapter 2, Considerations for your compute environment, focuses on the compute
environments of Synapse. This chapter will focus mainly on dedicated SQL pool,
serverless SQL pools, and Spark pools. It will help you choose the correct environment for
your business problem.

Chapter 3, Bringing your data to Azure Synapse, covers multiple options to bring your data
from various sources to Azure Synapse. You will learn how to use different services to set
up a connection with Azure Synapse.

Chapter 4, Using Synapse pipelines to orchestrate your data, focuses on Synapse pipelines,
which are very similar to Azure Data Factory pipelines; however, you don't need to
create a separate Data Factory pipeline for orchestration. Instead, you can perform all the
operations you need to do directly within Synapse Studio.

Chapter 5, Using Synapse Link with Azure Cosmos DB, is where you will learn how you
can perform analytics operations directly on Cosmos DB data without moving data. This
chapter will help you understand how Synapse Link has reduced the total time required
for running an analytics operation on Cosmos DB data by removing the need for data
movement from Cosmos DB to Azure Synapse.

Chapter 6, Working with T-SQL in Azure Synapse, teaches you how to query data using
T-SQL on Azure Synapse. This chapter will cover the pre-requisites and provide the details
for sample data that can be used to perform some simple operations on Azure Synapse
using T-SQL.

Chapter 7, Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse, covers
how to query data using various coding languages on Azure Synapse. This chapter will
cover the pre-requisites and provide details on sample data that can be used to perform
simple operations on Azure Synapse using R, Python, Scala, .NET, and Spark SQL.

Chapter 8, Integrating a Power BI workspace with Azure Synapse, explores how to integrate
a Power BI workspace with Azure Synapse and how you can connect Azure Synapse data
to Power BI Desktop.

Chapter 9, Perform real-time analytics on streaming data, looks at how to perform real-
time analytics on streaming data. This chapter focuses on bringing streaming data to
Synapse and performing operations on this data using various languages.

Chapter 10, Generate powerful insights on Azure Synapse using Azure ML, shows you how
to integrate Azure Machine Learning with Azure Synapse. You will also learn how to use
different languages to pair Azure Machine Learning with Azure Synapse.

Preface ix

Chapter 11, Performing backup and restore in Azure Synapse analytics, is where you will
learn how to use backup and restore in Azure Synapse SQL pools. You will learn about
automatic and user-defined restore points. This chapter covers how a user can perform
cross-subscription restores and geo-redundant restores as well.

Chapter 12, Securing data on Azure Synapse, talks about how to secure customer data
on Azure Synapse. It is very important to understand how you can keep your data safe.
This chapter guides you on how you can enable all the best security measures in your
Synapse workspace.

Chapter 13, Managing and monitoring Synapse workloads, focuses on manageability and
monitoring resource utilization and query activity in Azure Synapse Analytics.

Chapter 14, Coding best practices, helps you to understand the best practices for
performance and management. In this chapter, you will also learn about the best practices
for dedicated SQL pools, serverless SQL pools, and Spark pools.

To get the most out of this book
Now let's look at the technical requirements for this book:

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Having the following pre-requisites will mean you can follow the book and understand
the concepts covered:

•	 You must have a basic knowledge of the Azure portal.

•	 It would be helpful if you had prior knowledge of SQL Data Warehouse, Azure Data
Factory, Power BI, and Azure Machine Learning.

•	 You should have an Azure subscription or access to any other subscription with
contributor-level access.

x Preface

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/packtPublishing/Limitless-Analytics-with-
Azure-Synapse/. In case there's an update to the code, it will be updated on the
existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

 https://static.packt-cdn.com/downloads/9781800205659_
ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "We will use the following T-SQL code to create a UserData table in
Synapse SQL."

A block of code is set as follows:

CREATE TABLE UserData (

 UserID INT,

 Name	 VARCHAR(200),

 EmailID VARCHAR(200),

 State VARCHAR(50),

 City VARCHAR(50)

)

https://github.com/packtPublishing/Limitless-Analytics-with-Azure-Synapse/
https://github.com/packtPublishing/Limitless-Analytics-with-Azure-Synapse/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800205659_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800205659_ColorImages.pdf

Preface xi

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ SubscriptionName="<YourSubscriptionName>"

$ ResourceGroupName="<YourResourceGroupName>"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For the Use existing data property under Data source, select Backup."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xii Preface

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Microsoft Intelligent Data Platform

Accelerate development Achieve agility Build on a trusted platform

Make your data management even more comprehensive and powerful with a single
platform for databases, analytics, and data governance. Learn about Microsoft
Intelligent Data Platform

 ● Azure databases: Choose among relational, NoSQL, and in-memory databases that span proprietary and
open-source engines. Fully managed databases automate configuring and managing availability, recovery,
backups, and data replication across regions, saving you time and money. Learn about data on Azure

 ● Cloud-scale analytics: Bring all your data together at any scale to deliver impactful insights to end users.
Build on that foundation with best-in-class machine learning tools for predictive insights using advanced
analytics. Gain real-time insights from live streaming events and IoT data. Learn about analytics on Azure

 ● Unified data governance: Manage and govern your on-premises, multicloud, and software as a service
data with Microsoft Purview. Easily create a holistic map of your data landscape with automated data
discovery, sensitive data classification, and end-to-end lineage. Learn about Microsoft Purview

Databases

Analytics

Build cloud-native applications or
modernize existing applications with
fully managed, flexible databases.

Analyze large volumes of data in near
real-time with no extract, transform,
and load (ETL) process—and no impact
on transactional workload performance.

Make it possible for anyone in your
organization—whether they’re a data
scientist, data analyst, or domain expert—
to explore, access, and analyze data.

Data
Governance

Microsoft
Intelligent

Data Platform

Microsoft Intelligent Data Platform is a leading cloud data platform that fully integrates databases,
analytics, and governance. As part of this unified platform, Azure Synapse Analytics brings data
integration, enterprise data warehousing, and big data analytics. Learn how Azure Synapse Analytics
works within Microsoft Intelligent Data to deliver insights and machine learning in an end-to-end solution.

Learn about Microsoft

Learn about data on Azure

Learn about analytics on Azure

Learn about Microsoft Purview

Intelligent Data Platform

https://www.microsoft.com/microsoft-cloud/solutions/intelligent-data-platform
https://azure.microsoft.com/solutions/databases/
https://azure.microsoft.com/solutions/big-data/
https://azure.microsoft.com/products/purview/
https://www.microsoft.com/microsoft-cloud/solutions/intelligent-data-platform

The objective of this section is to introduce you to the key concepts, download
supporting data, and introduce you to example scenarios.

This section comprises the following chapters:

•	 Chapter 1, Introduction to Azure Synapse

•	 Chapter 2, Considerations for your compute environment

Section 1:
The basics and

key concepts

1
Introduction to
Azure Synapse

Azure Synapse Analytics, formerly known as Azure SQL Data Warehouse, is not a mere
data warehouse anymore. Azure Synapse is an amalgamation of big data analytics with an
enterprise data warehouse. It provides two different types of compute environments for
different workloads: one is the SQL compute environment, which is called a SQL pool,
and the other one is the Spark compute environment, which is called a Spark pool. Now
developers can choose their compute environment as per their business needs. Azure
Synapse also provides a unified portal called Synapse Studio for developers that creates
a workspace for data preparation, data management, data exploration, data warehousing,
big data, and AI tasks.

This chapter covers an introduction to Azure Synapse and guides you on starting to
use Synapse Studio. You will learn how to create an Azure Synapse workspace and get
acquainted with the components of Azure Synapse. You can start using Synapse with the
sample data and queries provided in the Azure portal itself.

In this chapter, our topics will include the following:

•	 Introducing the components of Azure Synapse
•	 Creating a Synapse workspace
•	 Understanding Azure Data Lake
•	 Exploring Synapse Studio

4 Introduction to Azure Synapse

Technical requirements
In this chapter, you are going to learn how to create your first Synapse workspace in the
Azure portal. In order to do this, there are certain prerequisites before you start working
on Azure Synapse.

It would be beneficial to have basic knowledge of the Azure portal, as well as an
understanding of SQL and Spark. Knowledge of Azure Data Factory and Power BI would
be helpful but not essential.

You must have your own Azure subscription or access to an Azure subscription with
appropriate permissions. If you are new to Azure, you can go through the following link to
create a free Azure account: https://azure.microsoft.com/free/.

Once you have your Azure subscription created, you can proceed further with the main
topics of this chapter.

Introducing the components of Azure Synapse
Azure Synapse is a limitless analytics service on the Azure platform. It bundles together
data warehousing and big data analytics with deep integration of Azure Machine
Learning and Power BI. Azure Synapse brings together relational and non-relational data
and helps in querying files in the data lake without looking for any other service.

One of the best features that has been introduced with Azure Synapse is code-free data
orchestration where you can build ETL/ELT processes to bring data to Synapse from
various sources.

Important note
Synapse provides various layers of security for the data stored; however, you need
to follow the security guidelines to keep your data secured. For example, do not
expose the username and password in any publicly accessible place – you will
invite the biggest threat to your data by doing so. It is important to understand
that Azure gives you the power to secure your data, but it is in your hands to best
use that power.

What happens when we embrace a new technology in an organization?

We need to look out for a resource that already has knowledge of it, which brings extra
costs on top of the cost of the technical implementation. However, Azure Synapse
supports various programming languages, such as T-SQL, Python, Scala, Spark, SQL, and
.NET, making it easy for people who are already familiar with those languages to learn.
In this chapter, we will show a demo for T-SQL, but we will cover examples for other
languages in upcoming chapters.

https://azure.microsoft.com/free/

Creating a Synapse workspace 5

Figure 1.1 represents all the components of Azure Synapse and how all these components
are tied together within Synapse Analytics:

Figure 1.1 – The components of Azure Synapse

Figure 1.1 represents all components of Azure Synapse, which includes Analytics
runtimes, supported languages, form factors, data integration, and Power BI workspaces.
We will cover all these topics in upcoming chapters.

Important note
Although Azure Synapse is deeply integrated with Spark, Azure ML, and
Power BI, you do not need to pay for all these services. You will pay only for
the features/services that you use. If you are using an Azure Synapse workspace
only for enterprise data warehousing, you will be charged only for that. You can
find out complete pricing details in Microsoft's documentation: https://
azure.microsoft.com/pricing/details/synapse-
analytics/.

Creating a Synapse workspace
Synapse workspace provides an integrated console to manage, monitor, and administer
all the components and services of Azure Synapse Analytics. In order to get started with
Azure Synapse Analytics, we need to create an Azure Synapse workspace, which provides
an experience to access different features related to Azure Synapse Analytics.

https://azure.microsoft.com/pricing/details/synapse-analytics/
https://azure.microsoft.com/pricing/details/synapse-analytics/
https://azure.microsoft.com/pricing/details/synapse-analytics/

6 Introduction to Azure Synapse

You can create a Synapse workspace in the Azure portal just by providing some basic
details. Follow these steps to create your first Azure Synapse workspace:

1.	 Go to https://portal.azure.com and provide your credentials.

2.	 Click on Create a resource:

Figure 1.2 – Microsoft Azure (Preview) portal

3.	 Search for Azure Synapse using the search bar.

4.	 Select Azure Synapse Analytics (Workspaces preview) from the search drop-down
and click on Create:

Figure 1.3 – Azure Synapse Analytics page in Azure Marketplace

https://portal.azure.com

Creating a Synapse workspace 7

5.	 You need to provide basic details to create your Synapse Analytics workspace:

•	 Subscription: You need to select your subscription. If you have many subscriptions
in your Azure account, you need to select a specific one that you are going to use to
create a Synapse workspace.

Important note
All resources in a subscription are billed together.

•	 Resource group: A Resource group is a container that holds all the resources for
the solution, or only those resources that you want to manage under one group.
Select a Resource group for the Synapse workspace. If you do not already have
a Resource group created, click on Create new right below the text field for
Resource group:

Figure 1.4 – Highlighting the field to provide a Resource group name

8 Introduction to Azure Synapse

•	 Workspace name: Provide an appropriate name for the workspace that you are
going to create.

Important note
This name must be unique, so it is better to keep it specific to your team/
project.

•	 Region: You can see many options in the dropdown. Select the most appropriate
region for your Synapse Analytics workspace:

Figure 1.5 – Regions appearing in a drop-down list

•	 Select Data Lake Storage Gen2: This will be the primary storage account for the
workspace, holding catalog data and metadata associated with the workspace:

Creating a Synapse workspace 9

Figure 1.6 – Highlighting fields of Select Data Lake Storage Gen2

•	 Account name: You can select from the dropdown or you can create a new one.
Only Data Lake Gen2 accounts with a hierarchical namespace enabled will appear
in the dropdown. However, if you click on Create new, then it will create a Data
Lake Gen2 account with hierarchical namespace enabled.

Important note
A storage account name must be between 3 and 24 characters in length and use
numbers and lowercase letters only.

10 Introduction to Azure Synapse

•	 File system name: Again, you can select from the dropdown or you can create
a new one. To create a new file system name, click on Create new and provide an
appropriate name for it. A file system name must contain only lowercase letters,
numbers, or hyphens:

Figure 1.7 – Highlighting assignment of the Storage Blob Data Contributor role

6.	 Click on Security + networking to configure security options and networking
settings for your workspace, as shown in Figure 1.8.

Provide SQL administrator credentials that can be used for administrator access to
the workspace's SQL pools. We will talk about SQL pools in future chapters:

Creating a Synapse workspace 11

Figure 1.8 – Security + networking form for Azure Synapse

7.	 Click on Tags to provide a name-value pair to this resource.

8.	 Go to the next page to review the summary and click on Create after verifying all
the details on the summary page.

9.	 In your Azure Synapse workspace in the Azure portal, click Open Synapse Studio:

Figure 1.9 – Highlighting the link for launching Synapse Studio

12 Introduction to Azure Synapse

This deployment takes just a couple of minutes and creates a workspace that bundles
Synapse analytics, ETL, reporting, modeling, and analysis together under one umbrella.
Now you are ready to build your enterprise-level solution!

Understanding Azure Data Lake
A data lake is a storage repository that allows you to store your data in native format
without having to first structure the data at any scale.

Azure Data Lake Storage provides secure, scalable, cost-effective storage for big data
analytics. There are two generations of Azure Data Lake, Gen1 and Gen2; however,
we will focus on Gen2 only throughout this chapter. Azure Data Lake Gen2 converges
the capabilities of Azure Data Lake Gen1 with the capabilities of Azure Blob Storage
with the addition of a Hierarchical Namespace to Blob Storage. Because of Azure Blob
Storage's capabilities, you get a high availability/disaster recovery solutions for your data
lake at a low cost.

The new Azure Blob File System (ABFS) driver is available within Azure HDInsight,
Azure Databricks, and Azure Synapse Analytics, which can be used to access the data in
a similar way to Hadoop Distributed File System (HDFS).

To use Data Lake Storage Gen2's capabilities, you need to create a storage account that has
a hierarchical namespace. You can go through the following steps to create your Azure
Data Lake Storage Gen2 account:

1.	 Log in to the Azure portal: https://portal.azure.com.

2.	 Click on the + Create a Resource link and select Storage account from the list of all
available resources.

3.	 Select the Resource group where you want to create your storage account. If you
don't have a Resource group created, click on the Create new link below the
drop-down list.

4.	 Fill in the fields for Storage account name and Location.

5.	 Select Standard or Premium Performance as per your business need. If you are
new to Data Lake, then it would be better to begin with Standard.

6.	 Select an appropriate value for Account kind and Replication as per the business
need. Again, the recommendation would be to leave the default selected values in
these fields if you are performing this operation just for your learning purposes:

https://portal.azure.com

Understanding Azure Data Lake 13

Figure 1.10 – Creating Azure Data Lake Gen2 in Azure

7.	 For now, we can skip the Networking and Data protection tabs and move directly
to the Advanced tab.

14 Introduction to Azure Synapse

8.	 Click on the Enabled radio button for the Hierarchical namespace property under
the Advanced tab:

Figure 1.11 – Enabling Hierarchical namespace for Data Lake Storage Gen2 on the Advanced tab

Exploring Synapse Studio 15

9.	 Leave the default values for all other fields and click on Review + create.

10.	 After reviewing all the details, click on Create and your Azure Data Lake Gen2
account will be created in a couple of minutes.

Now that you have already created your Azure Data Lake Gen2 account, you can use this
account with Azure Synapse Analytics. We will learn how to read data from Data Lake in
later chapters, but for now, we will learn about Azure Synapse Studio, and how it provides
a unified experience when working with various resources under one roof.

Exploring Synapse Studio
Synapse Studio is a unified experience for data preparation, data management, data
warehousing, and big data analytics. Synapse Studio is a one-stop-shop for developers,
data engineers, data scientists, and report analysts.

Before we start exploring more about Synapse Studio, we should know how we can get to
Synapse Studio from the Azure portal. There are a couple of ways to navigate to Synapse
Studio, but for that, first we need to navigate to our Synapse workspace on the Azure portal.
In Figure 1.12, you can see Workspace web URL, which is highlighted. You can either click
on that URL or copy that URL and paste it in your browser to access Synapse Studio:

Figure 1.12 – Synapse workspace in the Azure portal highlighting the links
to access Synapse Studio

16 Introduction to Azure Synapse

Another simple approach is to just click on the Open Synapse Studio link under the
Getting started section of the Synapse workspace.

You will need to provide credentials to access Synapse Studio. After successful
authentication, you will see Synapse Studio opened in a new tab. You will find a direct link
to various hubs integrated in Synapse Studio:

Figure 1.13 – Synapse Studio Home page

As you can see in Figure 1.13, Synapse Studio has six different hubs. We will learn about all
these hubs in brief here:

•	 Home: The Home hub provides you with a direct link to ingest, explore, or visualize
your data. You can also access your recent resources without wasting your time
searching across all the resources available on your Synapse Studio. In fact, you can
click on the New button at the top of the Synapse Studio screen to create a new SQL
script, notebook, data flow, Apache Spark job definition, or pipeline. You do not
need to be worried about any of these if you are new to Azure Synapse; we are going
to cover all these topics in detail in other chapters:

Exploring Synapse Studio 17

Figure 1.14 – Synapse Studio highlighting the New button at the top of the screen

•	 Data: The Data hub provides a simple way to organize your workspace databases
and analytical stores for SQL as well as Spark. You can see two tabs in the Data
hub: one is Workspace, which shows your SQL and Spark databases created and
managed with your Azure Synapse workspace. The other tab is Linked, which
shows connected services such as Data Lake Gen2, operational stores in Azure
Cosmos DB, and so on:

Figure 1.15 – Data hub on Synapse Studio

18 Introduction to Azure Synapse

•	 Develop: The Develop hub contains your SQL scripts, notebooks, data flows, and
Spark job definitions. You can also find all your Power BI reports created in your
Power BI workspace if you have already connected your Power BI workspace with
the Synapse workspace. We will learn more about this in Chapter 8, Integrating
a Power BI workspace with Azure Synapse:

Figure 1.16 – Develop hub on Synapse Studio

•	 Integrate: You will find a lot of similarities between the Integrate hub of Synapse
Studio and Azure Data Factory if you are familiar with Azure Data Factory already.
You can create new data pipelines to perform one-time or scheduled data ingestion
from 90+ data sources. We will learn more about this in Chapter 4, Using Synapse
pipelines to orchestrate your data:

Exploring Synapse Studio 19

Figure 1.17 – Creating a pipeline in the Integrate hub of Synapse Studio

•	 Monitor: The Monitor hub enables you to see the statuses of all your Integration
resources, activities, and pools in one place:

Figure 1.18 – Monitor hub in Synapse Studio

20 Introduction to Azure Synapse

•	 Manage: From the Manage hub, you can manage your SQL pools, Spark pools,
linked services, triggers, and integration runtimes. The Manage hub also provides
you with the ability to manage access control and credentials for your Synapse
workspace. Recently, they added Git configuration to the Manage hub as well:

Figure 1.19 – Manage hub on Synapse Studio

In this section, we got an introduction to Synapse Studio, however, in the following
chapters, we are going to explore more about Synapse Studio.

Summary
In this chapter, we covered an introduction to Azure Synapse and how can you create
your first Azure Synapse workspace. After going through the sample scripts, you should
have a fairly good idea about how Azure Synapse Studio works, and some of the different
languages supported by Azure Synapse. We also discussed the differences between Azure
SQL Data Warehouse and Azure Synapse. You learned about pausing and resuming a SQL
pool, as well as automatic pausing of a Spark pool, which will save you some money if
implemented.

In the next chapter, we will begin to look at specific analytics runtimes you need to
understand and create your first Spark and SQL pool.

2
Considerations

for your compute
environment

This chapter covers the analytics runtimes available with Azure Synapse. You will learn
about the concepts of SQL Pool, SQL on-demand, and Spark pool. By the end of this
chapter, you will be able to decide which analytics runtime will be suitable for solving your
business problem.

SQL Pool and SQL on-demand are both part of the Structured Query Language (SQL)
engine, but they differ in terms of provisioning. When you create a SQL pool, you will
provision databases under a logical server in your subscription; this means you will be
paying for running the SQL engine all the time until SQL pool is paused. However,
SQL on-demand is created when you want to leverage the SQL engine for running your
workloads only for a short duration.

On the other hand, Spark pool works with the Apache Spark engine, deeply integrated
with Azure Synapse. This gives you the option to configure your Spark pool with just
a few clicks, along with an option to auto-pause after a certain time of being idle. We have
covered this information in detail in this chapter.

22 Considerations for your compute environment

In this chapter, our topics will include the following:

•	 Introducing SQL Pool

•	 Understanding Synapse SQL on-demand

•	 Understanding Spark pool

Technical requirements
In order to follow the instructions in the following sections, you need to have met certain
prerequisites before we proceed, outlined here:

•	 You need to have your Azure subscription, or access to any other subscription with
contributor-level access.

•	 You need to have your Synapse workspace on this subscription. You can follow
the instructions from Chapter 1, Introduction to Azure Synapse, to create your
Synapse workspace.

Introducing SQL Pool
SQL Pool uses a scale-out, node-based architecture with one control node and multiple
compute nodes for distributed computational processing. Control nodes are a single
point of contact for end users to interact with all compute nodes. The control node runs
the Massively Parallel Processing (MPP) engine, which passes an operation to multiple
compute nodes to do their work in parallel. MPP databases are optimized for analytical
workloads, such as aggregating and processing large datasets. In this type of architecture,
each compute node (which are also called processing units) works independently, with its
own operating system and dedicated memory.

In this section, you will learn about the architecture of SQL Pool, which will help you in
understanding data distribution across various nodes in SQL Pool. We will cover how to
create a SQL pool using both the Azure portal and Synapse Studio in the following section.

Creating a SQL pool
In this section, you will learn how to create a SQL pool in a Synapse workspace using the
Azure portal and Synapse Studio. You need to make sure that you have already created an
Azure Synapse workspace in your subscription.

Introducing SQL Pool 23

Using the Azure portal
First, let's look at how to set up the Azure portal. Follow these steps:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Navigate to the Synapse workspace by typing the service name (or resource name)
directly into the search bar, as highlighted in Figure 2.1:

Figure 2.1 – Azure portal – highlighting Synapse Workspace in the search bar

3.	 In the Synapse workspace, click on New SQL pool, as highlighted in Figure 2.2:

Figure 2.2 – Azure portal – highlighting the link to create a new SQL pool

https://portal.azure.com

24 Considerations for your compute environment

4.	 Provide an appropriate name for your SQL pool and select Data Warehouse Units
(DWUs) by sliding the Performance level bubble under the Basics tab. For the
purpose of adding some examples, I am using DW1000c, which will give me one
control node and six compute nodes, as highlighted in Figure 2.3:

Figure 2.3 – Form with configuration preferences to create a SQL pool in Azure Synapse

5.	 Next, you can go to Additional settings. However, you can leave this tab unchanged
and move to the next tab, Tags.

Important note
We will cover backup and restore in Chapter 11, Performing backup and restore
in Azure Synapse analytics.

6.	 You can provide an appropriate name-and-value pair if needed; otherwise, you can
leave this field empty for now and go to the Review + create tab. After reviewing all
the details, click on Create. You may need to wait a couple of minutes to start using
it. The process is illustrated in Figure 2.4:

Introducing SQL Pool 25

Figure 2.4 – Review + create page to create a SQL pool in Azure Synapse

Important note
You may need to add your client Internet Protocol (IP) address in the
Firewalls setting of the Azure Synapse workspace in order to connect to your
Synapse SQL pool using any client tool.

Similarly, we can create a Synapse-dedicated SQL pool using Synapse Studio.

Using Synapse Studio
Now, let's see how to use Synapse Studio. Follow these steps:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Navigate to the Synapse workspace by typing the service name (or resource name)
directly into the search bar.

https://portal.azure.com

26 Considerations for your compute environment

3.	 Click on the workspace where you want to create your SQL pool.

4.	 Click on Open Synapse Studio, as highlighted in Figure 2.5:

Figure 2.5 – Highlighting the link to launch Synapse Studio in Azure Synapse

5.	 Go to the Manage tab on the Synapse Studio home page, as highlighted in
Figure 2.6:

Figure 2.6 – Highlighting the Manage link on Synapse Studio home page

6.	 Click on the + New link under the SQL pools section to create a new SQL pool, as
highlighted in Figure 2.7:

Introducing SQL Pool 27

Figure 2.7 – Highlighting + New link to create a SQL pool in Azure Synapse Studio

7.	 Provide an appropriate name for your SQL pool, and select DWUs by sliding the
Performance level bubble under the Basics tab. As with the previous section, I am
using DW1000c, which will give me one control node and six compute nodes, as
illustrated in Figure 2.8:

Figure 2.8 – Form with configuration preferences to create a SQL pool in Azure Synapse

28 Considerations for your compute environment

8.	 Next, you can go to Additional settings. However, you can leave this tab
unchanged and move to the next tab, Tags.

9.	 You can provide the appropriate tags if needed, and go to the
Review + create tab.

10.	 After reviewing all the details, click on Create. You may need to wait a couple of
minutes to start using it. The process is illustrated in Figure 2.9:

Figure 2.9 – Reviewing Product details and terms from Review + Create tab before creating a SQL pool

That concludes our initial dive into SQL Pool. Next we will learn about the architecture
and components of Synapse SQL Pool.

Introducing SQL Pool 29

Understanding Synapse SQL Pool architecture and
components
The Synapse SQL Pool architecture has many components that work together to make
it a unique Azure resource. This architecture is the same as it used to be for SQL Data
Warehouse (SQL DW) and leverages an MPP engine to distribute computational
processing across multiple compute nodes.

Compute nodes are used for computational work on a cluster to execute any business
logic. The capacity of compute nodes is defined by the performance level of the SQL pool
that you can set while creating the SQL pool, or you can change the value after the pool
is created, as per the business demand. However, data is not stored on compute nodes in
the case of a SQL pool; instead, there are separate nodes to store data, which are called
storage nodes.

Compute nodes are separate from storage nodes, so you get the flexibility to scale your
compute up or down without impacting the storage of your data warehouse.

Figure 2.10 represents how all the components are tied together in Azure Synapse SQL
pool:

Figure 2.10 – Architecture of Synapse SQL pool

30 Considerations for your compute environment

Now that we have learned about the architecture, let's try learning about the following
components individually in brief:

•	 Control node: When an end user tries to run a Transact-SQL (T-SQL) query, the
control node utilizes each distribution to run these queries in parallel. When you
submit a query to a SQL pool, the control node leverages an MPP engine to run
these queries against each distribution in parallel. We will learn about distributions
further on in this chapter. There is only one control node associated with a SQL
pool under a logical server. All the applications and connections can only interact
with the control node; however, the control node interacts with all the compute
nodes via the MPP engine whenever needed.

•	 Compute node: Compute nodes are computers or machines that are used for
computational purposes. In an MPP architecture, various compute nodes run in
parallel to process a query faster. A SQL pool can have a maximum of 60 compute
nodes determined by the service level. Each compute node is identified by a unique
node ID that can be seen in the system views.

When you select DWUs to create a SQL pool or when you decide to change the
DWU, distributions are mapped to compute nodes accordingly.

•	 Data Movement Service (DMS): The DMS is a system-level internal service that
shuffles data across various nodes to run queries in parallel and return consolidated
results back to the MPP engine.

•	 Azure Storage: Synapse SQL stores your data in Azure Storage. When you
ingest your data to SQL Pool, data is sharded into distributions to optimize the
performance of the system. The sharding pattern can be defined while creating
the table. You can create or choose Azure Storage while creating your Synapse
workspace; however, only Data Lake Storage Gen2 accounts with Hierarchical
Name Space enabled are listed under the Storage Account dropdown. There are
various tools available to access Azure Storage; I like using Azure Storage Explorer.
You can connect to Azure Storage using access keys, a Shared Access Signature
(SAS) token, or via the login to your subscription.

You can use the following query to get a count of the control and compute nodes available
for your Synapse SQL pool:

SELECT * FROM sys.dm_pdw_nodes

GO

SELECT type,COUNT(1)

FROM sys.dm_pdw_nodes

GROUP BY type

Introducing SQL Pool 31

Figure 2.11 displays the count of control nodes and compute nodes available in my
Synapse SQL pool:

Figure 2.11 – Azure Data Studio showing the query results

You can decide how many compute nodes you need for your SQL pool by choosing DWUs
while creating your Synapse SQL pool. However, you can scale it later as well, based on
your business needs. So, let's try to understand a little more about DWUs.

Examining DWUs
When you purchase DWUs for SQL Pool, you basically purchase several analytical
resources bundled together, such as the Central Processing Unit (CPU), memory, and
Input/Output (I/O). You can change the DWUs even after creating a Synapse account.
However, distributions will remap to compute nodes after you change DWUs for your
Synapse account.

You can use the following query to view the current DWU setting:

SELECT db.name [Database]

, ds.edition [Edition]

, ds.service_objective [Service Objective]

FROM sys.database_service_objectives AS ds

JOIN sys.databases AS db ON ds.database_id = db.database_id

32 Considerations for your compute environment

You have already seen in the previous chapter how to select DWUs while creating your
Azure Synapse SQL pool. Many customers prefer to scale down their SQL pool when not
in use for cost savings, so it will be worth knowing how you can change DWUs in the
existing SQL pool.

Changing DWUs
You can change DWUs directly on in the Azure portal. The following steps will show you
how to change DWUs, but before you make any changes, you need to consider how this
change will have a direct impact on performance:

1.	 Go to portal.azure.com and provide your credentials to log in to your
Azure subscription.

This may ask you for Multi-Factor Authentication (MFA) if you have enabled MFA
for your subscription.

2.	 Go to your resource group and click on Azure Synapse workspace.

3.	 Click on SQL pool in the left blade. This will take you to a new window, as shown
in Figure 2.12. Click on Scale and slide the bubble to set it to your desired compute:

Figure 2.12 – Highlighting Scale link on Azure portal

http://portal.azure.com

Introducing SQL Pool 33

Many people tend to scale up the compute whenever they face performance issues in their
SQL pool. However, it is important to notice the table distribution type because it has
a major impact on your query performance.

Understanding distributions in Synapse SQL Pool
All queries from end users are handed over to compute nodes from control nodes
for parallel query execution. Each compute node can manage one or more
(maximum 60) distributions.

You can use the following Dynamic Management Views (DMVs) to know more about
your nodes and distributions:

SELECT distribution_id, pdw_node_id FROM sys.pdw_nodes_
partitions

GO

SELECT distribution_id,pdw_node_id FROM sys.pdw_distributions

GO

Each query from the end user gets divided into 60 parallel queries to be run on each
of the 60 distributions. If there is just one compute node, this node will manage all 60
distributions; however, if you have 60 compute nodes to run in parallel, each compute
node will manage one distribution.

34 Considerations for your compute environment

Figure 2.13 provides an example of distributions across various nodes if the performance
level of your SQL pool is 3,000 DWUs:

Figure 2.13 – Azure storage distributions Architecture for 3,000 DWUs

Now that we know how distributions play an important role in the architecture of a Synapse
SQL pool, it will be worth learning about the usage of different types of distributions.

Hash distributed tables
Large fact tables are the best candidates for hash distributed tables. A hash distributed
table uses a hash function to distribute table rows across the available compute nodes. This
type of distribution is created to minimize data movement across various distributions
because similar values tend to fall within the same distribution.

Tables that are more than 2 Gigabytes (GB) in size on disk and tables having more frequent
INSERT, UPDATE, and DELETE operations are the best candidates for hash distributions.

Introducing SQL Pool 35

The following code snippet provides an example of how to create a hash distributed table:

CREATE TABLE FactSales (

 SalesID INT IDENTITY(1, 1) NOT NULL,

 SalesDate DATETIME NOT NULL,

 SalesItemId INT,

 Description VARCHAR(500)

) WITH (CLUSTERED INDEX (SalesID), DISTRIBUTION =
HASH(SalesDate));

You cannot change a distribution once it has been created. If you wish to change
a distribution, you may need to create another table using the CREATE TABLE AS
SELECT (CTAS) command, as illustrated in the following code snippet:

CREATE TABLE [dbo].[FactSales_new]

WITH

(

 DISTRIBUTION = ROUND_ROBIN

 ,CLUSTERED COLUMNSTORE INDEX

)

AS

SELECT *

FROM [dbo].[FactSales];

When the table size is not very large, we can consider using round-robin distributed
tables instead of a hash distributed table. We will learn about round-robin tables in the
following section.

Round-robin distributed tables
The default distribution type for a table in SQL Pool is round-robin distribution, whereby
data is divided evenly across all the distributions. Similar records are not guaranteed to
fall within the same distribution, which slows down performance while retrieving records
across various nodes. Sometimes, rows need to be reshuffled when you perform joining
operations on round-robin distributed tables.

36 Considerations for your compute environment

The following is an example of how to create a round-robin distributed table:

CREATE TABLE DimSalesItem (

 SalesItemID INT IDENTITY(1, 1) NOT NULL,

 Description VARCHAR(500)

) WITH (CLUSTERED INDEX (SalesItemID), DISTRIBUTION = ROUND_
ROBIN);

If you use the following script to create a new table, it does not give you the flexibility
to choose the distribution type. However, it will create a ROUND_ROBIN distribution by
default, but you can use CTAS to define the distribution of the table data:

SELECT * INTO DimSalesItem_New FROM DimSalesItem

Temporary staging tables and tables with no obvious joining key are the best candidates
for ROUND_ROBIN distributed tables.

Replicated tables
Replicated tables must only be used for small dimension tables. This replicates the table
data across all distributions so that the data becomes local to each compute node and
accessibility becomes easier. There is no need to move the data across various compute
nodes for a running query, and this helps to return results very quickly. Small dimension
tables with a size less than 2 GB are the best candidates for replicated tables.

The following snippet shows the code used for creating replication distributed tables in
SQL Pool. You can use CTAS for this distribution type as well:

CREATE TABLE [dbo].[DimSalesRegion]

(

 RegionID INT IDENTITY(1,1) NOT NULL,

 Region VARCHAR(50) NOT NULL

)

 WITH (CLUSTERED COLUMNSTORE INDEX, DISTRIBUTION =
REPLICATE)

This code will help you to find data skew for a distributed table:

DBCC PDW_SHOWSPACEUSED('dbo.FactSales');

Introducing SQL Pool 37

When you are dealing with billions of records and your data tends to grow exponentially,
you may need to take a few extra measures to ensure good performance. You may
consider partitioning your data based on data volume and certain other circumstances.
The following topic will help you understand more about partitions in a SQL pool.

Understanding partitions in Synapse SQL Pool
Table partitions are used to create smaller groups of records within a table. Partitioning
not only helps to enhance the efficiency and performance of loading data but also benefits
data maintenance and query performance. Partitioning is supported on columnstore
indexes, clustered indexes, and heap indexes.

As we understand now that partitioning helps in various ways, we must be aware that
creating a table with too many partitions can affect performance in certain circumstances.

There is no defined set of rules for deciding the number of partitions in a table, but for
optimal compression and performance of clustered Columnstore tables, we need to have
a minimum of 1 million rows per distribution and partition. In order to understand
the concept of a clustered Columnstore index, it is recommended to have a look at the
following link: https://docs.microsoft.com/sql/relational-databases/
indexes/columnstore-indexes-overview.

A SQL pool proactively creates 60 distributions for each table, so adding a partition on
these tables will multifold the total number of data groupings. Keeping 1 million records
in mind, we need to have at least 60 million records in a table without any partition in
order to get optimal performance. However, if you have 10 partitions created on your
table, then you need to have a minimum of 60 distributions X 10 partitions X 1 million
records (that is, 600 million records) in order to gain better results.

Usually, partitions are created on the Date column so that data gets equally distributed
among all the partitions evenly as per the data loading date. However, you can choose
any other column as your partition key where data grouping could be helpful. It would
not be a good idea to create partitioning on unique key columns because you may end up
creating a large number of partitions, and that could possibly kill the query performance.

The following code snippet provides an example of using partitions along with
distributions:

CREATE TABLE [dbo].[FactSales] (

 [SalesID] int NOT NULL,

 [OrderDateKey] int NOT NULL,

 [CustomerKey] int NOT NULL,

 [PromotionKey] int NOT NULL,

https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-overview
https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-overview

38 Considerations for your compute environment

 [SalesOrderNumber] nvarchar(20) NOT NULL,

 [OrderQuantity] smallint NOT NULL,

 [UnitPrice] money NOT NULL,

 [SalesAmount] money NOT NULL

) WITH (

 CLUSTERED COLUMNSTORE INDEX,

 DISTRIBUTION = HASH([ProductKey]),

 PARTITION (

 [OrderDateKey] RANGE RIGHT FOR

 VALUES

 (

 20000101, 20010101, 20020101, 20030101,

 20040101, 20050101

)

)

);

Important note
If you are using a clustered Columnstore index in your table, it is
recommended to have a minimum of 1 million rows per distribution and
partition in order to get optimal compression and performance.

The following query will give you details about all the nodes, distributions, and partitions.
If you have not created any partitions manually, then there will be only one partition
created by default:

SELECT B.distribution_id,A.pdw_node_id,A.[type] AS node_type,A.
name AS node_name,C.partition_number,C.[rows] FROM sys.dm_
pdw_nodes A

LEFT JOIN sys.pdw_distributions B ON A.pdw_node_id=B.pdw_node_
id

LEFT JOIN sys.pdw_nodes_partitions C ON B.distribution_id=C.
distribution_id AND A.pdw_node_id=C.pdw_node_id

ORDER BY B.distribution_id

GO

Introducing SQL Pool 39

Figure 2.14 depicts Azure Data Studio displaying results for the preceding query on my
Synapse SQL pool:

Figure 2.14 – Azure Data Studio showing the result of the preceding query

The syntax of partitioning in Synapse SQL Pool is slightly different from SQL Server, as
partitioning functions and schemes are not used in Synapse SQL Pool in the same way
they are in SQL Server.

To conclude the subject of table partitioning, it's time to learn about temporary tables in
Synapse SQL pools. Synapse SQL allows you to create temporary tables as well, which you
may sometimes need in stored procedures for better performance. However, there are a
couple of differences from how you use them with SQL databases. Let's have a look at their
usage and implementation in Synapse SQL.

Using temporary tables in Synapse SQL Pool
In SQL Pool, temporary tables exist at the session level. In the SQL pool, temporary tables
are written on local rather than remote storage, resulting in better performance. In SQL
Pool, temporary tables can be created in the same way as in a SQL database; however, they
can also be created with a CTAS command, as illustrated in the following code snippet:

IF OBJECT_ID('tempdb..#tempFactSales') IS NOT NULL

BEGIN

 DROP TABLE #tempFactSales

END

GO

40 Considerations for your compute environment

CREATE TABLE #tempFactSales

WITH

(

 DISTRIBUTION = HASH([SalesID])

, HEAP

)

AS

(

SELECT SalesId,SalesItemId, Description

FROM FactSales

);

SELECT * FROM #tempFactSales

Important note
Global temporary tables are not yet supported in Synapse SQL.

Discovering the benefits of Synapse SQL Pool
The more you learn about Synapse SQL Pool, the more you will appreciate the features
that it includes. There are many benefits that we will discover throughout this book; here
are a few of them:

•	 It is easy to create a new SQL pool or scale your existing pool as per your
business needs.

•	 Storage is kept separate from compute, so you can scale your compute without
worrying about the storage. This gives you the flexibility to pause the compute when
not in use without losing your data when you resume the compute.

•	 On your Azure Synapse SQL pool system, demands can come from different
directions, such as Azure Databricks, Azure Data Factory, reporting layers, cube
refreshes, and custom apps.

Understanding Synapse SQL on-demand 41

•	 Synapse SQL pool uses columnar storage to store data in relational tables. Columnar
storage stores data by column (field), keeping all data associated with that column
together in memory. This format significantly helps in data compression, which
ultimately reduces data storage costs and improves query performance. They are
optimized to read data more efficiently.

•	 Synapse SQL supports T-SQL, so you do not need to learn any new language to
perform any sort of operation on your data. You will learn more about this in
Chapter 6, Working with T-SQL in Azure Synapse.

Now that we have learned various concepts around a dedicated SQL pool, it would be
worth taking a look at a serverless SQL pool in Synapse.

Understanding Synapse SQL on-demand
SQL on-demand is a serverless distributed data processing system that enables you
to analyze your big data faster. There is no need to set up infrastructure or maintain
a cluster to start using SQL on-demand, so you can start querying data as soon the
workspace is created.

In this section, we are going to talk about the architecture and components of Synapse
SQL on-demand, the benefits of using SQL on-demand, and how you can query files in
your Azure Storage accounts using SQL on-demand.

SQL on-demand architecture and components
SQL on-demand is serverless, so scaling automatically accommodates the resource
requirements for any query. The SQL on-demand architecture also has a control node,
a compute node, DMS, and Azure Storage, but it does not have an MPP engine; instead, it
uses a Distributed Query Processing (DQP) engine.

42 Considerations for your compute environment

The architecture, as illustrated in Figure 2.15, explains how a control node leverages
a DQP engine to distribute a query across various computes as per the requirement.
Compute nodes will reach out to the storage to fetch the required data as requested and
send it back to the control node:

Figure 2.15 – Architecture of SQL on-demand

Most of the components in the SQL on-demand architecture are the same as in SQL pool.
However, the functionalities are a little different. Let's go through all the components and
their roles in this architecture, as follows:

•	 Control node: The control node utilizes the DQP engine to split user queries into
smaller queries that will be executed on compute nodes. Each smaller chunk of
a query is called a distributed query unit.

•	 Compute node: In Synapse SQL on-demand, you do not have control over the
number of compute nodes through DWUs. In this case, compute nodes will
be made available as per the resource requirement. The data is stored in Azure
Storage, and the compute nodes run parallel queries against this data with the help
of DMS.

Understanding Synapse SQL on-demand 43

•	 Azure Storage: Synapse SQL leverages Azure Storage to keep your data safe,
irrespective of the analytics runtime that you choose for either SQL Pool or SQL
on-demand. Azure Synapse supports both Azure Blob Storage and Data Lake
Storage. You can create a Data Lake Storage Gen2 account just by enabling Data
Lake Storage Gen2 while filling in the form to create a storage account in the Azure
portal, as shown in Figure 2.16. With the SQL on-demand runtime, you can query
your files from the data lake in a read-only manner:

Figure 2.16 – Creating an Azure Storage Data Lake Gen2 account in the Azure portal

Important note
DMS works the same with SQL on-demand as with SQL Pool.

44 Considerations for your compute environment

Learning about the benefits of Synapse SQL
on-demand
Many customers who already have some sort of experience with Amazon Web Services
(AWS) ask whether Azure has any service that is similar to Athena. Now, we can tell them
that Azure has that feature available and, moreover, it is integrated with an Enterprise
Data Warehouse (EDW). There are many other benefits of using SQL on-demand, too.
You can see a few of them here:

•	 It is very easy to discover and explore data in various formats (Parquet,
Comma-Separated Values (CSV), and JavaScript Object Notation (JSON))
directly from your data lake.

•	 You can save money by using the compute only when required.

•	 There is no need to worry about infrastructure and managing clusters.

•	 You can easily explore and transform data in a simple, scalable, and performant
way using T-SQL, and save the results back in a data lake to be visualized further
through Power BI reports.

•	 You can build logical data warehouses by providing a relational abstraction on
raw data without moving it anywhere. This saves the overhead of additional data
ingestion steps and the cost of using Azure resources or any other tool for data
movement. However, more importantly, it saves a lot of time by avoiding data
movement and trying to keep it updated.

The following section outlines the concept of a Synapse Spark pool, and we will also learn
how the Spark pool architecture is different from the Synapse SQL pool architecture.

Understanding Spark pool
Apache Spark is a very fast unified analytics engine for big data and machine learning.

Synapse Spark Pool is one of Microsoft's implementations of Apache Spark in Azure.
Synapse Analytics workspace has a Spark engine built in, along with Notebook support.
Because Synapse Spark supports C#, we can write Spark .NET directly within notebooks.
You can also write your code in Python, Scala, C#, and SQL.

Understanding Spark pool 45

One Spark pool can be accessed by multiple users, but for every user, one new Spark
instance will be created. A Spark instance is also dependent on the Spark pool capacity: if
there is enough capacity in the pool to run multiple queries, the existing instance will be
able to process the job; otherwise, a new instance will be created to process the job.

Figure 2.17 displays different components of Apache Spark on Azure Synapse:

Figure 2.17 – Apache Spark in Azure Synapse Analytics

Let's try to dive into the architecture of Synapse Spark pool to understand how all the
components are integrated with each other within the Azure Synapse workspace.

Spark pool architecture and components
Apache Spark works on a master-slave architecture, with one master and multiple worker
nodes. During runtime, a Spark application maps to a single driver process and a set of
executors distributed across the multiple worker nodes in a cluster.

46 Considerations for your compute environment

Figure 2.18 showcases the different layers of communication within Apache Spark and
how worker nodes are interacting with the cluster manager in the Spark pool:

Figure 2.18 – Architecture of Apache Spark

Let's try to understand the different components of Apache Spark, as follows:

•	 Driver Program: The driver program is the heart of a Spark application and it is
responsible for maintaining information about the Spark application during its
lifetime, responding to a user's programming or input, and analyzing, distributing,
and scheduling work across the executors.

Understanding Spark pool 47

•	 SparkContext: SparkContext is the entry gate of Apache Spark. Most of the
functions that we might use in Spark—such as accumulators, broadcast variables,
parallelize, and so on—come from SparkContext. Spark applications run as
independent sets of processes on a cluster, coordinated by the driver program.
Generating SparkContext is the most important step of any Spark driver application.

•	 Cluster Manager (YARN): Yet Another Resource Negotiator (YARN) is one of
the cluster managers that control physical machines and allocate required resources
to Spark applications. The cluster manager in Synapse Spark is Apache Hadoop
YARN. YARN is mainly used to split up the functionalities of resource management
and job scheduling into separate daemons.

•	 Worker Node: Worker nodes execute tasks assigned by the cluster manager and
return them back to SparkContext.

•	 Executor: Executors are responsible for executing work in the form of tasks, as well
as for storing any data that you cache.

Creating and managing an Apache Spark cluster is a tedious job. However, Apache Spark's
implementation on Azure Synapse has made it very easy for users to create a Spark pool
and start using it without worrying about managing the cluster. Let's learn how to create
a Synapse Spark pool on Azure.

Creating a Synapse Spark pool
You can create your Synapse workspace without creating a Spark pool. However, you can
go to the Azure portal anytime to create a Spark pool on your Synapse workspace, but you
cannot create a Spark pool without already having a Synapse workspace.

Using the Azure portal
You can take the following steps to create your Spark pool, but don't forget to have all the
prerequisites in place, as mentioned at the beginning of this chapter:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Navigate to the Synapse workspace by typing the service name (or resource name)
directly into the search bar.

3.	 Click on the Synapse workspace where you want to create your Spark pool.

https://portal.azure.com

48 Considerations for your compute environment

4.	 Click on Apache Spark pools from the Synapse workspace blade in the
Azure portal and click on + New to create your Spark pool, as illustrated in
Figure 2.19:

Figure 2.19 – Synapse workspace blade – highlighting the link to create Spark pools

5.	 Under the Basics tab, you need to provide an appropriate name for your Apache
Spark pool; select the required Node size family option from the dropdown; keep
the Autoscale option set to Enabled or Disabled as per your business needs; and,
finally, choose the number of nodes required for your Spark pool.

Understanding Spark pool 49

After filling in all the required details, you can move to the Additional settings tab
by clicking the Next: Additional settings > button at the bottom of the screen, as
illustrated in Figure 2.20:

Figure 2.20 – Basics tab to create a Synapse Spark pool

Important note
If the Autoscale option is set to Enabled, your Apache Spark pool will
automatically scale up and down based on the amount of activity.

6.	 Under the Additional settings tab, you have the option to set the duration for idle
time before auto-pause kicks in. It is always better to keep it set to Enabled so that
you do not waste your money on unnecessary resource consumption.

So, I am going to keep it set to Enabled and set the Number of minutes idle
time to 30.

50 Considerations for your compute environment

7.	 You can install the required packages by uploading the environment configuration
file using the file selector in the Packages section of the page, as illustrated in
Figure 2.21:

Figure 2.21 – Additional settings tab to create a Synapse Spark pool

Understanding Spark pool 51

Important note
Apache Spark in Azure Synapse Analytics already has a full Anaconda install,
plus additional libraries that are included automatically when a Spark instance
starts up. However, you have the option to update existing or install new
libraries during or after pool creation.

8.	 Next, you can fill the Tag details on the next page, and finally, after reviewing all the
details, click on Create to create a Synapse Spark pool.

Now that you have learned how to create a Spark pool using the Azure portal, it will be
worth learning how to create a Spark pool on Synapse Studio itself so that you do not need
to go back to the Azure portal if you need to run a Spark application.

Using Synapse Studio
The following instructions will help you learn how to create a Synapse Spark pool using
Synapse Studio:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Navigate to the Synapse workspace by typing the service name (or resource name)
directly into the search bar.

3.	 Click on the workspace where you want to create your SQL pool.

4.	 Click on Launch Synapse Studio.

5.	 Go to the Manage tab on the Synapse Studio home page.

6.	 Click on the + New link under the Apache Spark pools section to create a new
SQL pool.

Next, you can follow the same instructions as mentioned in Steps 5 through 8 in the
previous section.

Learning about the benefits of a Synapse Spark pool
There are many advantages to using Apache Spark by itself. However, integration with
Azure Synapse Analytics adds even more value to Spark, including the following benefits:

•	 Spark comes packaged with higher-level libraries, including support for SQL
queries, streaming data, machine learning, and graph processing.

•	 Spark notebooks can be created not just in Python, Scala, and SQL but also in C#,
which is highly beneficial for C# developers.

https://portal.azure.com

52 Considerations for your compute environment

•	 It is just a matter of clicking to create and trigger a Spark job through pipelines.

•	 There is a simple Graphical User Interface (GUI) to configure a Spark pool
and notebooks.

•	 You can benefit from integration with IntelliJ IDEA to create Apache
Spark applications.

That concludes our second chapter.

Summary
In this chapter, we covered the concepts of Synapse SQL and Synapse Spark. After going
through this chapter, you have learned how to create your SQL pool, how to use SQL
on-demand, and how to use Spark pool, as well as learning how to change DWUs for your
SQL pool using both the Azure portal and Synapse Studio.

You can refer to other books to learn more about Apache Spark. In this chapter, we have
tried to cover the Apache Spark concepts that are most relevant to Synapse.

We have used Azure Data Studio in a couple of places, to give you an idea of how it works.
We will be seeing Azure Data Studio again, later on. I personally like to use Azure Data
Studio because it offers a very smooth SQL coding experience with built-in features such as
multiple tab windows, a rich SQL editor, code navigation, and source control integration.

In the next chapter, we are going to talk about various ways to bring your data to
Azure Synapse.

The objective of this section is to introduce you to the various ways of ingesting data to
or from Azure Synapse and orchestrating data using various transformation techniques
offered by Azure Synapse.

This section comprises the following chapters:

•	 Chapter 3, Bringing your data to Azure Synapse

•	 Chapter 4, Using Synapse pipelines to orchestrate your data

•	 Chapter 5, Using Synapse Link with Azure Cosmos DB

Section 2:
Data Ingestion and

Orchestration

3
Bringing your data

to Azure Synapse
Data has been the backbone of many top enterprises over the past few decades. Now, you
can bring your data from various sources to Azure Synapse through various means and
start analyzing your data immediately.

So far, you have learned about the Synapse workspace, as well as the architecture and
components of Synapse SQL and Synapse Spark. You can create your SQL or Spark pool on
Azure Synapse. So now, it's time to take the next step and bring your data to Azure Synapse.

The following topics will be the focus of this chapter, along with the various concepts that
you must be aware of before you decide which method to use:

•	 Using Synapse pipelines to import data

•	 Using Azure Data Factory to import data

•	 Using SQL Server Integration Services to import data

•	 Using a COPY statement to import data

56 Bringing your data to Azure Synapse

Technical requirements
To comply with the instructions in the following sections, there are a number of
prerequisites that need to be fulfilled before we proceed:

•	 You should have your Azure subscription, or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create your SQL pool and Spark pool on Azure Synapse. This has been covered in
Chapter 2, Consideration for your compute environment.

•	 You must have created a storage account or must have the requisite permission
to access Data Lake. You can go to the following link, https://azure.
microsoft.com/resources/videos/creating-your-first-adls-
gen2-data-lake/, to create a new storage account if you are creating one for the
first time.

•	 You must have SQL Server installed on your machine to follow this chapter. If
you do not have a SQL Server license, you can download the Developer Edition
of SQL Server from the following location, https://go.microsoft.com/
fwlink/?linkid=866662, to your local machine and follow the instructions
to install it.

•	 You should have Visual Studio installed on your machine along with the data tools
required to create an Integration Services project.

•	 You will also need to create a DimEmployee and UserData table in Synapse SQL.
You can copy the script from the following GitHub URL: http://bit.ly/
sql-chapter03.

Now that you have all the prerequisites in place, it's time to dive into multiple options for
bringing the data to Azure Synapse.

https://azure.microsoft.com/resources/videos/creating-your-first-adls-gen2-data-lake/
https://azure.microsoft.com/resources/videos/creating-your-first-adls-gen2-data-lake/
https://azure.microsoft.com/resources/videos/creating-your-first-adls-gen2-data-lake/
https://go.microsoft.com/fwlink/?linkid=866662
https://go.microsoft.com/fwlink/?linkid=866662
http://bit.ly/sql-chapter03
http://bit.ly/sql-chapter03

Using Synapse pipelines to import data 57

Using Synapse pipelines to import data
Data ingestion is one of the most critical aspects of data analytics, and there are many
tools available for data movement. The challenge is to decide which tool is more efficient
for your environment. In this section, we are going to show how can you use inbuilt
orchestration tools available in Synapse for data ingestion. There are two options available
under the Orchestrate tab: the first one is Pipeline, which can be used for data ingestion,
but also allows you to add transformation logic. The second option is to use Copy Data
tool, which gives you the option to only move data without implementing any data
transformation logic. So, in a nutshell, you can use Copy Data tool if you require a
pipeline just for data ingestion, but you have the option to use Pipeline if you need to add
business logic to your data.

Figure 3.1 shows the Integrate hub of Synapse Studio, where we are going to use the
Copy Data tool or Pipeline options to copy data from various sources to Azure Synapse
Analytics:

Figure 3.1 – Highlighting the links to create Synapse pipelines in Azure Synapse Studio

Let's now try to learn how to use Copy Data tool to bring data from our on-premises SQL
Server to a Synapse SQL pool.

58 Bringing your data to Azure Synapse

Bringing data to your Synapse SQL pool using
Copy Data tool
Copy Data tool makes it very easy to bring your data to Azure Synapse. This is not that
different to using the Copy activity of Azure Data Factory, except you do not have to spin
up another service for data ingestion in Azure Synapse. You need to make sure you have
applied all of the technical requirements before you start following these steps:

1.	 Click on Copy Data tool as highlighted in Figure 3.1. This will open a new window
where you need to provide the source and destination connection details.

2.	 Provide an appropriate name for your pipeline, along with a brief description.

3.	 You can choose to run this pipeline once only, or you can schedule it to run
regularly. For this example, we are going to schedule our pipeline to run on a
daily basis.

Click on Run regularly on schedule and select the Schedule trigger type.

4.	 Provide an appropriate value for Start Date (UTC). This is auto populated with
the current date and time by default, but you can change this value to any later date
and time.

5.	 Choose the trigger type as per your business requirements. Let's select Schedule for
this example.

6.	 Define Recurrence for this pipeline. You have the option to select the recurrence in
minutes or hours. We want to schedule this pipeline to run daily, so keep 24 hours
as the recurrence value.

7.	 I want this pipeline to run every day without any end date, so I have selected the No
End radio button for the End field. However, if you do need to set an end for your
pipeline, you can click on the On Date radio button:

Bringing data to your Synapse SQL pool using Copy Data tool 59

Figure 3.2 – Properties blade under Copy Data tool
After completing all the details on the Properties screen, click on Next to define
the source.

60 Bringing your data to Azure Synapse

8.	 On the next screen, you need to create a new connection for your data source. Click
on + Create new connection:

Figure 3.3 – Copy Data tool defining the source connection

9.	 In this section, we are going to use an on-premises SQL Server (SQL Server
installed on your local machine or on-premises server) as our data source, so let's
select SQL Server from the list of all the available sources. However, you can select
the source as per your business requirements.

Bringing data to your Synapse SQL pool using Copy Data tool 61

10.	 Search for and select the relevant data source and then click on Continue:

Figure 3.4 – Search results to create a linked service for the source

11.	 Now, you need to provide details to create a linked service for the data source. Give
a meaningful name to the linked service and add the description.

62 Bringing your data to Azure Synapse

12.	 Next, you need to set up an integration runtime to connect the pipeline to the
on-premises SQL Server. Integration runtime is the compute infrastructure used
by Azure Data Factory or Synapse pipelines to provide data movement, data
flow, activity dispatch, and SQL Server Integration Services (SSIS) package
execution capabilities across different network environments. There are two types
of integration runtimes, Self-Hosted and Azure integration runtimes. We will learn
about both options in Chapter 4, Using Synapse pipelines to orchestrate your data. In
this section, we are going to use the self-hosted integration runtime, which is mainly
used for running activities in an on-premises or private network. Click on +New:

Figure 3.5 – Creating a new linked service for the source in Azure Synapse Studio

13.	 Select Self-Hosted and then click on Continue. This will open a new form to
provide a name and description for the integration runtime:

Bringing data to your Synapse SQL pool using Copy Data tool 63

Figure 3.6 – Choosing the network environment of the data source in Integration runtime setup window

14.	 Provide a name and description under the Integration runtime setup window and
then click on Continue:

Figure 3.7 – Integration runtime setup window

64 Bringing your data to Azure Synapse

15.	 Next, you get the option to select the integration runtime setup. We are going to
select Option 2: Manual setup in this section. However, you can go with Option 1:
Express setup:

Figure 3.8 – Selecting desired options to set up the integration runtime

16.	 Click on the Download and install integration runtime link provided in option 2.
This link will take you to a new URL to download the integration runtime.

17.	 After downloading the file, double-click on the file to start the installation wizard on
your server. Follow the instructions on the wizard to complete the setup:

Bringing data to your Synapse SQL pool using Copy Data tool 65

Figure 3.9 – Microsoft Integration Runtime Setup Wizard

18.	 This setup process will take a couple of minutes before your integration runtime
setup is complete. After that, you can copy Key1 and Key2, as shown in Figure 3.8,
and paste them in the integration runtime window to complete the setup.

Important note
If you are following these instructions on a different machine from your source
server, you need to install the integration runtime on your source machine and
follow the further instructions.

66 Bringing your data to Azure Synapse

In Figure 3.10, an integration runtime can be seen running on a local machine
where we have pasted Key1, copied from the Synapse pipeline:

Figure 3.10 – Microsoft Integration Runtime Configuration Manager

19.	 Now, you can return to Copy Data tool to provide connection details for your
on-premises SQL Server. Fill in the information for Server name, Database name,
and credentials to access the database and then click on Create:

Bringing data to your Synapse SQL pool using Copy Data tool 67

Figure 3.11 – Server details to create a linked service

20.	 Click on Next to go to the next screen.

21.	 Select a table/view to copy the data from the dropdown or you can use your custom
query and click on Next:

Figure 3.12 – EXISTING TABLES tab in dataset window

68 Bringing your data to Azure Synapse

22.	 On the next screen, you get the option to add a filter to your dataset, but we will
skip this step and move to the next step to define the connection for the target:

Figure 3.13 – Options to apply a filter to your data source

23.	 Now, you need to create linked services for the target. Search for Synapse in the
search bar, select Synapse Analytics from the results, and then click on Next.

Important note
Make sure that you already have a SQL pool created in Azure Synapse and
that you have the table schema already created in that pool before you proceed
to the following step. You can go through Chapter 2, Considerations for your
compute environment, to learn how to create a SQL pool.

24.	 Provide the SQL pool details of your version of Azure Synapse, along with the
server name, database name, username, and password. After filling in the details,
click on Create, as shown in Figure 3.14:

Bringing data to your Synapse SQL pool using Copy Data tool 69

Important note
You can use Azure Key Vault to provide a password instead of entering the
password directly here. Instead of using SQL authentication, you have two
more options available: – Managed Identity and Service Principal. You can
choose either of these options as per your business requirements.

Figure 3.14 – Creating a linked service for AzureSynapseSQLPool

70 Bringing your data to Azure Synapse

25.	 Click on Next to define a table mapping between the source and target. If you do not
have a table available on your target, you can click on the Auto-create a destination
table with the source schema link and then click on Next for column mapping:

Figure 3.15 – Screen to define a table mapping between the source and target

26.	 Map all the columns from the source to the columns available at the destination. If
you have the same schema in both the source and destination, you will see that the
column mappings populate automatically.

Bringing data to your Synapse SQL pool using Copy Data tool 71

27.	 You can add type conversion settings and sink properties if your business demands
this. We will leave these fields without making any changes. However, we will talk
about these settings in Chapter 4, Using Synapse pipelines to orchestrate your data.
After filling in all the required details, click on Next:

Figure 3.16 – Defining column mappings and other settings for the destination dataset

72 Bringing your data to Azure Synapse

28.	 Click on the Bulk insert radio button under Performance settings, leave the other
fields as their default values, and then click on Next to go to the Summary page. We
will talk about other performance settings in detail in future chapters:

Figure 3.17 – Settings screen to select the Copy method

29.	 Review all the details on the Summary page and then click on Next to deploy your
pipeline. In a couple of minutes, your pipeline will be created, and you will be ready
to run the pipeline to bring your data to Synapse.

Although there is not much difference between Synapse pipelines and Data Factory
pipelines, it is still worth taking a peek at that option, too.

Using Azure Data Factory to import data
Data Factory pipelines and Synapse pipelines have almost identical features. The only
major difference lies in how you create your pipeline: you need to spin up another
resource in Azure if you want to use Data Factory for data ingestion, whereas you can
create pipelines within Synapse directly without leaving your Synapse workspace.

As we have already covered Copy Data tool in Synapse, which is exactly like Copy Data
tool in Data Factory, in this section, we will create a pipeline to bring the data to Synapse.
Make sure you have already satisfied all the prerequisites mentioned in the Technical
requirements section:

1.	 Log in to the Azure portal, at https://portal.azure.com.

https://portal.azure.com

Using Azure Data Factory to import data 73

2.	 Click on Create a resource on the Azure home page and search for Data Factory in
the Search Marketplace bar.

3.	 Select Data Factory from the search results and then click on Create.

4.	 Select the subscription and resource group where you want to create your
Data Factory.

5.	 Select a region for your Data Factory instance, provide an appropriate name for the
instance, and then select V2 for Version:

Figure 3.18 – The Create Data Factory Basics tab

6.	 Next, you can provide details regarding your Git configuration. However, let's skip
this part for this example. Click on the checkbox for Configure Git later under the
Git configuration tab.

74 Bringing your data to Azure Synapse

7.	 So, click on Review + create to review the details and then click on Create. This will
take couple of seconds while your Data Factory instance is created:

Figure 3.19 – Data Factory instance on the Azure portal

8.	 Click on Author + Monitor. This will take you to a new window that looks like
Synapse Studio.

9.	 Now, click on the Create pipeline link to create factory resources and activities:

Figure 3.20 – Getting started with Azure Data Factory

Using Azure Data Factory to import data 75

10.	 Provide an appropriate name for the pipeline under the Properties tab appearing on
the right-hand side of the window.

11.	 Expand the Move & transform toggle under the Activities section and drag the
Copy data activity to the canvas.

12.	 Click on the Copy data activity on your canvas and go to the General tab right below
the canvas. Change the name to CopyActivityDataLakeToSynapseSQL. You
can leave the other values as their default settings for now under the General tab:

Figure 3.21 – Pipeline for copying data from Azure Storage Data Lake Gen2 to Synapse SQL

13.	 Click on the Source tab next to General and select the source dataset if you already
have one. Otherwise, click on +New to create a new linked service for your source
dataset. Do not forget to click on Publish All to save your changes.

14.	 Select Azure Data Lake Storage Gen2 from the list of available data stores under
the New dataset pane and then click on Continue.

76 Bringing your data to Azure Synapse

15.	 You can see multiple options to select a format for your data source. We are going
to select Parquet for this example. Parquet is an open source columnar storage
format of the Apache Hadoop ecosystem. Click on Continue after selecting the
format as per your requirements:

Figure 3.22 – Options to select the format for the file available on Azure Date Lake Storage Gen2

Using Azure Data Factory to import data 77

16.	 Provide an appropriate name for your dataset and select the linked service from the
dropdown if you have already created it, otherwise create a new linked service by
clicking on +New, which appears in the linked services drop-down list:

Figure 3.23 – Creating a new linked service for Azure Data Lake Storage Gen2

17.	 Select the storage account from the dropdown. However, if your storage account is
not in the same subscription as your data factory, select the Enter manually radio
button to enter the details manually for the storage account.

After filling in the details, click on Create.

78 Bringing your data to Azure Synapse

18.	 On the next screen, define the file path either by entering the directory and filename
manually, or by clicking on the folder to select your file. In this example, select the
demoparquetfiles container. Click on OK after defining the file path:

Figure 3.24 – Defining the file path for the data source

19.	 When you return to the Data Factory canvas, make sure that the Recursively
checkbox under the Source tab is checked if you want to copy the data from all the
files available on the selected file path. However, you can uncheck this box if you
want to copy data from just one file:

Figure 3.25 – Source tab in Data Factory

Using Azure Data Factory to import data 79

20.	 After coming back to the Data Factory canvas, select Wildcard file path for
File path type.

21.	 Now that you have defined the source in your pipeline, it's time to define Sink.
Click on the Sink tab next to Source.

22.	 Click on +New to create the sink dataset. Select Azure Synapse Analytics from the
list of all available data stores in the New dataset window and then click on Continue.

23.	 Click on +New from the drop-down list for Linked service.

24.	 Provide an appropriate name for your destination linked service, and then select the
Server name and Database name values from the dropdown if Synapse SQL is in
the same subscription. Otherwise, you can enter these details manually by selecting
the Enter manually radio button.

25.	 Provide a username and password to access the server and then click on Create.

26.	 Select a table name from the dropdown and then click on OK:

Figure 3.26 – Selecting a table name in the Azure Synapse SQL pool

80 Bringing your data to Azure Synapse

27.	 Make sure you have selected Bulk insert for Copy method in the Sink tab. Instead
of using the Bulk insert option, we can also use PolyBase. If the data is stored in
Azure Blob storage or Azure Data Lake Storage, we can access this data directly
using PolyBase technology via the T-SQL language:

Figure 3.27 – Sink tab in the Data Factory pipeline

28.	 Now your pipeline is created and ready to run, click on Add trigger and then select the
Trigger now option to run the pipeline to ingest the records to the Synapse SQL pool:

Figure 3.28 – Triggering the option to run the pipeline

Using SQL Server Integration Services to import data 81

You can run the following SQL query to view the results in Synapse Studio. Make
sure you are connected to the correct server and database while running this query
in Synapse Studio:

SELECT * FROM dbo.UserData

This should produce the following result:

Figure 3.29 – Results of the SELECT * FROM dbo.UserData query in Synapse Studio

Data Factory and Synapse pipelines are both Azure services where you do not require any
tool on your local machine or server. However, you also have the option to use an SSIS
tool for bringing data to Azure Synapse. You get integration services along with the SQL
Server license, so, if you already have a SQL Server license, you are all set to create an
integration services project in Visual Studio for your ETL operation.

Using SQL Server Integration Services to
import data
SSIS is an ETL tool that is used for data ingestion and orchestration purposes. This tool
comes with the SQL Server license, so, if you already have a SQL Server license, you may
want to use SSIS as your ETL tool instead of spending money on any other ETL services.
However, it is important to understand the pros and cons of using the SSIS package instead
of using an Azure PaaS service such as Data Factory.

82 Bringing your data to Azure Synapse

So far, we have covered Synapse pipelines and Data Factory, and now it's time to learn
how to bring data to Azure Synapse using SQL Server Integration Services. Follow these
steps to create your SSIS package in Visual Studio:

1.	 Launch Visual Studio and create a new Integration Services project in Visual Studio.

2.	 Enter the project name and provide a file location for saving SSIS packages.

3.	 Add Data Flow Task from the SSIS Toolbox to the canvas.

4.	 Go to the Connection Managers window and right-click to select New OLE
DB Connection...:

Figure 3.30 – Creating a new connection in Connection Managers of the integration services project

5.	 Click on New in the Configure OLE DB Connection Manager window.

6.	 Provide the server name of your source dataset and enter your credentials
(Username and Password) to access the server.

7.	 Select or enter a database name in the respective field.

8.	 Click on Test Connection before clicking on OK:

Using SQL Server Integration Services to import data 83

Figure 3.31 – Creating a connection for SQL Server using OLE DB Connection Manager

9.	 Similarly, now we will create a new connection for a Synapse SQL pool. Right-click
on the Connection Managers window and select New OLE DB Connection...
once again.

10.	 Click on New in the Configure OLE DB Connection Manager window.

11.	 Enter the server name of your Synapse SQL pool. You can find server information
in the Azure portal.

Go to your Synapse workspace overview page in the Azure portal, copy the SQL
endpoint field, and then paste it into the Server name field in OLE DB Connection
Manager in the integration services project.

84 Bringing your data to Azure Synapse

12.	 Enter your credentials to access the Synapse workspace and then click on OK after
clicking on Test Connection:

Figure 3.32 – Creating a connection for the Synapse SQL pool using OLE DB Connection Manager

13.	 Double-click on Data Flow Task on the canvas to go to the Data flow tab.

Using SQL Server Integration Services to import data 85

14.	 Drag OLE DB Source from the SSIS Toolbox to the canvas and double-click on it to
open the OLE DB Source Editor window:

15.	 Select the OLE DB connection manager from the dropdown for your source and
provide the name of the table or the view. In this example, we are trying to copy
data from the dbo.DimEmployee table:

Figure 3.33 – OLE DB Source Editor to select the source table/view from the SQL server

86 Bringing your data to Azure Synapse

16.	 Click on Preview... to validate the data and then click on Columns to check
whether all the required columns are available in the source. Next, click on OK to
save the changes:

Figure 3.34 – OLE DB Source Editor displaying columns from the source table

17.	 Drag OLE DB Destination from the SSIS Toolbox to the canvas and join the
precedence constraint from OLE DB Source to OLE DB Destination:

Using SQL Server Integration Services to import data 87

Figure 3.35 – Precedence constraint connecting the destination and source

18.	 Double-click on OLE DB Destination to open the Editor dialog box.

19.	 Select the appropriate OLE DB connection manager for the Synapse SLQ pool from
the dropdown and select the target table name.

In this example, I want to keep the identity and don't want to check the constraints.
However, this will not be the case in most practical scenarios:

Figure 3.36 – OLE DB Destination Editor for selecting a target table from the Synapse SQL pool

88 Bringing your data to Azure Synapse

20.	 Next, click on Mappings on the left-hand side of the dialog box to map the
columns. You can change the column mapping by changing the column name from
the Input Column drop-down list for that column. After defining the mappings,
click on OK to save your changes and return to the canvas:

Figure 3.37 – Column Mappings page under OLE DB Destination Editor
Now, your SSIS package is almost ready to be executed. Before you initiate
execution, make sure you have truncated all the records from your target table
because we used the same table as the target in the previous example.

Using a COPY statement to import data 89

21.	 Run the following command in Synapse Studio, and make sure your SQL script
notebook is connected to the correct database:

TRUNCATE TABLE dbo.DimEmployee

22.	 Go back to your SSIS package, right-click on Package.dtsx in Solution
Explorer, and then click on Execute Package:

Figure 3.38 – SSIS package with the Solution Explorer window displaying the
Execute Package link

You can view the results in Synapse Studio once the package has completed
execution by running the following query:

SELECT * FROM dbo.DimEmployee

So far, we have seen various tools that can be used for bringing the data from various
sources to Azure Synapse. However, you can bring the data just by executing a COPY
statement in Synapse SQL.

Using a COPY statement to import data
There are various ways in which to bring data from various sources to Azure Synapse SQL.
However, it is recommended that you use a COPY statement if your data is residing in an
Azure Storage account. The best part of following this technique is that you can copy the
data just by running a single T-SQL statement. The syntax for the COPY statement is very
simple, with a set of arguments to choose from. You can decide which argument you want
to use with your COPY statement.

90 Bringing your data to Azure Synapse

The following is the syntax that can be customized as per your business requirements to
bring the data from an external source to the Azure Synapse SQL pool:

COPY INTO [schema.]table_name

[(Column_list)]

FROM '<external_location>' [,...n]

WITH

 (

 [FILE_TYPE = {'CSV' | 'PARQUET' | 'ORC'}]

 [,FILE_FORMAT = EXTERNAL FILE FORMAT OBJECT]

 [,CREDENTIAL = (AZURE CREDENTIAL)]

 [,ERRORFILE = '[http(s)://storageaccount/container]/errorfile_
directory[/]]'

 [,ERRORFILE_CREDENTIAL = (AZURE CREDENTIAL)]

 [,MAXERRORS = max_errors]

 [,COMPRESSION = { 'Gzip' | 'DefaultCodec'| 'Snappy'}]

 [,FIELDQUOTE = 'string_delimiter']

 [,FIELDTERMINATOR = 'field_terminator']

 [,ROWTERMINATOR = 'row_terminator']

 [,FIRSTROW = first_row]

 [,DATEFORMAT = 'date_format']

 [,ENCODING = {'UTF8'|'UTF16'}]

 [,IDENTITY_INSERT = {'ON' | 'OFF'}]

)

The simplest use of this statement would be copying data from public storage without
defining any arguments.

Loading data from a public storage account
Run the following script to copy the data from an Azure Blob storage account to a
dbo.Trip table in a Synapse SQL pool:

COPY INTO [dbo].[UserData] FROM 'https://gen2synapsedemo.blob.
core.windows.net/democsvfiles/*.csv'

WITH (

 FILE_TYPE = 'CSV'

)

Using a COPY statement to import data 91

A public storage account can be accessed by anyone from anywhere if you are connected
to the public internet, but if your storage account is private, then you need access keys
to read the data from these storage accounts. We are going to learn about this in the
following section.

Loading data from a private storage account using an
SAS token
In order to access the data from a private storage account, we need to have a Shared
Access Signature (SAS) token. Perform the following steps to generate an SAS token for
your storage account:

1.	 Go to your storage account on the Azure portal.

2.	 Click on the Shared access signature link seen in the following screenshot:

Figure 3.39 – Generating an SAS for the storage account

3.	 Select Allowed services, Allowed resource types, and Allowed permissions
setting values. This selection will define the level of access to specific services on
the storage account.

92 Bringing your data to Azure Synapse

4.	 Select the start and expiry date/time for this key.

5.	 Leave the default values for the other fields and click on Generate SAS and
connection string to generate the keys, and copy the SAS token somewhere because
we are going to need it in this section; once you come out of this screen, you will not
be able to see these keys anymore:

Figure 3.40 – Copying an SAS token for the storage account

6.	 Run the following SQL script, along with all the applicable options best suited for your
business needs, to copy the data from Data Lake Gen2 to an Azure Synapse SQL pool:

COPY INTO TestTable (Col1 default 'myStringDefault' 1,
Col2 default 1 3)

FROM 'https://synapsedemoaccount.blob.core.windows.net/
myblobcontainer/folder1/'

WITH (

 FILE_TYPE = 'CSV',

 CREDENTIAL=(IDENTITY= 'Shared Access Signature',
SECRET='<Your_SAS_Token>'),

 FIELDQUOTE = '"',

 FIELDTERMINATOR=';',

 ROWTERMINATOR='0X0A',

Using a COPY statement to import data 93

 ENCODING = 'UTF8',

 DATEFORMAT = 'ymd',

 MAXERRORS = 10,

 ERRORFILE = '/errorsfolder',--path starting from the
storage container

 IDENTITY_INSERT = 'ON'

)

The code block mentions different properties. Let's try to understand these different
properties in the following bullets:

•	 FILE_TYPE: This attribute specifies the external data format, and it supports three
file types, namely, CSV, Parquet, or the Optimizer Row Columnar (ORC) format.

•	 CREDENTIAL: This attribute defines the authentication mechanism to access the
external storage account.

•	 FIELDQUOTE: This attribute is only applicable to CSV files and defines the quote
character (string delimiter) in the CSV files.

•	 FIELDTERMINATOR: Again, this is only applicable to CSV files. It specifies the field
terminator being used in CSV files.

•	 ROWTERMINATOR: This attribute also only applies to CSV files and it specifies the
row terminator that has been used in the CSV files.

•	 ENCODING: The default value for this attribute is UTF8, but you can change it to
UTF16. This specifies the data encoding standard for the files.

•	 DATEFORMAT: This specifies the date format for the date column. Permitted values
for this attribute are mdy, dmy, ymd, ydm, myd, and dym, where d stands for date, m
stands for month, and y stands for year.

•	 MAXERRORS: This specifies the maximum number of rejected rows allowed during
the load.

•	 ERRORFILE: This attribute is only applicable to CSV files and it is used to specify the
directory where the rejected rows and corresponding error files need to be written.

•	 IDENTITY_INSERT: If you want to use identity values in the imported data files
as an identity column, mark this attribute as ON, otherwise you need to specify the
OFF value for this attribute.

You are free to use Azure Blob storage and Azure Data Lake Gen2 as well as an external
source, but you need to be aware of the authentication mechanisms supported for different
file types in both varieties of storage.

94 Bringing your data to Azure Synapse

Using authentication mechanisms
There are primarily five types of authentication mechanisms that are supported by Azure
Synapse Analytics:

•	 Shared Access Signature: An SAS is a URI that allows you to specify the
permissions allowed for a storage account or the blob container. You can also
specify the life span of this key.

•	 Access Keys: This is similar to a basic authentication method, using your storage
account name and a key. Storage accounts come with a primary and secondary key.
These keys can be regenerated as you wish.

•	 Service Principal: This is an identity explicitly created in a tenant's Azure Active
Directory (AD). This identity can be applied to roles and access restrictions.

•	 Managed Service Identity: This is an identity that Azure creates for Azure services.
The user does not have the overhead of generating or rotating keys in this case. If a
service supports AD authentication, this identity can be used to authenticate.

•	 Azure Active Directory: A user within an Azure AD can authenticate themselves
wherever AD authentication is supported.

Each storage type has its own authentication mechanisms. The following diagram
describes the authentication mechanism supported by different types of files on Azure
Blob storage and Azure Data Lake Gen2:

Figure 3.41 – Authentication mechanism supported by different types of files on different storage types

Now that we've covered authentication statements, let's recap the rest of the chapter.

Summary 95

Summary
In this chapter, we covered various ways to bring your data to Azure Synapse. We will
be using these techniques further in upcoming chapters as per your requirements. You
are the best person to decide which tool will be the best fit for your business, but it is
important to have an understanding of all of these tools before you bet on any of these
in particular.

In this chapter, we have covered data ingestion without any orchestration. However, in
the next chapter you will learn how to orchestrate your data in Azure Synapse by using
Synapse pipelines.

4
Using Synapse

pipelines to
orchestrate

your data
Bringing data to Synapse is definitely a first big step, but it's not the final destination. You
still need to cross many hurdles on the way before you start adding any flavor to your data.
A Synapse pipeline comprises datasets and activities, but the main advantage is that you
can reuse the same dataset with various pipelines. Synapse supports various data stores
and provides feasibility to transform your data without writing any code. In this chapter,
We will learn how to create Azure Synapse pipelines to orchestrate your data.

In this chapter, we will cover the following topics:

•	 Introducing Synapse pipelines

•	 Creating linked services

•	 Defining source and target datasets

98 Using Synapse pipelines to orchestrate your data

•	 Using various activities in Synapse pipelines

•	 Scheduling Synapse pipelines

•	 Creating pipelines using samples

Technical requirements
Before you start orchestrating your data, certain prerequisites apply, as outlined here:

•	 You should have an Azure subscription, or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a Structured Query Language (SQL) pool and a Spark pool on
Azure Synapse. This was covered in Chapter 2, Considerations for your
compute environment.

•	 You must have an Azure Data Lake Storage Gen2 account with two containers,
demozipfiles-ch04 and demozipfilestating-ch04, with read/write
permissions.

•	 Download the sample zipped files from http://bit.ly/ch04-
prerequisites and extract the ZIP files to get two zipped files,
SampleUserData09262020.zip and SampleUserData09272020.zip.

•	 Upload these two zipped files to the demozipfiles-ch04 container in your
Azure Data Lake Storage Gen2 account.

•	 Create a UserData table in your SQL pool, where your data is going to
eventually land.

We will use the following Transact-SQL (T-SQL) code to create a UserData table in
Synapse SQL:

CREATE TABLE UserData (

 UserID INT,

 Name VARCHAR(200),

 EmailID VARCHAR(200),

 State VARCHAR(50),

 City VARCHAR(50)

)

http://bit.ly/ch04-prerequisites
http://bit.ly/ch04-prerequisites

Introducing Synapse pipelines 99

There are various steps to take before you can create a Synapse pipeline, and the first one is
to create linked services for your source and target.

Let's understand what a linked service is and how can we create one in Azure Synapse.

Introducing Synapse pipelines
Synapse pipelines are used to perform Extract, Transform, and Load (ETL) operations
on data. This service is similar to Azure Data Factory, but these pipelines can be created
within Synapse Studio itself. In this section, we are going to learn how to create a pipeline
for copying data from different sources to Azure Synapse Analytics. We will also see how
we can use multiple activities within the same pipeline and create dependency endpoints
to connect one activity with another activity in the pipeline.

Figure 4.1 shows a Copy data activity in a Synapse pipeline:

Figure 4.1 – Synapse pipeline in Synapse Studio

These pipelines comprise various components, and we are going to learn about these
components in brief in the following sections.

100 Using Synapse pipelines to orchestrate your data

Integration runtime
An Integration Runtime (IR) is a compute infrastructure used by Azure Data Factory
or Synapse pipelines to provide data movement, data flow, activity dispatch, and SQL
Server Integration Services (SSIS) package execution capabilities across different
network environments. There are two types of IR: Self-Hosted and Azure, as shown in
Figure 4.2:

Figure 4.2 – Network environment options available to set up an IR

Let's begin with the self-hosted IR, which is used when you need to copy data from any
on-premises environment.

Self-hosted IR
A self-hosted IR is used for running data flows, data movement, and pipeline activities
in an on-premises or a private network. We need to install an IR on our on-premises
environment, either manually or automatically. If we choose Express setup, keys will be
automatically copied to the IR, and the IR is then ready to be used. However, if you choose
the Manual setup option, you need to copy the key from the Azure portal to the IR once
the installation is completed.

Figure 4.3 shows the primary and secondary keys required to complete the manual setup
of an IR:

Introducing Synapse pipelines 101

Figure 4.3 – Setting up a self-hosted IR on my computer

Now that we have learned how to install a self-hosted IR on our computer, let's try to learn
about an Azure IR.

Azure IR
An Azure IR provides a fully managed, serverless compute in Azure and does not require
infrastructure provisioning, software installation, patching, and so on. It is used for
running data flows, data movement, and pipeline activities in a fully managed, serverless
compute in Azure.

The following section provides a brief introduction to activities in a Synapse pipeline.

Activities
Activities are the most critical part of a Synapse pipeline, as they define actions that need
to be performed on your data. You can perform a simple copy operation by using a Copy
data activity on your data, however, you can also use a Data flow activity to perform
various transformations on your data.

102 Using Synapse pipelines to orchestrate your data

You are provided with options to perform operations by using Databricks notebooks,
HDInsight activities, machine learning activities, and much more. You can also perform
iterations and conditional operations by adding corresponding activities to your pipeline.

In the following section, we will learn more about using activities within a pipeline.

Pipelines
A Synapse pipeline can be created by using one or more activities, which can all be
connected to each other by dependency endpoints. By default, you get a Success endpoint,
but you can change this to Failure, Completion, or Skipped if required, as you can see in
Figure 4.4:

Figure 4.4 – Creating dependency endpoints for two activities in a Synapse pipeline

You can also loop through any activity by moving that activity inside an iteration activity
such as the ForEach or Until activities. We will go through an example in the Using
various activities in Synapse pipelines section, which will help you learn how to use
iteration activities with other activities.

Pipelines are scheduled by triggers, and we will learn about these in the following section.

Triggers
Azure Synapse pipelines can be triggered manually (on-demand) as and when required.
But practically, we need our pipelines to trigger automatically based on a certain event
that has occurred, or based on a certain date/time specified for the trigger to occur. In the
following sections, we are going to learn about different types of triggers supported by
Synapse pipelines.

Introducing Synapse pipelines 103

Schedule triggers
Schedule triggers are created when we want to run our pipeline by specifying a schedule
(start time, recurrence, end date, and so on). This is the default trigger that gets created
while setting up a new pipeline. As shown in Figure 4.5, we need to provide the details for
Start date, Time zone, and Recurrence, and you can also choose to provide a value for
End On by checking the Specify an end date checkbox:

Figure 4.5 – Creating a new schedule trigger for the pipeline

Although this is the most commonly used trigger for Synapse pipelines, we sometimes
need to use a tumbling window trigger as well. The following section outlines further
details about this particular type of trigger.

104 Using Synapse pipelines to orchestrate your data

Tumbling window triggers
Unlike schedule triggers, tumbling window triggers have a one-to-one relationship
with a pipeline. These triggers are fired at periodic time intervals from a specified start
time, while retaining their state. Tumbling window triggers are non-overlapping and are
triggered at contiguous time intervals. We can also set the dependency of one tumbling
window trigger on another trigger.

Figure 4.6 displays the properties needed to create a tumbling window trigger:

Figure 4.6 – Creating a tumbling window trigger on Synapse Studio

Schedule triggers can only be executed starting from the current time; however, tumbling
window triggers can be scheduled for windows in the past.

Introducing Synapse pipelines 105

In the following section, we are going to learn about one more type of trigger: a storage
events trigger.

Storage events triggers
Sometimes, we need to trigger pipelines based on events happening in a storage account,
such as the addition or deletion of files.

We need to provide details of the storage account and blob container in order to define
this trigger type. You are also provided with the option of selecting an event, as shown in
Figure 4.7:

Figure 4.7 – Creating a storage events trigger on Synapse Studio

106 Using Synapse pipelines to orchestrate your data

The following section outlines details about linked services, which are a vital component
for Azure Synapse pipelines.

Creating linked services
Linked services define the connection information needed for a Synapse pipeline to
connect to an external data source. These linked services are not specific to any pipeline,
but you can use the same linked service for multiple pipelines at the same time if they
share the same data source.

In this example, we are going to create a linked service for Azure SQL Database (which is
our data source), with Synapse as our target.

Before we proceed with the steps to create the linked service for the source and target,
make sure you have met all the technical requirements outlined at the start of this chapter.
Then, proceed as follows:

1.	 Launch Synapse Studio by clicking on the Synapse Studio link on the
Synapse workspace.

2.	 Click on Linked services under the Manage tab, and click on + New to create a new
linked service, as illustrated in Figure 4.8:

Figure 4.8 – Creating linked services in Azure Synapse

3.	 Select Azure Data Lake Storage Gen2 from the list of available data sources and
click on Continue, as illustrated in Figure 4.9:

Creating linked services 107

Figure 4.9 – Selecting Azure Data Lake Storage Gen2 to create a new linked service

4.	 Give a meaningful name to the linked service and add an appropriate description.

5.	 Select your storage account name from the dropdown if your storage account is in
the same subscription; otherwise, you can click on the Enter manually radio button
to provide the account details manually and then click on Create, as illustrated in
Figure 4.10:

Figure 4.10 – Providing connection details for Azure SQL Database

108 Using Synapse pipelines to orchestrate your data

6.	 After creating the linked service for the source, we will now create one for the target.
Once again, click on the + New link on the Linked services page in Synapse Studio.

7.	 Select Azure Synapse Analytics from the list of available data stores, and click
on Continue.

8.	 Provide the SQL pool details of your Azure Synapse server name, database name,
username, and password. Instead of filling in the values directly, we can also use
variables, using dynamic content. Go to https://docs.microsoft.com/
azure/data-factory/parameterize-linked-services to learn more
about using parameters in Synapse pipelines. After filling in the details, click on
Create, as illustrated in Figure 4.11:

Figure 4.11 – Creating a linked service for Synapse Analytics

In this section, we have covered just a couple of data stores; however, Synapse supports
various other ones. If you want to learn how to create a linked service for any data store,
you can follow the steps mentioned at this link: https://docs.microsoft.com/
azure/data-factory/connector-overview.

Now that you have created a linked service for your source and target, we will next create
a pipeline, and we will try to learn how to perform several activities to transform the data.

https://docs.microsoft.com/azure/data-factory/parameterize-linked-services
https://docs.microsoft.com/azure/data-factory/parameterize-linked-services
https://docs.microsoft.com/azure/data-factory/connector-overview
https://docs.microsoft.com/azure/data-factory/connector-overview

Defining source and target datasets 109

Defining source and target datasets
Datasets are created in a pipeline in order to identify data stored in various data sources
in different formats, such as tables, files, folders, documents, and so on. A dataset can be
used by multiple activities or pipelines.

Before we start adding some transformations onto the data, we should have the required
datasets in place. So, follow these instructions to create a dataset for the source:

1.	 Go to the Data tab in Synapse Studio and click on + on the Data canvas, as
highlighted in Figure 4.12:

Figure 4.12 – Creating a dataset in Synapse Studio

2.	 Select Integration dataset from the dropdown, and select the required data store
from the list of all available data stores appearing in the Integration dataset
window. In this example, we are going to select Azure Data Lake Storage Gen2 as
our data store, and then click on Continue.

110 Using Synapse pipelines to orchestrate your data

3.	 Select the DelimitedText format for your data from the list of all available options
and click on Continue, as illustrated in Figure 4.13:

Figure 4.13 – Selecting the format for the dataset

4.	 Provide an appropriate name for your dataset and select the corresponding linked
service from the dropdown.

5.	 Click on the small folder icon appearing right at the end of the File path field, select
the correct directory in which the file is stored, and click on OK, as illustrated in
Figure 4.14:

Defining source and target datasets 111

Figure 4.14 – Setting the properties for the source dataset

6.	 We are not yet done with the source dataset. Remember that our source files are
in ZIP format, so let's define an appropriate compression type in the dataset
properties. Select ZipDeflate from the drop-down list appearing from the
Compression type field and don't forget to click on the Publish all link to save all
your changes. The process is illustrated in Figure 4.15:

Figure 4.15 – Setting a compression type value for the source dataset

112 Using Synapse pipelines to orchestrate your data

7.	 Follow Steps 1 to 6 to create a staging dataset where all the unzipped files should be
landing. This is illustrated in Figure 4.16:

Figure 4.16 – Setting properties for the staging dataset

8.	 Now that we have already created a dataset for the source, we are going to create
a dataset event for the target. Click on the + icon on the Data canvas and select
Integration dataset once again from the drop-down list.

9.	 We are going to select Azure Synapse Analytics as our target, from the list of all
available data stores.

10.	 Select a linked service from the dropdown that you already created for the Azure
Synapse SQL pool.

11.	 Select a table name for where your data is supposed to land and click on OK. The
process is illustrated in the following screenshot:

Using various activities in Synapse pipelines 113

Figure 4.17 – Setting properties for the Azure Synapse SQL pool

After creating the datasets, it's time to create the pipeline and start adding transformations
to your source dataset.

Using various activities in Synapse pipelines
Synapse pipelines give you the option to add various transformations; however, we will try
to cover just a couple of transformations in this section. Proceed as follows:

1.	 Navigate to the Integrate tab on Synapse Studio and click on + to select Pipeline
out of the other available options, as illustrated in Figure 4.18:

Figure 4.18 – Creating a Synapse pipeline in Synapse Studio

114 Using Synapse pipelines to orchestrate your data

2.	 Fill in the name and description in the Properties window of the pipeline that you
created in the preceding step and click on Publish all to save the changes.

3.	 Let's add some activities to the canvas. We are going to select the Get Metadata
activity from the list of all available activities to begin with, as illustrated in
Figure 4.19:

Figure 4.19 – Adding the Get Metadata activity to the Synapse pipeline canvas

4.	 Provide a name for this activity in the General tab. We are going to enter
GetMetadataForZipFiles in the Name field so that it will be easy to identify
the activity. We are going to use this name in the ForEach activity, so please make a
note of this name.

5.	 Select the data source from the drop-down list and select Child Items in the
ARGUMENT section of the dataset.

6.	 You can enter values for Skip line count and Filter by last modified if you
require this information. However, I am leaving these fields blank as shown in
Figure 4.20.

Using various activities in Synapse pipelines 115

Figure 4.20 – Dataset property for the Get Metadata activity

7.	 Before we proceed further, click on the Debug button at this stage to validate that
this activity is running successfully. You can view the status in the Output window,
as highlighted in Figure 4.21:

Figure 4.21 – Successful status of the pipeline having the Get Metadata activity

116 Using Synapse pipelines to orchestrate your data

8.	 Next, we will iterate over all the files available in the source directory of the storage
account. So, we are going to pull a ForEach activity to the canvas and connect it
with the Get Metadata activity, as illustrated in Figure 4.22:

Figure 4.22 – Adding a ForEach activity to the canvas

9.	 Click on the ForEach activity on the canvas to set the properties. Provide an
appropriate name on the General tab.

10.	 Go to the Settings tab and click on the Items field. Then, click on the Add Dynamic
Content link, paste the following script, and click on Finish:

@activity('GetMetadataForZipFiles').output.childItems

In Figure 4.23, we add dynamic content to the Items field of the ForEach activity:

Using various activities in Synapse pipelines 117

Figure 4.23 – Adding dynamic content to the Items field of the ForEach activity

11.	 Double-click on the ForEach activity on the canvas to add a Copy data activity
within the ForEach activity.

12.	 Provide a name for the Copy data activity after you have added the Copy data
activity to the ForEach activity, as illustrated in Figure 4.24:

Figure 4.24 – Adding a Copy data activity in the ForEach activity

118 Using Synapse pipelines to orchestrate your data

13.	 Go to the Source tab of the Copy data activity and select the linked service for
Azure Data Lake Storage Gen2, where the ZIP files are residing.

14.	 Instead of providing the exact filename, we can use wildcards in the path to allow
you to collect all files of a certain type within the specified directory. Select the
Wildcard file path radio button for File path type, and click on the Add dynamic
content link for Wildcard file name to paste the following script:

item().name

15.	 Make sure that the Recursively field is checked and that the Preserve zip file name
as folder field is unchecked, as illustrated in Figure 4.25:

Figure 4.25 – Setting the properties for the source in the Copy data activity within the ForEach activity

16.	 Next, we are going to set the properties for Sink. Select the StagingDelimitedText
sink dataset from the Sink dataset drop-down list.

Using various activities in Synapse pipelines 119

17.	 Change the Copy behavior field to Flatten hierarchy, as shown in Figure 4.26.
This will enable us to copy all files residing within a different folder in the specified
source directory to one specified folder within the sink directory:

Figure 4.26 – Setting Sink properties for Copy activities in the ForEach activity

18.	 Click on Debug to run the pipeline—you can monitor the status in the
Output window.

19.	 After validating that your pipeline is working as expected so far, come back to the
main page where the Get Metadata and ForEach activities have been added, and
add the Copy activity to the canvas.

20.	 Provide a name for the CopyFromStagingBlobToSynapseSQL Copy activity
and join it with the ForEach activity.

21.	 This time, the source dataset for our Copy activity is going to be
StagingDelimitedText, and SinkSynapseSQL will be our sink dataset.

22.	 Make sure to select the Bulk Insert copy method under the Sink properties. This
method is used to import data in bulk from the data file.

23.	 Go to the Mapping section of the Copy activity and check that all the column
mappings from source to sink are correct. You can make any necessary changes here
if required; otherwise, we are good to go to publish our changes.

After completing your pipeline, we will next schedule the pipeline to run it at
regular intervals.

120 Using Synapse pipelines to orchestrate your data

Scheduling Synapse pipelines
Azure Synapse pipelines allow you to run your pipeline just once or trigger it manually
whenever you need to run it. However, Synapse pipelines enable you to schedule the
pipelines to run at regular intervals as well.

With Synapse pipelines, it's just a matter of a few clicks to schedule your pipeline.
The following instructions will help you in scheduling your pipeline:

1.	 Go to the Triggers page under the Monitor tab in Synapse Studio and click
on + New at the top of the screen, as illustrated in Figure 4.27:

Figure 4.27 – Triggers blade in Synapse Studio

2.	 Provide a name and description for your trigger. It's better to keep your pipeline's
line appended to the trigger's name so that in the case of any failure it will be easy to
identify the corresponding pipeline. The fields are shown in Figure 4.28:

Scheduling Synapse pipelines 121

Figure 4.28 – Creating a trigger for the Pipeline_Gen2_Synapse pipeline

3.	 Select the type of trigger as per your business needs. In this example, we are going
to select the Schedule radio button option from the list.

4.	 Provide a value for Recurrence. In our example, our pipeline must run once a
day—hence, select 1 in the first field box and Day(s) in the second field box.

5.	 You have the flexibility to provide the start date as well, but we will stick to the
default value because we want to enable this trigger as soon as it is created.

122 Using Synapse pipelines to orchestrate your data

The properties are shown in Figure 4.29:

Figure 4.29 – Setting properties for the trigger

6.	 If you want to select a particular time of day to run your pipeline, then you need to
provide the appropriate time under the Advanced recurrence options section.

7.	 Select the On Date radio button for the End section to provide a value for End On
(UTC) if you want your trigger to stop after a certain time. However, we want our
trigger to be active forever, so we will select the No End radio button.

8.	 Last but not least, select Yes for the Activated field—this will activate/deactivate the
trigger after we do the publish operation. Next, click on OK, and you are all set. The
process is illustrated in Figure 4.30:

Scheduling Synapse pipelines 123

Figure 4.30 – Trigger properties window with default values

In this section, we learned how to unzip multiple files, place these files in the blob
containers dynamically, and then copy the data to the Synapse SQL pool; but in the real
world, you may have more complex scenarios than this one. However, Synapse has made
it quite easy for developers by providing sample scripts and notebooks within Synapse
Studio itself.

Next, we are going to learn how to use these sample pipelines.

124 Using Synapse pipelines to orchestrate your data

Creating pipelines using samples
Synapse has provided various sample pipelines that can help you in building your
production-ready pipeline in just a few steps.

We will go through the following steps to create pipelines using samples provided
by Synapse:

1.	 Go to the Integrate tab on the Synapse Studio screen.

2.	 Go to the sample center by clicking on Browse samples, as highlighted in
Figure 4.31:

Figure 4.31 – Browse samples link under the Integrate tab in Synapse Studio

3.	 You can see sample datasets, notebooks, and SQL scripts in the sample center. Let's
try to use one of the sample notebooks. Go to the Notebooks section, select Getting
Started with Delta Lake, and click on Continue. Figure 4.32 provides an overview
of the sample center:

Creating pipelines using samples 125

Figure 4.32 – An overview of the sample center in Synapse Studio

4.	 On the next screen, you can see a preview of the notebook that you selected. Click
on Next after going through the description and preview.

5.	 If you do not have a Spark pool created already, you will see a pop-up window
asking your permission to create a Spark pool of the required size to run this
notebook. Click on Create pool after reviewing the size information, as illustrated
in Figure 4.33:

Figure 4.33 – Pop-up window seeking permission to create a Spark pool

126 Using Synapse pipelines to orchestrate your data

6.	 Your SampleSpark Spark pool will be available for your notebook in a couple of
seconds, and then you can click on the Run all link above the notebook to run all
the cells in the notebook, as illustrated in Figure 4.34:

Figure 4.34 – The notebook attached to the SampleSpark Spark pool

7.	 Next, go to the integrate tab and create a new pipeline.

8.	 Provide a name for this pipeline in the Properties window and add the Notebook
activity to the pipeline canvas, as illustrated in Figure 4.35:

Summary 127

Figure 4.35 – Adding a Notebook activity to the new pipeline

9.	 Go to the Settings tab and select the correct notebook from the list of all available
notebooks, as shown in Figure 4.35.

You are now all set to schedule this pipeline, so go ahead and start creating your pipelines.
It's better to start with the sample pipelines provided in the sample gallery of Synapse
Studio, if you have never worked on Azure Data Factory or Synapse pipelines before.

Summary
So far, we have learned how to create linked services, datasets, pipelines, and triggers.
We learned how can we use multiple activities together in a pipeline. We got a fair
understanding of variables and parameters in Synapse pipelines. Synapse has provided
the option to use sample pipelines, but it's important to learn how to use these sample
pipelines—therefore in this chapter, we also covered how we can start using these.

128 Using Synapse pipelines to orchestrate your data

Synapse supports various data stores and various ways to transform your data, but we
could only cover a couple of transformations in this chapter. However, now that you are
comfortable with Synapse pipelines, it will be easy for you to add any activity to the pipeline
as per your business requirements. You can go to http://bit.ly/transform-data-
on-synapse if you want to learn more about any specific activity.

We will talk about a couple of other activities throughout the book that will give you more
clarity on Synapse pipelines.

In the next chapter, we will talk about Azure Synapse Link for Azure Cosmos DB, which
enables you to run near-real-time analytics over operational data in Azure Cosmos DB.

http://bit.ly/transform-data-on-synapse
http://bit.ly/transform-data-on-synapse

5
Using Synapse

Link with Azure
Cosmos DB

Azure Synapse Link is a new feature added to create a link between Azure Cosmos DB
and Azure Synapse. It enables you to run near real-time analytics on data residing in
the analytical store of your Cosmos DB account. The analytical store and transactional
store are kept in sync in a Cosmos DB account. The transactional store in Cosmos DB
is optimized for transactional reads and writes whereas the analytical store is optimized
for analytical queries. Synapse Link creates an integration between Cosmos DB and
Synapse Analytics. In this chapter, we are going to learn how to enable an analytical store
in Cosmos DB and how we can query data directly from this analytical store with Azure
Synapse Spark.

We are going to cover the following topics in this chapter, which will help you learn about
the concept of Synapse Link and how it can fulfill your business needs:

•	 Enabling the analytical store in Cosmos DB

•	 Data storage

•	 Querying the Cosmos DB analytical store

130 Using Synapse Link with Azure Cosmos DB

Technical requirements
Before you start orchestrating your data, there are certain prerequisites that you
should meet:

•	 You should have your Azure subscription or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a SQL pool and Spark pool on Azure Synapse. This has been covered in
Chapter 2, Considerations for your compute environment.

•	 Create your Azure Cosmos DB account and three containers: Products, RetailSales,
and StoreDemoGraphics. You can go through the following link to create your
Cosmos DB account: https://docs.microsoft.com/azure/cosmos-db/
create-cosmosdb-resources-portal.

•	 Go to the link https://github.com/PacktPublishing/Limitless-
Analytics-with-Azure-Synapse to download Chapter 05 -
RetailData.zip, and extract and save all the files.

•	 Prior knowledge of Python and Spark will be required to follow the examples
provided in this chapter.

Once you have met all the prerequisites, you can start leveraging Synapse Link, however,
you need to enable the analytical store in Cosmos DB to use Synapse Link.

Enabling the analytical store in Cosmos DB
You can enable Synapse Link on Cosmos DB directly from the Azure portal:

1.	 Log in to the Azure portal at https://porta.azure.com.

2.	 Go to your Cosmos DB account and click on Data Explorer.

https://docs.microsoft.com/azure/cosmos-db/create-cosmosdb-resources-portal
https://docs.microsoft.com/azure/cosmos-db/create-cosmosdb-resources-portal
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse
https://porta.azure.com

Enabling the analytical store in Cosmos DB 131

3.	 Click on the Enable link while creating a new container:

Figure 5.1 – Enabling Azure Synapse Link on a Cosmos DB account

4.	 You can click on the Features tab to verify whether Azure Synapse Link is enabled
or not. You have the option to enable it from there as well if it is not enabled yet:

Figure 5.2 – Verifying the status of Azure Synapse Link under the Features tab of a Cosmos DB account

132 Using Synapse Link with Azure Cosmos DB

Important note
The analytical store can only be enabled for new containers.

5.	 After you enable the analytical store, it creates a container with the Analytical
Storage Time to Live property associated with the container. The default value
is -1, which means infinite retention, however, we can change this value to any
number of days and as many days as we want the data to live in the storage account.
This is an analytical store that retains all the historical versions of records. You can
change this value at any point under the Settings tab of your container:

Figure 5.3 – Setting the value for Analytical Storage Time to Live

Cosmos DB supports two types of storage internally: transactional storage and analytical
storage. The following section will cover this topic in more detail.

Data storage
A Cosmos DB analytical store is fully isolated from transactional workloads. The
operational data in a Cosmos DB container is internally stored in row-based transactional
stores in order to allow fast transactional reads and writes.

Data storage 133

It is not recommended to run complex queries on your transactional workload – it may
cause bad performance for your application running these queries. Ideally, you should add
an analytical data layer on top of Cosmos DB transactional data if you want to perform
complex operations on the data. The major caveat for this architecture is an ETL operation
for data sync between transactional and analytical data stores. This additional step may
lead to increased Total Cost of Operation (TCO) and overhead of maintaining the data
in sync always.

With this new feature of Synapse Link, Cosmos DB gives you the flexibility to enable an
analytical store within your Cosmos DB account without performing an ETL operation.
Both the data layers are kept in sync within the Cosmos DB container and Synapse Link
allows you to access the analytical store directly from Synapse to perform complex queries.

Figure 5.4 shows how Synapse Link integrates a Cosmos DB storage account and Synapse
Analytics together. This is called Hybrid Transactional/Analytical Processing (HTAP)
architecture, and this is used for optimizing your business processes. This also eliminates
ETL processes and lets you run near real-time BI, analytics, and ML pipelines over
operational data.

Figure 5.4 – Synapse Link integration with Cosmos DB and Synapse Analytics

Next, we will try to understand how the transactional store is different from the analytical
store and how the data is kept in sync in both data stores of the Cosmos DB account.

Transactional store
The transactional store is a schema-agnostic, indexed row-based data store in the Cosmos
DB container that holds the operational data. The row store format is designed to allow
fast transactional reads and writes in order-of-milliseconds response times.

When you enable the analytical store to automatically update the schema according to
the operational data, you cannot have more than 200 properties at any nesting level in the
schema, with a maximum nesting depth of 5.

Property names are case insensitive and must be kept unique.

134 Using Synapse Link with Azure Cosmos DB

Analytical store
Column store format is suitable for large-scale analytical queries to be performed in an
optimized manner, resulting in improving the latency of such queries. The analytical
store is actually a column store in the Cosmos DB container that is designed to deal
with complex queries running on a large dataset. The column store in the Cosmos DB
container is fully isolated from the transactional store; you can run large-scale analytics
queries without any impact on your transactional workloads. Any changes to operational
data (insert/update/delete) will be automatically synced to the analytical store.

Important note
The automatic backup and restore option is not supported in the analytical
store of a Cosmos DB account, however, Cosmos DB will continue taking
backups of your data in the transactional store.

So, now it is important to understand how Cosmos DB represents schema for operational
data in tabular format. There are two types of schema representation in the analytical store
of Cosmos DB with certain trade-offs. Let's have a look at both modes.

Well-defined schema representation
When the analytical store is enabled on the Azure Cosmos DB SQL (core) API, a well-
defined schema representation is the default schema representation in the analytical store.
Cosmos DB supports five different types of API: Core(SQL), MongoDB API, Cassandra,
Azure Table, and Gremlin (graph), however, Synapse Link is applicable only for the
Core(SQL) API and Azure Cosmos DB API for MongoDB as of now. You can refer to
the link https://docs.microsoft.com/learn/modules/choose-api-for-
cosmos-db/ to learn about all these APIs in detail. In this chapter, we are going to use
the Core(SQL) API. It creates simple tabular representations of operational data. However,
there are certain properties that need to be kept in mind, as listed here:

•	 A property must have the same data type across multiple items. In the case of
different types, the analytical store will consider the data type of the first occurring
item in the lifetime of the container.

•	 An array must contain a single repeated type. If an array contains values of mixed
data types, it cannot represent a well-defined schema.

Sometimes you do not want to drop any items even if these items have different data types
than all other items. Then, the full fidelity schema representation should be used instead
of the well-defined schema representation.

https://docs.microsoft.com/learn/modules/choose-api-for-cosmos-db/
https://docs.microsoft.com/learn/modules/choose-api-for-cosmos-db/

Querying the Cosmos DB analytical store 135

Full fidelity schema representation
When the analytical store is enabled on the Azure Cosmos DB MongoDB API, the full
fidelity schema representation is the default schema representation in the analytical store.
The main advantage of this schema representation is that no items are dropped from the
analytical store even if a property has different data types across the container or if the
array contains mixed types.

The leaf property names are suffixed with data types to be stored as distinct columns in
the analytical store so that they can be queried without ambiguity.

In the following example, two distinct columns will be created for the same property,
address.object.streetNo.int32 and address.object.streetNo.string:

address: {

 streetNo: 1234,

 streetName: "23rd St.",

 },

address: {

 streetNo: "1342",

 streetName: "20th St.",

 },

Now that we have learned different storage options provided by a Cosmos DB account, it's
time to learn how to read data from a Cosmos DB analytical store from Azure Synapse.

Querying the Cosmos DB analytical store
With Azure Synapse, you get the option to choose between Spark or SQL as your
compute environment. You can query a Cosmos DB analytical store using Spark and SQL
Serverless, however, this feature is not available with SQL provisioned as of now.

Let's learn how to query data in the analytical store of a Cosmos DB container.

Querying with Azure Synapse Spark
Azure Synapse Spark allows you to analyze data in your Synapse Link enabled Azure
Cosmos DB containers. You can query an analytical store from Spark in two possible ways:

•	 Loading data to a Spark DataFrame

•	 Creating a Spark table

136 Using Synapse Link with Azure Cosmos DB

A Spark DataFrame leverages the cached metadata through the lifetime of the Spark
session, so any change in the source data will not be reflected here until you start a new
Spark session. The metadata of the analytical store is reloaded on every query execution
against the Spark table.

You can ingest data to the analytical store of a Cosmos DB container using Azure
Synapse Spark, however, it's important to understand that data gets ingested to the
transactional store of the Cosmos DB container and later the auto-sync operation updates
the analytical store.

Let's try to learn the step-by-step process to query Cosmos DB data with Azure
Synapse Spark.

Loading data to a Spark DataFrame
In order to query your data stored in your Cosmos DB account, first, we need to load
that data to a Spark DataFrame in Azure Synapse. You can use any supported language to
perform this operation, however, in this example, we are going to use the Python language.

The following Python syntax can be used for loading Cosmos DB data to a Spark
DataFrame without impacting the transactional store:

df = spark.read.format("cosmos.olap")\

 .option("spark.synapse.linkedService", "<enter linked
service name>")\

 .option("spark.cosmos.container", "<enter container
name>")\

 .load()

Important note
To select a preferred list of regions in a multi-region Azure Cosmos DB
account, add .option("spark.cosmos.preferredRegions",
"<Region1>,<Region2>").

You can ingest the data from your DataFrame to your Cosmos DB account using the
following Python syntax:

Write a Spark DataFrame into an Azure Cosmos DB container

To select a preferred list of regions in a multi-region Azure
Cosmos DB account, add .option("spark.cosmos.preferredRegions",
"<Region1>,<Region2>")

Querying the Cosmos DB analytical store 137

DataFrameName.write.format("cosmos.oltp")\

 .option("spark.synapse.linkedService", "<enter linked
service name>")\

 .option("spark.cosmos.container", "<enter container
name>")\

 .option("spark.cosmos.write.upsertEnabled", "true")\

 .mode('append')\

 .save()

Let's try to ingest RetailData from our primary storage account of Azure Synapse to
a Cosmos DB container using a Spark DataFrame. Create a demosynapselink-ch05
folder within the root directory of your storage account in Synapse Studio. Upload to this
folder the CSV files that are placed within the folder with the same name as this repository:

Figure 5.5 – Highlighting sample files in the demosynapselink-ch05 blob container

You can go through the following instructions to create linked services for a Cosmos DB
account and query data using Spark SQL in Synapse Studio:

1.	 Log in to the Azure portal at https://portal.azure.com and go to your
Cosmos DB account.

2.	 Click on Data Explorer and create a new database, SynapseLinkDemoDB.

https://portal.azure.com

138 Using Synapse Link with Azure Cosmos DB

3.	 Create three analytical store-enabled containers: StoreDemoGraphics. We are
going to use id as our partition key for all three containers:

Figure 5.6 – Creating containers in a Cosmos DB account

4.	 Now that we have the required containers in place, it's time to create a linked service
for this Cosmos DB account in the Azure Synapse workspace. Go to your Azure
Synapse workspace and navigate to Synapse Studio.

5.	 Click on Linked Services under the Manage tab to create a new linked service.

6.	 Click on the +New link and search for Azure Cosmos DB(SQL API) from the list
of all available data stores, select that, and click on Continue.

7.	 Provide an appropriate name and description for the linked service.

8.	 Select your Azure subscription, Azure Cosmos DB account name, and the database
name that you created in Step 2. Click on Create after providing all the details.

Important note
Even if you have selected the correct Azure subscription and Azure Cosmos
DB account name, you may get a firewall error if you have not whitelisted your
IP on the firewall settings of your Cosmos DB account.

Querying the Cosmos DB analytical store 139

Figure 5.7 shows the process of creating linked services for a Cosmos DB account:

Figure 5.7 – Creating a linked service for a Cosmos DB account

140 Using Synapse Link with Azure Cosmos DB

9.	 Before we proceed further, let's check whether we can locate our CSV files in Azure
Synapse. Go to the Linked tab under the Data section of Synapse Studio and click
on your storage account where you uploaded the CSV files. If you can see your files
here, it means we are good to proceed further now:

Figure 5.8 – Sample files in the Data tab of Synapse Studio

10.	 Go to the Develop section and click on + to create a new notebook and give it an
appropriate name, such as SynapseLinkDemoNotebook. Make sure to click on
Publish after any changes.

11.	 Paste the following code in your notebook and run the cell:

dfStoreDemoGraphics = (spark

 .read

 .csv("/demosynapselink-ch05/
StoreDemoGraphics.csv", header=True, inferSchema='true')

)

12.	 After the preceding code runs successfully, paste the following and last piece of the
code in your notebook in the same cell and run the cell:

dfStoreDemoGraphics.write\

 .format("cosmos.oltp")\

 .option("spark.synapse.linkedService",
"RetailSalesDemoDB")\

 .option("spark.cosmos.container",
"StoreDemoGraphics")\

 .option("spark.cosmos.write.upsertEnabled",
"true")\

 .mode('append')\

 .save()

Querying the Cosmos DB analytical store 141

You can ingest data from the other two files as well using the same logic. You can
download the notebook from this link: https://github.com/PacktPublishing/
Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%20
05%20-%20SampleNotebook.zip.

Now that we have learned enough about Spark DataFrames, it is worth learning about
Spark tables as well.

Creating a Spark table
Azure Synapse gives you the feasibility to create Spark tables using the data stored in a
Cosmos DB account. You need your linked service name and Cosmos DB container name
to create a Spark table in Synapse.

You can create a Spark table in Synapse Studio using the following syntax:

%%sql

create table sample_table using cosmos.olap options (

 spark.synapse.linkedService '<enter linked service name>',

 spark.cosmos.container '<enter container name>',

 spark.cosmos.autoSchemaMerge '<true/false>'

)

If you want to keep the schema updated with the schema changes of the underlying
Cosmos DB container, set the spark.cosmos.autoSchemaMerge property to true
in the preceding syntax.

After creating the Spark table using the data stored in the Cosmos DB account, next we are
going to learn how to implement business logic on top of this data within Azure Synapse.

Querying with Azure Synapse SQL Serverless
In this section, we'll see how Synapse SQL Serverless allows you to analyze the data in a
Cosmos DB container if Synapse Link is enabled, just as you can analyze the same data in
Synapse Spark. You can query data from an analytical store using familiar T-SQL syntax.

Important note
As of now, we cannot access a Cosmos DB analytical store with a Synapse
provisioned SQL pool.

https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2005%20-%20SampleNotebook.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2005%20-%20SampleNotebook.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2005%20-%20SampleNotebook.zip

142 Using Synapse Link with Azure Cosmos DB

SQL Serverless uses OPENROWSET syntax to analyze the data in the analytical store of a
Cosmos DB container, as you can see in the following code block:

OPENROWSET(

 'CosmosDB',

 '<Azure Cosmos DB connection string>',

 <Container name>

) [< with clause >]

Important note
The Cosmos DB container name is specified without quotes in the
OPENROWSET syntax. It's better to keep the name wrapped within the []
(square brackets) in the OPENROWSET syntax to avoid any errors.

In most cases, you are going to deal with nested objects and arrays. With OPENROWSET,
you can still read these values by using SQL JSON functions:

SELECT

 title = JSON_VALUE(metadata, '$.title'),

 authors = JSON_QUERY(metadata, '$.authors'),

 first_author_name = JSON_VALUE(metadata, '$.authors[0].
first')

FROM

 OPENROWSET(

 'CosmosDB',

 'account=MyCosmosDbAccount;database=covid;region=westus2;
key=C0Sm0sDbKey==',

 Cord19

 WITH (metadata varchar(MAX)) AS docs;

As an alternative option, you can also specify the paths to nested values in the objects
when using the WITH clause. Also, you can apply the OPENJSON function on the nested
array to flatten the nested structure:

SELECT

 *

FROM

 OPENROWSET(

Querying the Cosmos DB analytical store 143

 'CosmosDB', 'account=MyCosmosDbAccount;
database=covid;region=westus2;key=C0Sm0sDbKey==',

 Cord19

) WITH (title varchar(1000) '$.metadata.title',

 authors varchar(max) '$.metadata.authors') AS
docs

 CROSS APPLY OPENJSON (authors)

 WITH (

 first varchar(50),

 last varchar(50),

 affiliation nvarchar(max) as json

) AS a

The following screenshot displays the output of the preceding code block:

Figure 5.9 – Result set of the preceding query displaying the values for title, authors,
first, last, and affiliation

We saw a very simple example of how to query data stored in a Cosmos DB account.
However, you can go through the following link if you want to learn more about
interacting with Cosmos DB in Azure Synapse: https://docs.microsoft.com/
azure/synapse-analytics/synapse-link/how-to-query-analytical-
store-spark?branch=release-build-synapse.

https://docs.microsoft.com/azure/synapse-analytics/synapse-link/how-to-query-analytical-store-spark?branch=release-build-synapse
https://docs.microsoft.com/azure/synapse-analytics/synapse-link/how-to-query-analytical-store-spark?branch=release-build-synapse
https://docs.microsoft.com/azure/synapse-analytics/synapse-link/how-to-query-analytical-store-spark?branch=release-build-synapse

144 Using Synapse Link with Azure Cosmos DB

Summary
In this chapter, we covered Azure Synapse Link, which is a new feature added to Azure
Synapse, and we learned a step-by-step process to query data directly from an Azure
Cosmos DB account. This feature dispenses with the need for ETL processes to bring
data from a Cosmos DB account to Synapse. Now, we know that we can write queries
directly on Cosmos DB data by creating corresponding linked services. We also saw how
the transactional store syncs the data in the analytical store through auto-sync, and we
learned about modes of schema representation in the analytical store. We used the Python
language in this chapter; however, you are free to use any supported language that you are
comfortable with.

There are many possible use cases of Azure Synapse Link. You can find a couple of these
use cases mentioned in Microsoft Docs: https://docs.microsoft.com/azure/
cosmos-db/synapse-link-use-cases.

In the next chapter, we are going to get some good coding experience on Azure Synapse
SQL. We will learn how T-SQL can be used with Azure Synapse and its limitations.

https://docs.microsoft.com/azure/cosmos-db/synapse-link-use-cases
https://docs.microsoft.com/azure/cosmos-db/synapse-link-use-cases

The objective of this section is to introduce you to the various ways of querying or
reading data on Azure Synapse.

This section comprises the following chapters:

•	 Chapter 6, Working with T-SQL in Azure Synapse

•	 Chapter 7, Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

•	 Chapter 8, Integrating a Power BI workspace with Azure Synapse

•	 Chapter 9, Perform real-time analytics on streaming data

•	 Chapter 10, Generate powerful insights on Azure Synapse using Azure ML

Section 3:
Azure Synapse for

Data Scientists and
Business Analysts

6
Working with T-SQL

in Azure Synapse
Azure Synapse Structured Query Language (SQL) enables you to query your data using
the Transact-SQL (T-SQL) language, which means you do not need to learn any new
languages if you already have prior experience working with SQL. As we now know, Azure
Synapse SQL supports two types of consumption models, dedicated and serverless, and
you will notice some differences in the supported features of both models. In this chapter,
we are going to cover T-SQL language elements that are supported in Synapse SQL pools.
We will also learn how we can create stored procedures and views in Synapse SQL pools.
As with SQL Server and Azure SQL, we will learn which system views are supported in a
Synapse SQL pool.

This chapter will help you get familiar with the features supported in Azure Synapse SQL.
We will learn how to use T-SQL queries on unstructured data as well.

148 Working with T-SQL in Azure Synapse

We are going to cover the following topics in this chapter, which will help you learn
supported features of T-SQL in Azure Synapse SQL:

•	 Supporting T-SQL language elements in a Synapse SQL pool

•	 Creating stored procedures and views in Synapse SQL

•	 Optimizing transactions in Synapse SQL

•	 Supporting system views in a Synapse SQL pool

•	 Using T-SQL queries on semi-structured and unstructured data

Technical requirements
Before you start orchestrating your data, here are certain prerequisites that you
should meet:

•	 You should have an Azure subscription, or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a SQL pool on Azure Synapse. This has been covered in Chapter 2,
Considerations for your compute environment.

•	 Download the script from the following link: http://bit.ly/T-SQL-samples.

Once you have met all the prerequisites, you can start transforming your business logic
into code by using T-SQL. In the following section, we will learn about some of the
supported features by using some sample queries.

Supporting T-SQL language elements in a
Synapse SQL pool
The SELECT statement in T-SQL retrieves rows from a database and enables the selection
of columns and rows from one or multiple tables in Azure Synapse SQL. You can use
the SELECT statement with WHERE, GROUP BY, HAVING, and ORDER BY clauses in
dedicated and serverless SQL pools. The syntax for the SELECT statement in Synapse SQL
is similar to that found in Azure SQL Database or SQL Server.

http://bit.ly/T-SQL-samples

Supporting T-SQL language elements in a Synapse SQL pool 149

The following code snippet provides an example of using a SELECT statement:

SELECT OrderDateKey, SUM(SalesAmount) AS TotalSales

FROM FactInternetSales

GROUP BY OrderDateKey

HAVING OrderDateKey > 20010000

ORDER BY OrderDateKey;

We can also create Common Table Expressions (CTEs) in Synapse SQL pools. We will
learn about these in Figure 6.1.

CTEs
A CTE is a temporary result set that is used to simplify complex joins and subqueries.
CTEs can also be used to query hierarchical data such as an organization chart. We can
even create CTEs in Azure Synapse SQL pools for similar operations.

The following code block defines a CTE that will create a temporary dataset called CTE
with first_name and last_name columns derived from a UserData table. The
SELECT query against this temporary dataset will fetch all the records:

WITH CTE(id, first_name, last_name)

AS

(SELECT

U.[id]

,[first_name]

,[last_name]

 FROM [dbo].[UserData] U

)

 SELECT * FROM CTE;

Likewise, there are various other T-SQL language elements that are not only supported in
SQL Server or Azure SQL but also in Synapse SQL pools. We will learn about these in the
following sections.

150 Working with T-SQL in Azure Synapse

SELECT – OVER clause
An OVER clause is used with some window functions that we will cover in this section. It
is used to determine the partitioning and ordering of a set of rows before the associated
window function is applied. The associated window function is applied on this set of
rows to compute a value as per the business demand. A few of the most commonly used
calculations are moving averages, cumulative aggregates, and running totals, among others.

Ranking functions
Ranking functions are used to assign a rank to each row in a partition or set of rows and
return an aggregated value for each partitioning row. Ranking functions are also known as
window functions.

We can use RANK, DENSE_RANK, ROW_NUMBER, and NTILE ranking functions in
Azure Synapse SQL. These are outlined as follows:

•	 The RANK function returns 1 plus the number of ranks that come before the row in
question, and it provides the same numeric values for ties.

•	 ROW_NUMBER is used to get the temporary unique sequential number of a row
within a partition of a result set. It assigns rank one for the first row and increments
the value by 1 for each row; even if a row has similar values, it will still get assigned
a unique number.

•	 DENSE_RANK is similar to the RANK function, with a minor difference: it assigns
the same rank for duplicate or similar values.

•	 The NTILE function is used to divide records into a specified number of groups,
and each group will be assigned a rank as per the specified condition. We need to
specify the number of groups as a parameter value to the NTILE function—for
example, NTILE(2).

Let's run the following example to understand different ranking functions and where we
should use them. In the following code block, we are using PARTITION BY only with the
ROW_NUMBER() function; however, feel free to use it with other functions as well, as per
your business need:

SELECT p.FirstName, p.LastName

 , ROW_NUMBER() OVER(PARTITION BY PostalCode ORDER BY
SalesYTD DESC) AS "Row Number"

 ,RANK() OVER (ORDER BY a.PostalCode) AS Rank

 ,DENSE_RANK() OVER (ORDER BY a.PostalCode) AS "Dense Rank"

 ,NTILE(4) OVER (ORDER BY a.PostalCode) AS Quartile

Supporting T-SQL language elements in a Synapse SQL pool 151

 ,s.SalesYTD

 ,a.PostalCode

FROM Sales.SalesPerson AS s

 INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON a.AddressID = p.BusinessEntityID

WHERE TerritoryID IS NOT NULL AND SalesYTD <> 0;

You can see the output of this code block in Figure 6.1:

Figure 6.1 – A SQL query and the corresponding output in a Synapse notebook

The preceding code block uses all the ranking functions, which will help you understand
all the different functions. As well as these functions, we can also use aggregate functions
in Azure Synapse SQL pools. We will learn about these aggregate functions in the
next section.

152 Working with T-SQL in Azure Synapse

Aggregate functions
Aggregate functions are used to perform a calculation on a set of values such that it
returns a single aggregated value. Aggregate functions can be used as expressions in the
select list of a SELECT statement or with a HAVING clause.

T-SQL provides various aggregate functions, such as MIN, MAX, SUM, COUNT, AVG, and
many more. We will try to learn a few of them here, as follows:

•	 MIN: Returns the minimum value in an expression. It ignores any NULL values and
can even be used for character data columns, where MIN will return the lowest in
the sort sequence.

•	 MAX: Returns the maximum value in an expression. It ignores any NULL values and
can even be used for character data columns, where MAX will return the highest in
the sort sequence.

•	 SUM: Can be used with numeric columns only. It returns a sum of all the values, or
only the distinct values. It ignores all NULL values.

•	 COUNT: Can be used with numeric columns only. It returns a count of all the values,
or only the distinct values. It ignores all NULL values.

•	 COUNT_BIG: This function operates like the COUNT function; the only difference is
the data type of the value returned. In the case of the COUNT function, this is INT,
whereas for the COUNT_BIG function, it is BIGINT.

•	 APPROX_COUNT_DISTINCT: This function is used to return the approximate
number of unique non-null values in a group.

•	 AVG: AVG can only be used with numeric columns. It is used to calculate the average
value of a given expression in a defined group, ignoring all NULL values.

•	 STDEV: Statistical standard deviation of all values in a given expression within a
defined group can be calculated using the STDEV function.

•	 STDEVP: In STDEVP, P stands for population. This function is similar to STDEV,
but unlike STDEV, STDEVP is used when a group of numbers being evaluated is the
whole population, not only a partial sampling of the whole population.

Most of these functions can even be used with an OVER clause to get the aggregated value
for each group in the returned row set, as illustrated in the following code block:

SELECT DISTINCT Name

 , MIN(Rate) OVER (PARTITION BY edh.DepartmentID) AS
MinSalary

Supporting T-SQL language elements in a Synapse SQL pool 153

 , MAX(Rate) OVER (PARTITION BY edh.DepartmentID) AS
MaxSalary

 , AVG(Rate) OVER (PARTITION BY edh.DepartmentID) AS
AvgSalary

 ,COUNT(edh.BusinessEntityID) OVER (PARTITION BY edh.
DepartmentID) AS EmployeesPerDept

FROM HumanResources.EmployeePayHistory AS eph

JOIN HumanResources.EmployeeDepartmentHistory AS edh

 ON eph.BusinessEntityID = edh.BusinessEntityID

JOIN HumanResources.Department AS d

 ON d.DepartmentID = edh.DepartmentID

WHERE edh.EndDate IS NULL

ORDER BY Name;

The preceding code block uses all aggregate functions mentioned in this section.
You can go to the following link if you want to learn more about these functions:
https://docs.microsoft.com/sql/t-sql/functions/aggregate-
functions-transact-sql.

Now that we have learned about ranking functions and aggregate functions, let's
understand in our next section how analytic functions can be used in Azure Synapse.

Analytic functions
Analytic functions are used in various different ways to perform calculations on the data
stored in a Synapse SQL pool. We can use these functions to get top-N results or to perform
aggregate operations within a group. These functions can return multiple rows for each group.

Azure Synapse SQL supports the following analytic functions:

•	 CUME_DIST: This function can be used when you want to know the relative
position of a specific value within a group of values.

•	 FIRST_VALUE: We can use this function to get the first value in an ordered set
of values.

•	 LAG: Using the LAG function, you can access a row at a given physical offset that
comes before the current row.

•	 LAST_VALUE: Similar to FIRST_VALUE, we can use the LAST_VALUE function to
get the last value in an ordered set of values.

•	 LEAD: Using the LEAD function, you can access a row at a given physical offset that
comes after the current row.

https://docs.microsoft.com/sql/t-sql/functions/aggregate-functions-transact-sql
https://docs.microsoft.com/sql/t-sql/functions/aggregate-functions-transact-sql

154 Working with T-SQL in Azure Synapse

To learn about many other analytic functions, go to the following link: https://docs.
microsoft.com/sql/t-sql/functions/analytic-functions-transact-
sql?view=sql-server-ver15.

Sometimes, we need to construct a SQL statement dynamically. This is also known as
dynamic SQL, which we will learn about in the next section.

Using dynamic SQL in Synapse SQL
Although in most situations static SQL statements work well, there could be certain
situations when we need to use dynamic SQL statements. Dynamic SQL is a
programming technique applied to frame SQL statements at runtime.

You can use sp_executesql to run dynamic SQL scripts, as follows:

DECLARE @sql_fragment NVARCHAR(1000)='SELECT * from dbo.
Employee'

EXECUTE sp_executesql @sql_fragment

A SQL pool does not support blob data types that include both VARCHAR(MAX) and
NVARCHAR(MAX). Because of this limitation, you may have difficulty in building a large
dynamic SQL string; however, you can break the code into chunks and concatenate all the
chunks together with an EXEC statement, as follows:

DECLARE @sql_fragment1 VARCHAR(8000)=' SELECT name '

, @sql_fragment2 VARCHAR(8000)=' FROM sys.system_views '

, @sql_fragment3 VARCHAR(8000)=' WHERE name like
''%table%''';

EXEC(@sql_fragment1 + @sql_fragment2 + @sql_fragment3);

The preceding code block has three different SQL statements that are assigned to three
different variables: sql_fragment1, sql_fragment2, and sql_fragment3.
In the end, all the SQL statements are concatenated by using the + sign, and then the
consolidated SQL statement is executed by using an EXEC statement.

Dynamic SQL statements can be used in situations where you need to run similar SQL
statements multiple times with minor changes in the statement.

In the next section, we will learn about GROUP BY options in Synapse SQL. If you are
already familiar with T-SQL language elements in SQL Server, you can skip the next
section, but it's worth spending a few minutes on it to brush up your knowledge.

https://docs.microsoft.com/sql/t-sql/functions/analytic-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/t-sql/functions/analytic-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/sql/t-sql/functions/analytic-functions-transact-sql?view=sql-server-ver15

Supporting T-SQL language elements in a Synapse SQL pool 155

Learning GROUP BY options in Synapse SQL
A GROUP BY clause is used with a SELECT statement to arrange identical data into groups.

A GROUP BY clause can be used when we need to use aggregate functions such as SUM,
AVG, and so on to fetch the aggregated value of a grouped set of records. GROUP BY can
also be used with CUBE, ROLLUP, and GROUPING SETS.

However, GROUP BY is not supported with CUBE in an Azure Synapse SQL pool. We will
learn about the workarounds further on in this section. For now, we will proceed as follows:

1.	 Let's begin with simple usage of a GROUP BY clause. First, we will run a script to
create a sample table to use. You can find this script here: http://bit.ly/T-
SQL-samples.

2.	 Now that we have a sample table created in our SQL pool, we will run the following
script to understand basic usage of GROUP BY:

SELECT

 Department,

 Category,

 SUM(Salary) as Salary

FROM EmployeeSalary

GROUP BY Department, Category

You can see the output of this query in Figure 6.2:

Figure 6.2 – Result set in a Synapse notebook

http://bit.ly/T-SQL-samples
http://bit.ly/T-SQL-samples

156 Working with T-SQL in Azure Synapse

3.	 Next, we will use GROUP BY with a HAVING clause to filter the data, as follows:

SELECT

 Department,

 Category,

 SUM(Salary) as Salary

FROM EmployeeSalary

GROUP BY Department, Category

HAVING SUM(salary) = 8000

You should get the total salary categorized by department and category in the result
set, as shown in Figure 6.3:

Figure 6.3 – The result set of a SQL query in a Synapse notebook

4.	 If you want to calculate the aggregated value on individual groups and the
cumulative aggregated value together, GROUP BY ROLLUP can be used with a
SELECT statement, as illustrated in the following code snippet:

SELECT

 Department,

 Category,

 SUM(Salary) as Salary

FROM EmpSalary

GROUP BY ROLLUP(Department, Category)

You can see the result in Figure 6.4, which first displays the salary for each
department and category under GroupingID 0, followed by the aggregated salary
for each category, and finally, the total salary:

Supporting T-SQL language elements in a Synapse SQL pool 157

Figure 6.4 – Result set for the preceding query on SQL Server Management Studio (SSMS)

Important note
As we know, we can use a GROUP BY CUBE clause as well to achieve similar
results in SQL, but Synapse SQL does not support GROUP BY CUBE.

Using T-SQL loops in Synapse SQL
Azure Synapse SQL allows you to use a WHILE loop to execute statements repeatedly,
as long as the specified condition is True. The following code block will help you
understand the WHILE loop in Synapse SQL:

DECLARE @i INT=1

WHILE(@i<5)

 BEGIN

 SELECT @i

 /*Your logic goes here*/

 SET @i+=1

 END

We can control WHILE loops by inserting a BREAK keyword inside the loop. Let's look at
the following example to understand this better:

WHILE (SELECT AVG(SalesAmount) FROM dbo.FactInternetSales) <
$2000

BEGIN

 UPDATE dbo.FactInternetSales

 SET SalesAmount = SalesAmount * 2

 SELECT MAX(SalesAmount) FROM dbo.FactInternetSales

158 Working with T-SQL in Azure Synapse

 IF (SELECT MAX(SalesAmount) FROM dbo.FactInternetSales) >
$5000

 BREAK

 END

In the preceding code block, we are using a WHILE statement to create a loop and a
BREAK statement to come out of the loop. We can write any business logic within the loop
as per the business demand, but it would be better to avoid looping unless this is required
for better performance.

In this section, we have learned about all the T-SQL language elements that are supported
in Azure Synapse. In the next section, we are going to learn how to use these language
elements to create stored procedures and views in Synapse SQL.

Creating stored procedures and views in
Synapse SQL
You can create stored procedures and views in a Synapse SQL pool using SSMS, Azure
Data Studio, or Synapse Studio. In this section, we are going to learn the syntax for
creating stored procedures and views. We will learn more about the usage and limitations
of stored procedures and views further on in this section.

Stored procedures
A stored procedure is prepared SQL code that can be saved and reused. One important
thing to keep in mind is that stored procedures are not precompiled in a Synapse SQL
pool. When stored procedures are executed, SQL statements are parsed, translated, and
optimized at runtime. As with SQL Server, you can pass parameters to stored procedures
in a SQL pool as well.

The following code block provides a simple example of how to create stored procedures in
a SQL pool:

CREATE PROCEDURE Usp_samplestoredprocedure (@MinPriceCondition
MONEY,

 @MaxPriceCondition MONEY)

AS

 BEGIN

 WHILE (SELECT Avg(salesamount)

Creating stored procedures and views in Synapse SQL 159

 FROM dbo.factinternetsales) < @MinPriceCondition

 BEGIN

 UPDATE dbo.factinternetsales

 SET salesamount = salesamount * 2

 SELECT Max(salesamount)

 FROM dbo.factinternetsales

 IF (SELECT Max(salesamount)

 FROM dbo.factinternetsales) > @
MaxPriceCondition

 BREAK

 END

 END

When you execute the preceding code your stored procedure will be created, and now you
are ready to execute the stored procedure, as follows:

EXEC Usp_samplestoredprocedure

 @MinPriceCondition=$2000,

 @MaxPriceCondition=$5000

You can consume the result set of a stored procedure with an INSERT statement in a SQL
pool. You can use the following code snippet as reference:

Create Table #temp

(

[Department] varchar(100),

[Category] char(1),

salary Money

)

GO

Create PROCEDURE SP_ResultSet

as

SELECT

 Department,

 Category,

 SUM(Salary) as Salary

160 Working with T-SQL in Azure Synapse

FROM EmployeeSalary

GROUP BY Department, Category

HAVING SUM(salary) = 8000

GO

Insert into #temp EXEC SP_ResultSet

GO

Select * from #temp

You can see the records stored in the #temp table in Figure 6.5:

Figure 6.5 – Records available in the #temp table

Stored procedures can be called from other stored procedures, and these are called nested
stored procedures. We can create nested stored procedures for up to 32 levels. As with
SQL Server, you can create a nested stored procedure in a SQL pool as well. We will try to
learn more about nested stored procedures in the following section.

Nested stored procedures
There could be various levels of nested stored procedures. However, a SQL pool supports
a maximum of eight nesting levels, whereas SQL Server supports a maximum of eight
nesting levels.

The following code block provides an example of how a stored procedure consists of a
simple SELECT statement:

CREATE PROCEDURE usp_NestingProcDemo1

AS

SELECT 'This is NestingProcDemo1'

Next, we will create another procedure that we will call a preceding procedure. This can be
considered as nesting level 1:

CREATE PROCEDURE Usp_nestingprocdemo2

AS

 BEGIN

Creating stored procedures and views in Synapse SQL 161

 SELECT 'Calling from usp_NestingProcDemo2'

 EXEC Usp_nestingprocdemo1

 END

GO

EXEC Usp_nestingprocdemo2

Important note
SQL pools do not currently support @@NESTLEVEL.

Figure 6.6 shows the usage of a nested stored procedure within a main stored procedure.
You can execute the same query on either SSMS or Azure Data Studio:

Figure 6.6 – A stored procedures and its result set

Although a SQL pool allows you to create and use stored procedures, it restricts you from
using certain aspects of T-SQL stored procedures, such as the following:

•	 Temporary stored procedures

•	 Numbered stored procedures

•	 Extended stored procedures

162 Working with T-SQL in Azure Synapse

•	 Common Language Runtime (CLR) stored procedures

•	 Encryption options

•	 Replication options

•	 Table-valued parameters

•	 Read-only parameters

•	 Default parameters

•	 Execution contexts

•	 Return statements

Now that we have learned about creating stored procedures in a SQL pool, it's time to
learn about user-defined views.

Views
Views create a virtual table consisting of a set of named columns and rows of data.
Synapse SQL allows you to CREATE, ALTER, and DROP your views, as illustrated in the
following code snippet:

CREATE VIEW dbo.SampleViewWithEncryption

AS

SELECT

 Department,

 Category,

 SUM(Salary) as Salary

FROM EmpSalary

GROUP BY ROLLUP(Department, Category)

Synapse serverless SQL allows you to create views in the same way you created views earlier
in this section. If you have an external data source, you can use the OPENROWSET function
DATA_SOURCE and its relative file path, as illustrated in the following code snippet:

DROP VIEW IF EXISTS populationView;

GO

CREATE VIEW populationView AS

SELECT *

FROM OPENROWSET(

Optimizing transactions in Synapse SQL 163

 BULK 'csv/population/population.csv',

 DATA_SOURCE = 'SqlOnDemandDemo',

 FORMAT = 'CSV',

 FIELDTERMINATOR =',',

 ROWTERMINATOR = '\n'

)

WITH (

 [country_code] VARCHAR (5) COLLATE Latin1_General_BIN2,

 [country_name] VARCHAR (100) COLLATE Latin1_General_BIN2,

 [year] smallint,

 [population] bigint

) AS [r];

The preceding code block will create a view, populationView, by using the
OPENROWSET function to read data from the Population.csv file. Once the view is
created, we can query the data directly without worrying about copying the data to any
relational table.

So, now that we have learned how to create stored procedures and views in Synapse SQL,
let's learn how to handle transactions in Synapse SQL.

Optimizing transactions in Synapse SQL
In simple words, a group of data modification operations is called a transaction. If
all operations are successful, we can call it a successful transaction. In a successful
transaction, all the modifications are committed and become a permanent part of the
database; otherwise, all the data modifications will be erased.

In this section, we are going to learn how to manage transactions in Synapse SQL
pools. In the case of any failure, you will need to roll back all the changes made during
the execution of stored procedures in order to maintain consistency in your data. You
can handle any sort of exceptions in stored procedures using a TRY-CATCH block, as
illustrated in the following code snippet:

SET NOCOUNT ON;

DECLARE @xact_state smallint = 0;

BEGIN TRAN

 BEGIN TRY

 DECLARE @i INT;

 SET @i=@i+1

164 Working with T-SQL in Azure Synapse

 --SET @i='ABC'-- If you uncomment this statement,
you will encounter exception

 END TRY

 BEGIN CATCH

 SET @xact_state = XACT_STATE();

 IF @@TRANCOUNT > 0

 BEGIN

 ROLLBACK TRAN;

 PRINT 'ROLLBACK';

 END

 SELECT ERROR_NUMBER() AS ErrNumber

 , ERROR_SEVERITY() AS ErrSeverity

 , ERROR_STATE() AS ErrState

 , ERROR_PROCEDURE() AS ErrProcedure

 , ERROR_MESSAGE() AS ErrMessage

 ;

 END CATCH;

IF @@TRANCOUNT >0

BEGIN

 PRINT 'COMMIT';

 COMMIT TRAN;

END

SELECT @xact_state AS TransactionState;

In the preceding code block, if you uncomment SET @i='ABC' you will encounter
an error message, and the TransactionStatus value will be -2. You can use a
XACT_STATE() function to know the status of a transaction; in the case of a successful
transaction its value will be 0, and in the case of any failure, its value will be -2.

Figure 6.7 displays the use of a TRY-CATCH block in a transaction being executed on
SSMS:

Optimizing transactions in Synapse SQL 165

Figure 6.7 – Code and exception with TransactionState value

A SQL pool implements Atomic, Consistent, Isolated, and Durable (ACID) transactions
with read uncommitted as the default isolation. Run the following command to check
if your SQL pool has a read committed snapshot isolation level:

SELECT name, is_read_committed_snapshot_on

FROM sys.databases

WHERE name = DB_NAME();

You can change it to a read committed snapshot isolation by running the following
script when connected to the master database:

ALTER DATABASE SQLPoolDemo

SET READ_COMMITTED_SNAPSHOT ON

Important note
A SQL pool does not support distributed transactions, nested transactions,
named transactions, marked transactions, or save points. You cannot have
Data Definition Language (DDL) such as CREATE TABLE inside a user-
defined transaction.

166 Working with T-SQL in Azure Synapse

It is important to implement transactions efficiently in your code; otherwise, you may lose
all modified data in the case of any issue during transactions. In this section, we learned
how we can use a TRY-CATCH block to handle exceptions during any transaction.

In the next section, we are going to learn what system views are and how these views can
be leveraged to monitor your workload.

Supporting system views in a Synapse SQL pool
System views are built-in views in SQL that are used to monitor the health of a SQL pool
and diagnose problems associated with the performance of a SQL pool.

Synapse SQL supports various system views, and we will be covering a few of these in this
section, as follows:

•	 sys.pdw_column_distribution_properties: Holds distribution
information for columns.

•	 sys.pdw_distributions: Holds information about the distributions on the
appliance. It lists one row per appliance distribution.

•	 sys.pdw_index_mappings: Maps the logical indexes to the physical name used
on compute nodes, as reflected by a unique combination of the object_id of the
table holding the index and the index_id of a particular index within that table.

•	 sys.pdw_loader_backup_run_details: Contains information about
ongoing and completed backup and restore operations in Azure Synapse Analytics
(SQL Data Warehouse).

•	 sys.pdw_loader_backup_runs: This is similar to sys.pdw_loader_
backup_run_details. However, comparatively, it gives more detailed
information.

•	 sys.pdw_materialized_view_column_distribution_properties:
This view displays distribution information for columns in a materialized view.

•	 sys.pdw_materialized_view_distribution_properties: This view
displays distribution information materialized views.

•	 sys.pdw_materialized_view_mappings: Displays the physical names for
the materialized view and the corresponding object_id.

•	 sys.pdw_nodes_column_store_dictionaries: This view contains a row
for each dictionary used in columnstore indexes.

Supporting system views in a Synapse SQL pool 167

•	 sys.pdw_nodes_column_store_row_groups: Provides information about
clustered columnstore indexes on a per-segment basis. It has a column for the total
number of rows physically stored and a column for the number of rows marked
as deleted.

•	 sys.pdw_nodes_column_store_segments: This view contains a row for
each column in a columnstore index.

•	 sys.pdw_nodes_columns: This view shows columns for user-defined tables
and views.

•	 sys.pdw_nodes_indexes: This view returns indexes for Azure Synapse Analytics.

•	 sys.pdw_nodes_partitions: Contains each partition of all the tables and most
types of indexes in an Azure Synapse Analytics (SQL Data Warehouse) database.

•	 sys.pdw_nodes_pdw_physical_databases: Returns information about
each physical database on a compute node.

•	 sys.pdw_nodes_tables: Contains records for each table object on which the
principal has some permission.

•	 sys.pdw_permanent_table_mappings: This returns a physical name for the
table corresponding to each object_id.

•	 sys.pdw_replicated_table_cache_state: This view is used to return the
state of the cache associated with a replicated table.

•	 sys.pdw_table_distribution_properties: This is one of the most
important views if you are using distributions in your table. It holds distribution
information for tables.

•	 sys.pdw_table_mappings: This view associates user tables with internal object
names by object_id.

•	 sys.workload_management_workload_classifier_details: Returns
information about each classifier and can be joined with sys.workload_
management_workload_classifiers.

•	 sys.workload_management_workload_classifiers: Returns details for
workload classifiers.

•	 sys.workload_management_workload_groups: Returns details for
workload groups.

168 Working with T-SQL in Azure Synapse

There are many other dynamic management views that you should know about if you are
working on Azure Synapse SQL. You can go to the following link to learn about all the
dynamic management views supported by Synapse SQL: https://docs.microsoft.
com/azure/synapse-analytics/sql-data-warehouse/sql-data-
warehouse-reference-tsql-system-views.

So far in this chapter, we have learned how to use T-SQL on structured data, but in the
next section, we are going to learn how we can use T-SQL queries on semi-structured and
unstructured data.

Using T-SQL queries on semi-structured and
unstructured data
Azure Synapse SQL on-demand allows you to query data in your data lake. The
OPENROWSET function is used in SQL on-demand to query an external data source.
We will learn how to use this function for reading different types of files.

Reading Parquet files
Parquet is an open source file format that is designed for efficient, as well as performant,
flat columnar storage of data. Synapse provides a feature to read Parquet files directly,
using the OPENROWSET function.

The easiest way to read a Parquet file's content is to provide the file Uniform Resource
Locator (URL) to the OPENROWSET function and specify the Parquet format, as
illustrated in the following code snippet:

select top 10 *

from openrowset(

 bulk 'https://pandemicdatalake.blob.core.windows.net/
public/curated/covid-19/ecdc_cases/latest/ecdc_cases.parquet',

 format = 'parquet') as rows

You can explicitly specify the columns that you want to read from the files, using a WITH
clause. This is illustrated in the following code snippet:

select top 10 *

from openrowset(

 bulk 'latest/ecdc_cases.parquet',

 data_source = 'covid',

https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-reference-tsql-system-views
https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-reference-tsql-system-views
https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-reference-tsql-system-views

Using T-SQL queries on semi-structured and unstructured data 169

 format = 'parquet'

) with (date_rep date, cases int, geo_id varchar(6)) as
rows

Ideally, you do not need to use a WITH clause with OPENROWSET when reading Parquet
files, as column names and data types are automatically read from Parquet files.

We can use the OPENROWSET function to read JavaScript Object Notation (JSON) files
as well, and we are going to learn more about this in the following section.

Reading JSON documents
The OPENROWSET function can be used to read JSON documents as well. The best
possible way to learn how to read JSON documents in Azure Synapse SQL is to go to the
sample SQL script that has been made available to end users via Synapse Studio. We will
go through the following steps to get the sample SQL script that uses the OPENROWSET
function to read JSON files:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Go to your Synapse workspace and launch Synapse Studio.

3.	 Go to the Develop tab on Synapse Studio and navigate to Browse samples by
clicking on the + icon, as highlighted in Figure 6.8:

Figure 6.8 – Synapse Studio Develop tab with link to browse samples

https://portal.azure.com

170 Working with T-SQL in Azure Synapse

4.	 Select Query JSON files under the SQL scripts tab and click on Continue, as
illustrated in Figure 6.9:

Figure 6.9 – Sample scripts in Synapse Studio

5.	 On the next screen, you can see all the details about the script you selected. Click on
Open script after reviewing the Description tab.

The JSON document in the following sample query includes an array of objects. The
query returns each object as a separate row in the result set:

SELECT TOP 10 *

FROM OPENROWSET(

 BULK 'https://pandemicdatalake.blob.core.windows.
net/public/curated/covid-19/ecdc_cases/latest/ecdc_cases.
jsonl',

 FORMAT = 'csv',

 FIELDTERMINATOR ='0x0b',

 FIELDQUOTE = '0x0b'

) with (doc nvarchar(max)) as rows

Using T-SQL queries on semi-structured and unstructured data 171

Figure 6.10 shows the result from the preceding query:

Figure 6.10 – Query retrieving JSON documents in Synapse SQL on-demand using OPENROWSET
You can use JSON_QUERY to retrieve objects and arrays, and JSON_VALUE to
retrieve scalar values from a JSON document.

Figure 6.11 shows the usage of JSON_VALUE to retrieve the scalar values' title and
publisher:

Figure 6.11 – Query result displaying the usage of JSON_VALUE to retrieve scalar values

172 Working with T-SQL in Azure Synapse

The following script is an example of using JSON_QUERY to retrieve authors,
which is an array, from a book with the title Probabilistic and Statistical Methods in
Cryptology, An Introduction by Selected Topics:

SELECT
 JSON_QUERY(jsonContent, '$.authors') AS authors,
 jsonContent
FROM
 OPENROWSET(
 BULK 'https://sqlondemandstorage.blob.core.
windows.net/public-json/books/*.json',
 FORMAT='CSV',
 FIELDTERMINATOR ='0x0b',
 FIELDQUOTE = '0x0b',
 ROWTERMINATOR = '0x0b'
)
 WITH (
 jsonContent varchar(8000)
) AS [r]
WHERE
 JSON_VALUE(jsonContent, '$.title') = 'Probabilistic
and Statistical Methods in Cryptology, An Introduction
by Selected Topics'

Figure 6.12 displays the result set produced by running the preceding query. The
code block shown here retrieves the author for a particular book:

Figure 6.12 – Query retrieving authors from the JSON document and the corresponding result set

Using T-SQL queries on semi-structured and unstructured data 173

In this section, we learned various ways to retrieve different attributes from a JSON file. In
the next section, we are going to learn about external tables in detail.

External tables
An external table points to data located in Hadoop, Azure Storage blob, or Azure Data
Lake Storage. With Synapse SQL, you can use external tables to read and write data to a
SQL pool or SQL on-demand (preview).

Similar to the preceding example, we can use a sample SQL script to learn how to use
external tables to read data from a data lake.

Figure 6.13 displays the sample SQL scripts available in Synapse Studio:

Figure 6.13 – Sample SQL scripts in Synapse Studio

We will go through the following steps to get a sample SQL script that uses external tables:

1.	 Go to the Develop tab in Synapse Studio and navigate to Browse samples by
clicking on the + icon.

2.	 Search for Create External Tables from the list of all sample SQL scripts, and click
on Continue.

174 Working with T-SQL in Azure Synapse

3.	 On the next screen, you can see a Description about the script, and you get an
option to select a SQL pool or create a new one. Let's select a SQL pool and a
database, as illustrated in Figure 6.14:

Figure 6.14 – Description for Create External Tables sample script

4.	 Click on Open Script to get scripts to read an external table.

5.	 The following code block consists of a script to create a scoped credential database:

CREATE DATABASE SCOPED CREDENTIAL MyCredential

WITH

 IDENTITY = 'SHARED ACCESS SIGNATURE',

 SECRET = '<your_SAS_token>' ;

6.	 Next, we can see a script to create an external data source, as follows:

CREATE EXTERNAL DATA SOURCE MyDataSource

WITH (

 TYPE = HADOOP,

 LOCATION = 'abfss://<container>@<storage_account>.
dfs.core.windows.net',

 CREDENTIAL = MyCredential

)

Using T-SQL queries on semi-structured and unstructured data 175

7.	 The following code block consists of a script to create an external file format:

CREATE EXTERNAL FILE FORMAT MyTextFileFormat

WITH

(

 FORMAT_TYPE = DELIMITEDTEXT,

 FORMAT_OPTIONS (

 FIELD_TERMINATOR = ',',

 STRING_DELIMITER = '"',

 USE_TYPE_DEFAULT = False)

)

8.	 Next, we will create an external table, as follows:

CREATE EXTERNAL TABLE [dbo].[MyExtTable] (

 [f1] int NOT NULL,

 [f2] char NOT NULL,

 [f3] int NOT NULL

)

WITH (LOCATION='<my_file_location>',

 DATA_SOURCE = MyDataSource,

 FILE_FORMAT = MyTextFileFormat

);

9.	 Next, we have a script to create a local table using an external table, as shown in the
following code snippet:

CREATE TABLE MyLocalCopy

WITH (DISTRIBUTION = ROUND_ROBIN)

AS SELECT * FROM

[dbo].[MyExtTable];

You can modify the value for different parameters used in the preceding examples as per
your business need. We will be covering a couple of scenarios in the upcoming chapter,
which should make you feel more comfortable using Synapse SQL.

176 Working with T-SQL in Azure Synapse

Summary
This chapter was primarily focused on Synapse SQL. We learned different T-SQL language
elements that are supported in Synapse SQL, as well as their limitations. We learned
how we can use T-SQL statements with structured, semi-structured, or unstructured
data. In this chapter, we also covered how to manage transactions efficiently to avoid any
transaction failures. We also learned that we could create stored procedures and views in
Synapse SQL in a similar way to how we do this in SQL Server. Synapse SQL provides a
few additional features to read data directly from a data lake.

We saw some of the system views supported in Synapse SQL. We also learned how to use
sample scripts to build our logic as per the business need.

The next chapter will be more focused on Synapse Spark, where we will learn how to
write code in different languages in Synapse Spark without worrying about infrastructure
management. We will also learn how to use notebooks in Synapse Studio.

7
Working with R,

Python, Scala, .NET,
and Spark SQL in

Azure Synapse
Azure Synapse gives you the freedom to query data on your terms, by using either
serverless on-demand or provisioned resources—at scale. You can query data directly
in the Synapse notebook using PySpark, Spark (Scala), Spark SQL, or .NET for Apache
Spark (C#).

178 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

Azure Synapse Studio notebooks support four languages. You can set the primary
language in a notebook, as shown in Figure 7.1; however, you can use multiple languages
in the same notebook by using the correct language magic command at the beginning of a
cell:

Figure 7.1 – Synapse notebook highlighting various supported languages

In this chapter, we are going to pick a couple of examples from the sample gallery
provided within the Synapse workspace, to understand how to use different languages in a
Synapse notebook. This chapter outlines the use of sample data and scripts to understand
how to use a Synapse notebook to perform various operations on the data. If you are new
to Azure Synapse Analytics, this chapter is specifically for you. You are going to learn how
the sample scripts can be used against the sample data within Synapse Studio. You will
also learn how we can read the data from Azure Data Lake Storage Gen2 accounts or how
to save the data back to the data lake in different formats.

In this chapter, we will cover the following topics:

•	 Using Azure Open Datasets

•	 Using sample scripts

Technical requirements
Before you start orchestrating your data, here are certain prerequisites that you should meet:

•	 You should have your Azure subscription, or access to any other subscription, with
contributor-level access.

Using Azure Open Datasets 179

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a Spark pool and a SQL pool on Azure Synapse. This has been covered in
Chapter 2, Considerations for your compute environment.

Using Azure Open Datasets
This chapter helps you learn how you can use Azure Open Datasets to start exploring
various features offered by Azure Synapse Analytics. We will also learn how we can read
the data from these open datasets using Synapse notebooks. Microsoft provides a variety of
datasets on Azure that can be accessed directly from Synapse. Synapse provides an option
to add a dataset from the gallery of Azure Open Datasets. You just need to follow a couple
of steps to bring the data to your Synapse account from the gallery of sample datasets:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Go to your Synapse workspace on the Azure portal and launch Synapse Studio.

3.	 Click on the Data tab in Synapse Studio and click on + to browse through the
sample gallery:

Figure 7.2 – Synapse Studio highlighting the link to navigate to the sample gallery

https://portal.azure.com

180 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

4.	 You can see various samples from Azure Open Datasets. We are going to select the
dataset for Bing COVID-19 Data in this chapter:

Figure 7.3 – An overview of Gallery tab displaying Datasets in Synapse Studio

5.	 Click on Continue to go through the description and then click on Add dataset.

It will take couple of seconds for it to get added to your linked Azure Blob
storage section:

Figure 7.4 – Highlighting the bing-covid-19-data dataset in Synapse workspace

Using Azure Open Datasets 181

6.	 Click on … next to bing-covid-19-data and then click on New notebook | Load to
DataFrame, as highlighted in Figure 7.5:

Figure 7.5 – Creating a new notebook to query the bing-covid-19-data dataset

7.	 On the next screen, you need to select your Synapse pool to run the script. So, let's
select your Synapse pool from the drop-down list.

8.	 The default selected language is PySpark (Python). However, you can change it to
any language that you are comfortable with. In this example, we will continue with
PySpark (Python).

182 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

9.	 You can see a Python script that reads data from bing-covid-19-data. Run the
cell to see the output:

Figure 7.6 – The script and the corresponding output in a Synapse notebook

As we observed in this example, we are trying to access bing-covid-19-data from a
blob storage that has been made publicly accessible to anyone. However, you can also read
the data from a private storage account.

Using Azure Open Datasets 183

If you want to query your files stored in Azure Blob storage or Azure Data Lake Gen2, you
need to connect to the external data source on Synapse:

1.	 Go to the Data tab on Synapse Studio, click on the + icon as highlighted in
Figure 7.7, and then click on the Connect to external data tab:

Figure 7.7 – Highlighting the Connect to external data link under Data tab

2.	 Select the data store of your choosing. In this example, let's select Azure Data Lake
Storage Gen2 and then click on Continue.

3.	 Provide an appropriate name for the linked service.

184 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

4.	 Select an Azure subscription and Storage account name option from the
corresponding dropdowns and then click on Create:

Figure 7.8 – Creating a linked service for Azure Data Lake Storage Gen2

Important note
You can click on the Enter manually radio button to enter account details
manually.

Using sample scripts 185

5.	 Click on Linked services under the Manage hub in Synapse Studio to view your
newly created linked service:

Figure 7.9 – The Linked services tab that highlights the newly created linked service

In the next section, we are going to learn how to use different languages in a Synapse
notebook to perform various operations on the dataset.

Using sample scripts
Similar to sample data, Synapse provides a gallery of sample scripts. If you are new
to Synapse Spark, this could definitely be a great place to start. We are going to pick a
couple of scripts from the gallery to get ourselves acquainted with the different languages
supported by Synapse.

Before we can start reading the data from Azure Data Lake Gen2, we need to get a Shared
Access Signature (SAS) key for our blob storage. These keys will be used in our notebooks
to access the corresponding blob storages. We can do so by performing the following steps:

1.	 Go to your Azure Blob storage account on the Azure portal.

186 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

2.	 Click on Shared access signature, check the Container box under Allowed
resource types, and then click on Generate SAS and connection string:

Figure 7.10 – Generating an SAS for the Azure Blob storage account

In the sections that follow, we will learn about the different languages supported in a
Synapse notebook to read data from Azure Data Lake Gen2.

PySpark (Python)
We will create a new notebook to start from scratch. In order to create our new notebook,
we need to go through the following steps:

1.	 Log in to the Azure portal (https://portal.azure.com).

2.	 Navigate to your Synapse workspace and launch Synapse Studio.

3.	 Go to the Develop hub in Synapse Studio.

https://portal.azure.com

Using sample scripts 187

4.	 Click on + and select Notebook to create your blank notebook, as shown in
Figure 7.11:

Figure 7.11 – Creating a blank notebook in Synapse Studio
You can choose the default language for the notebook from the drop-down list;
however, you can use the Synapse Spark magic commands to switch to any other
language in any particular cell. For this example, we will select Scala as the default
language for our notebook. Click on the { } Add code link to add a new cell to
the notebook:

Figure 7.12 – Highlighting {} Add code button on the created notebook in Synapse Studio

188 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

In the following section, we will learn how we can read data from an Azure Data Lake
Storage Gen2 account using the Python (PySpark) language.

Reading data from Azure Data Lake Storage Gen2 using Python
We will start with the basic task of reading data from Azure Data Lake Storage Gen2.
We will select Python as the default language for this notebook. However, if your default
language is Scala or any other language, use the %%pyspark magic command to start
writing code in Python:

%%pyspark

blob_account_name = "testblobaccount"

blob_container_name = "testcontainer"

from pyspark.sql import SparkSession

#Creating Spark Session

sc = SparkSession.builder.getOrCreate()

token_library = sc._jvm.com.microsoft.azure.synapse.
tokenlibrary.TokenLibrary

blob_sas_token = token_library.
getConnectionString("AzureBlobStorage1")

#Reading data from blob and loading it to Spark DataFrame

spark.conf.set(

 'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_
container_name, blob_account_name),

 blob_sas_token)

df = spark.read.load('wasbs://testcontainer@testblobaccount.
blob.core.windows.net/austria.csv', format='csv'

If header exists uncomment line below

, header=True

)

display(df.limit(10))

Next, we will save the DataFrame in Resilient Distributed Dataset (RDD) format. RDD
is a collection of elements partitioned across the nodes of the cluster that can be operated
on in parallel.

You can run the following code snippet to save your data in RDD form in your Spark pool:

austin_RDD = df.rdd

type(austin_RDD)

Using sample scripts 189

Once your data is saved in the RDD form in Spark, you have the option to save the data
in any format as per your business requirements. In the following code snippet, first we
will define the target path and where we want to store the data in text format. You can also
create variables to define the file path instead of hardcoding the value in the code:

adls_path='wasbs://mycontainer@mystorageaccount.blob.core.

windows.net/'

text_path = adls_path + 'austintext.txt'

austin_RDD.saveAsTextFile(text_path)

df.write.csv('wasbs://mycontainer@mystorageaccount.blob.core.

windows.net/austria_csv.csv', mode = 'overwrite', header =

 'true')

You can also save your RDD in different formats. The following code block can be used to
save RDD in Parquet, JSON, or CSV files:

parquet_path = adls_path + 'austin_parquet.parquet'

json_path = adls_path + 'austin_json.json'

csv_path = adls_path + 'austin_csv.csv'

So now, your data is residing in a file saved on your Data Lake Gen2 storage account.
You can read this data for further explorations or data visualizations. Instead of creating
a DataFrame, you can also choose to create a managed Spark table in Azure Synapse
Analytics, and we are going to learn how to do that in the following section.

Creating a managed Spark table
There are primarily two types of Spark tables – external and managed. In this section,
we will learn how to create a managed Spark table. A Spark SQL table for which Spark
manages both the data and the metadata is known as a Spark managed table.

The following code block will create a Spark table in a Synapse workspace:

spark.sql("CREATE TABLE cities (name STRING, population INT)

USING PARQUET")

The following script can be used to ingest the records in this table:

spark.sql("INSERT INTO cities VALUES (\'Seattle\', 730400),

(\'San Francisco\', 881549), (\'Beijing\', 21540000),

(\'Bangalore\', 10540000)")

190 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

We can validate the records by running the display command, as highlighted in
Figure 7.13:

Figure 7.13 – Running Python script and displaying its result in Synapse Studio

In the following sections, we will use a couple of scripts similar to the Python script to
learn how to use Scala in Synapse Studio.

Spark (Scala)
We will select Scala as the default language for this notebook. Similar to the Python script,
we can use Scala to read data from Azure Data Lake Storage Gen2.

Reading data from Azure Data Lake Storage Gen2 using Scala
Data stored in an Azure Data Lake Storage Gen2 account can also be read using Scala,
similar to a Python application. In this case, too, we require a storage account name, a blob
container name, and a blob relative path, along with an SAS key to access the data. We are
going to use the same SAS key that we generated in the Using sample scripts section.

Modify the corresponding values in the following code block to read data from your
storage account:

// set blob storage account connection for open dataset

val hol_blob_account_name = "mystorageaccount"

val hol_blob_container_name = "myblobcontainer"

val hol_blob_relative_path = ""

Using sample scripts 191

val hol_blob_sas_token = "?sv=2019-12-
12&ss=bfqt&srt=c&sp=rwdlacupx&se=2020-11-15T07:13:44Z&st=2020-
11-14T23:13:44Z&spr=https&sig=%2FvxxFUcgAGc36SyUy%2BCKZzkVoh
YCuDHT4q8H%2BW36N1o%3D"

val hol_wasbs_path = f"wasbs://$hol_blob_container_name@$hol_
blob_account_name.blob.core.windows.net/$hol_blob_relative_
path"

spark.conf.set(f"fs.azure.sas.$hol_blob_container_name.$hol_
blob_account_name.blob.core.windows.net",hol_blob_sas_token)

Now, after setting the blob storage account connection, we will load the sample data into a
Spark DataFrame using the Scala language:

val hol_df = spark.read.parquet(hol_wasbs_path)

hol_df.show(5, truncate = false)

Figure 7.14 displays the records saved in the DataFrame:

Figure 7.14 – Displaying Scala code and its result set

192 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

You need to provide values for the storage account name, container name, and relative
path in the following code snippet to retrieve the path of your Azure Data Lake Storage
Gen2 account where you would like to save your files:

// set your storage account connection

val account_name = "" // replace with your blob name

val container_name = "" //replace with your container name

val relative_path = "" //replace with your relative folder path

val adls_path = f"abfss://$container_name@$account_name.dfs.
core.windows.net/$relative_path"

You can use the following script to save the DataFrame in different formats:

import org.apache.spark.sql.SaveMode

// set the path for the output file

val parquet_path = adls_path + "holiday.parquet"

val json_path = adls_path + "holiday.json"

val csv_path = adls_path + "holiday.csv"

hol_df.write.mode(SaveMode.Overwrite).parquet(parquet_path)

hol_df.write.mode(SaveMode.Overwrite).json(json_path)

hol_df.write.mode(SaveMode.Overwrite).option("header", "true").
csv(csv_path)

In the following section, we will learn how to create a DataFrame or Spark table using the
C# language in Azure Synapse Analytics.

.NET Spark (C#)
Synapse supports C# with Spark. This change makes work for developers who are already
comfortable with the language easier.

Creating Spark DataFrames using the CreateDataFrame API
In this example, we will be creating Spark DataFrames by using the CreateDataFrame
API. It accepts the data in the form of Row objects and returns a DataFrame object.

Using sample scripts 193

The following code block will create a DataFrame with Name and Age attributes:

List<StructField>()

{

 new StructField("Name", new StringType()),

 new StructField("Age", new IntegerType())

});

// Calling CreateDataFrame with the data and schema

DataFrame df = spark.CreateDataFrame(data, schema);

// Displaying the returned dataframe

df.Show();

Figure 7.15 displays the records stored in the DataFrame:

Figure 7.15 – Displaying a code block and the returned values in Synapse Studio

194 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

You can even create functions in a Synapse notebook. The following function can be used
to convert the Time column from StringType to TimestampType:

public DataFrame CastColumn(DataFrame df_, string colName,

string t)

{

 df_ = df_.WithColumn("NewCol__", df_[colName].Cast(t));

 df_ = df_.Drop(colName);

 df_ = df_.WithColumnRenamed("NewCol__", colName);

 return df_;

}

Now we have learned how we can use PySpark and Scala to read or write data to an Azure
Data Lake Storage Gen2 account. The following section outlines the use of Spark SQL in
the Synapse workspace.

Spark SQL
The Spark SQL syntax is similar to T-SQL; hence, you will not have difficulty in using this
as your primary language. However, keep in mind that Spark SQL does not support all the
features available in T-SQL. Spark SQL has another added advantage that we will learn
about gradually throughout this book.

In this section, we will select Spark SQL as the default language for our notebook.

Creating a managed Spark table using Spark SQL
The following script will create a managed table from Spark. The table is created in the
Synapse warehouse folder in your primary storage account. The table will be synchronized
and available in Synapse SQL pools:

CREATE TABLE cities

 (name STRING, population INT)

 USING PARQUET

You can go to your primary storage account to validate whether the table is created after
running the preceding Spark SQL code, which can be seen in Figure 7.16:

Using sample scripts 195

Figure 7.16 – Primary storage account showing the data available under the highlighted path

After creating the table, let's insert some records in it:

INSERT INTO cities VALUES ('Seattle', 730400),

('San Francisco', 881549), ('Beijing', 21540000),

('Bangalore', 10540000)

When you run any script in Spark SQL, you can see the Spark job running in the output
window. Once the job is complete, the Status field will be updated to Succeeded:

Figure 7.17 – Displaying INSERT script and the job execution status

196 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

Next, you can perform the SELECT operation on this table to validate whether the data
has been inserted correctly:

Figure 7.18 – Displaying the records on performing the SELECT operation on cities table

Similar to the managed Spark table, you can also create an unmanaged Spark table in
Synapse, which we will be looking at in the next section.

Creating an unmanaged Spark table
An unmanaged Spark table is also known as an external table. You can create external
tables from Spark by using Spark SQL. We need to provide a value for the LOCATION
parameter, which defines the path where the Spark table must be created:

CREATE TABLE cities

 (name STRING, population INT)

 USING PARQUET

 LOCATION '/datalake/cities'

 OPTIONS ('compression'='snappy')

Just as we can ingest data in an external table, in the same way, we can ingest the records
in the managed table:

INSERT INTO cities VALUES ('Seattle', 730400),

('San Francisco', 881549), ('Beijing', 21540000),

('Bangalore', 10540000)

Using sample scripts 197

You can also validate whether the file is present in the specified location. Go to the Linked
section of the Data tab in Synapse Studio and click on your primary storage account:

Figure 7.19 – Displaying files created under the specified path: filesystemdemo/datalake/cities

In Figure 7.20, we can view the data on a Synapse notebook as well:

Figure 7.20 – Displaying records present in the cities external table

In this chapter, we looked at just a couple of examples, but it is recommended to go
through all the sample scripts provided in the gallery of Synapse Studio. Make sure that
you delete your Spark pool and SQL pool after practicing all the sample scripts.

198 Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse

Summary
In this chapter, we learned how to use different languages in a Synapse notebook to
query data. Magic commands allow you to easily switch to any different language within
the same notebook. We covered how to use Azure Open Datasets within a Synapse
workspace. We also learned that a DataFrame or Spark table can be created using all the
supported languages in Azure Synapse Analytics. In this chapter, we learned how to read
data from Azure Data Lake Storage Gen2 accounts, how to create Spark DataFrames, and
how to create Spark tables using PySpark, Scala, or .NET languages. We also covered how
we can write data back to an Azure Data Lake Storage Gen2 account. Although we only
covered Azure Data Lake Storage Gen2, we can use a similar approach for accessing data
on blob containers.

So far, we have learned about using a Spark pool and SQL pool, and using different
languages against these pools. However, our next area of focus will be the reporting tool.

In the next chapter, we will learn how to connect Synapse data to Power BI and create
powerful reports.

8
Integrating a Power

BI workspace with
Azure Synapse

In the previous chapters, we learned about the concepts of SQL pool, Spark pool, and SQL
on-demand. We learned how to query our data in a Synapse notebook by using different
languages. Now, in this chapter, we are going to learn how we can add more value to this
data by integrating our Synapse workspace with Power BI. Azure Synapse gives you the
flexibility to bring Synapse data to your Power BI desktop as well. In this chapter, we will
learn how to use different endpoints to connect to the Power BI desktop. We are also
going to learn how to integrate the Power BI workspace with the Synapse workspace. This
chapter also outlines the steps for modifying Power BI reports directly in Synapse Studio
and publishing it back to the Power BI workspace. The topics covered in this chapter will
give you a fair understanding of integrating Power BI with Azure Synapse.

In this chapter, we will cover the following topics:

•	 Connecting to a Power BI workspace

•	 Creating your own dashboard on Azure Synapse

•	 Connecting Azure Synapse data to Power BI Desktop

200 Integrating a Power BI workspace with Azure Synapse

Technical requirements
Before you start orchestrating your data, there are certain prerequisites that you should
meet, including the following:

•	 You should have your Azure subscription, or access to any other subscription, with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a Spark pool and SQL pool on Azure Synapse. This has been covered in
Chapter 2, Considerations for your compute environment.

•	 You should have access to the Power BI workspace and a basic knowledge of Power
BI Desktop and the Power BI service.

•	 Download the financial sample file (shared by Microsoft) from the following
location (https://go.microsoft.com/fwlink/?LinkID=521962) and
save it on your local machine.

Connecting to a Power BI workspace
Azure Synapse gives you the flexibility to connect to your Power BI workspace, which
means you need to have your own Power BI workspace, or you must access the Power BI
workspace to utilize this feature. Once you are connected to the Power BI workspace, you
can view and modify your reports directly from the Synapse workspace. In this section, we
are going to learn about working with Power BI reports within Synapse Studio.

We will perform the following steps to connect our Synapse workspace to the Power BI
workspace:

1.	 Go to your Synapse workspace and click on the Open Synapse Studio link, as
highlighted in Figure 8.1:

https://go.microsoft.com/fwlink/?LinkID=521962

Connecting to a Power BI workspace 201

Figure 8.1 – Azure Synapse workspace highlighting the link to Open Synapse Studio

2.	 In Synapse Studio, click on the Visualize tab on the Home page, as shown in Figure
8.2, or go to the Manage tab in Synapse Studio and then go to the Linked Services
section to add a new linked service:

Figure 8.2 – Synapse Studio highlighting the Visualize link

3.	 Provide an appropriate name and description for the Power BI workspace. This
name can be different to the actual Power BI workspace name.

202 Integrating a Power BI workspace with Azure Synapse

4.	 Select Tenant and Workspace name from the drop-down lists and then click on Create:

Figure 8.3 – Connecting a Power BI workspace to Azure Synapse

5.	 Click on the Develop tab to verify whether you can see your Power BI workspace
under the Power BI section. You should be able to see Power BI datasets and
Power BI reports associated with your Power BI workspace:

Figure 8.4 – Power BI workspace within Synapse Studio

Now that we have connected our Synapse workspace to the Power BI workspace, it's time
to create some valuable reports to visualize our data.

Creating your own dashboard on Azure Synapse 203

Creating your own dashboard on Azure Synapse
Before we can start creating our Power BI reports, we need to create our datasets to visualize
the data through Power BI reports. So, we will divide this section into two subsections. First,
we will learn how to create a new Power BI dataset in Azure Synapse and then we will learn
how to create a Power BI report.

Creating new Power BI datasets
We need to add a Power BI dataset from a data source and publish it to Power BI to build
reports in Azure Synapse Studio. We can add the dataset directly to the Power BI service or we
can add a dataset to the Power BI Desktop version and then publish it to the Power BI service.

The following section comprises the steps for adding data from a sample Excel file from a
local machine as a new dataset to the Power BI service.

Adding a dataset to the Power BI service
In order to add a new dataset to the Power BI service, sign in to https://powerbi.com
and click on your workspace:

1.	 Click on + New, which is on top of the screen and select Dataset from the list of all
available options:

Figure 8.5 – Creating a new dataset in the Power BI workspace

https://powerbi.com

204 Integrating a Power BI workspace with Azure Synapse

2.	 There are various ways in which to create your dataset, as highlighted in the
following screenshot, but we are going to select Files for our example. Therefore,
click on the Get tab, which is under the Files tab:

Figure 8.6 – Creating datasets from files

3.	 Click on Local File and select the Financial Sample.xlsx file from your local
machine. You need to have downloaded the Financial Sample.xlsx file as
mentioned in the Technical requirements section before performing this step:

Figure 8.7 – Choosing the desired file from your local machine

Creating your own dashboard on Azure Synapse 205

4.	 Select the Financial Sample.xlsx file from your local machine.

5.	 You can decide how you want to use the data in Power BI. You can choose to
import the Excel data to Power BI or you can import the Excel file into Power BI to
view and interact with it, just as you would in Excel Online. Next, let's click on the
Import tab to bring data into Power BI, as shown in Figure 8.8:

Figure 8.8 – Options to import Excel data into Power BI

6.	 Now, we will go back to Synapse Studio and refresh Power BI datasets to validate
whether we are able to see the dataset that we created in Power BI:

Figure 8.9 – The Power BI dataset in Synapse Studio

You can click on the Power BI icon next to your dataset to create a new Power BI report
for the selected dataset.

206 Integrating a Power BI workspace with Azure Synapse

Adding a dataset to your Power BI desktop
Similar to Power BI online, we can add the dataset to the Power BI desktop. We need to
have Power BI installed on our local machine to begin with. You can download the Power
BI Desktop executable file from the following link: https://www.microsoft.com/
download/details.aspx?id=58494:

1.	 Open your Power BI desktop application on your local machine.

2.	 Click on the Get data icon at the top of the screen, as highlighted in Figure 8.10:

Figure 8.10 – Adding a new dataset to Power BI Desktop

3.	 Click on Excel and then select the Financial Sample.xlsx file that you
downloaded earlier in the Technical requirements section.

4.	 Select financials on the next screen and then click on Load:

https://www.microsoft.com/download/details.aspx?id=58494
https://www.microsoft.com/download/details.aspx?id=58494

Creating your own dashboard on Azure Synapse 207

Figure 8.11 – Loading the data available in the financials sheet

5.	 Now that your dataset has been added to Power BI Desktop, it's time to publish your
Power BI file to the Power BI service. Click on the Publish icon, which is on the top
of the screen.

208 Integrating a Power BI workspace with Azure Synapse

6.	 Provide a username to sign in to your account where you have created your Power
BI workspace:

Figure 8.12 – Signing in to Power BI Desktop

7.	 Select the destination where you want to publish your Power BI report and click on
Select. It may take a couple of seconds based on your data volume. Then, you will be
able to see a Success! notification, as shown in Figure 8.13:

Figure 8.13 – Success notification indicating that the file has been
successfully published to the Power BI service of Azure synapse

Creating your own dashboard on Azure Synapse 209

8.	 Now that the Power BI report has been published, we can validate it in Synapse
Studio. Click on the Develop tab in Synapse Studio and refresh the Power BI
datasets to view the newly added dataset.

Now that we have our reports published on the Power BI workspace, it's time to start
adding charts to these reports for visualization in Synapse Studio.

Creating Power BI reports
We can create Power BI reports either on the Power BI service, Power BI Desktop, or
directly on Synapse. If you create a report on Power BI Desktop, you need to publish the
file to your workspace and you will be able to see all the changes automatically in Synapse
Studio. As we have already published our Power BI Desktop file, we will see a new report
appearing under the Power BI Reports section.

Click on Power BI experience under the Develop hub of Synapse Studio and you will get
a blank report, as shown in Figure 8.14:

Figure 8.14 – A screenshot of the Power BI report appearing in Synapse Studio

210 Integrating a Power BI workspace with Azure Synapse

However, if you create any report in Synapse Studio, it will automatically be reflected in
your Power BI workspace. In this section, we are going to learn how to create reports in
Synapse Studio:

1.	 Click on the Financial Sample report under the Power BI reports section under the
Develop tab of Synapse Studio. You will see a blank report appear on your screen.
Let's start creating new reports here.

2.	 Click on the Visualizations tab in the Power BI window and then click on the
stacked bar chart.

3.	 Next, add Sales to the Values field and Country to the Axis field.

4.	 After adding the report to Power BI, click on the Save icon in the top-right corner
to save all the changes:

Figure 8.15 – A screenshot of the Power BI report created in Synapse Studio

5.	 Now, let's go to the Power BI service to validate whether you can see these charts
added to the report published in the Power BI workspace:

Connecting Azure Synapse data to Power BI Desktop 211

Figure 8.16 – A screenshot of the Sales by Country chart on the Power BI service

Now we know how to bring Power BI data and reports to Azure Synapse, but we still need
to know how to connect Azure Synapse data to Power BI Desktop. When you publish
this Power BI desktop to your Power BI workspace, you will be able to generate Power BI
reports directly in Synapse Studio, and this time the data source will also be Synapse.

So far, we have learned how to create Power BI visualizations in Synapse Studio using the
data from various data sources, but in the following section, we are going to learn how to
bring data from Synapse SQL pools to Power BI Desktop.

Connecting Azure Synapse data to Power BI
Desktop
Before we proceed further on this topic, it is important to understand what the different
end points in the Synapse workspace are. When you go to your Synapse workspace within
the Azure portal, you can see all the details pertaining to the workspace in the Overview
section of the Synapse workspace.

212 Integrating a Power BI workspace with Azure Synapse

In this section, we will learn about all the endpoints related to the Synapse workspace, as
seen in the following screenshot:

Figure 8.17 – A screenshot of the Synapse workspace in the Azure portal highlighting
different endpoints

To ensure that you are able to navigate the workspace without limitations and that
functionality is not limited, ensure that the following URLs are accessible on port 80 and
443, respectively.

Important note
In the event that you try and connect to your SQL pool or SQL on-demand
database in your Synapse workspace after creating it, you could experience a
network error or AJAX error. This prevents you from accessing the database
objects, executing scripts, or viewing objects within the Synapse workspace.
To mitigate these issues, allow access to the services on ports 443 and 1433,
which would grant access to the web endpoint of the database services.

Go through the following bullets to understand the significance of all the endpoints in
Azure Synapse Analytics. These are generic URLs where you just need to replace the *
icon with your Synapse workspace name:

•	 https://web.azuresynapse.net: This will redirect you to your Azure
Synapse workspace and you need to select Azure Active Directory, Subscription,
and Workspace name to access your workspace:

https://web.azuresynapse.net

Connecting Azure Synapse data to Power BI Desktop 213

Figure 8.18 – Providing the details to access your Azure Synapse workspace

•	 https://*.dev.azuresynapse.net: This is a development endpoint, and
you can ascertain the URL for this endpoint in the Overview section of your
Synapse workspace within the Azure portal, as highlighted in Figure 8.17.

•	 https://*.database.windows.net: This endpoint can be used to access the
provisioned SQL pool from any application; you just need to provide your Synapse
workspace name in place of *.

•	 https://*-ondemand.database.windows.net: This endpoint is similar
to the preceding endpoint. However, this endpoint will connect to a serverless
SQL pool in Azure Synapse. Make sure you replace * with your Azure Synapse
workspace name.

•	 https://*.sql.azuresynapse.net: This endpoint can also be used to access
the provisioned SQL pool from any application. This is also known as a dedicated
SQL endpoint and you can find the endpoint available in your Synapse workspace
within the Azure portal, as highlighted in Figure 8.17.

•	 https://*-ondemand.sql.azuresynapse.net: This endpoint can also
be used to access a serverless SQL pool in Azure Synapse. This is also known as a
serverless SQL endpoint, and you can find the endpoint available in your Synapse
workspace within the Azure portal, as highlighted in Figure 8.17.

214 Integrating a Power BI workspace with Azure Synapse

Now that we understand all the endpoints, we will be able to connect to these endpoints
using Power BI. The following section outlines how to use a dedicated SQL endpoint with
Power BI Desktop.

Connecting to a Synapse-dedicated SQL pool
Data stored in the dedicated SQL pools of Synapse Analytics can be used to create
visualizations using Power BI. A dedicated SQL pool in Azure Synapse is nothing other than
an Azure SQL Data warehouse and reports play a critical role in analyzing data stored in
data warehouses. You can follow the same steps that you would do for connecting Power BI
to Azure SQL DW:

1.	 Open the Power BI Desktop application and select Get data.
2.	 Select Azure Synapse Analytics (SQL DW) from the list of all data sources available:

Figure 8.19 – A screenshot of available data sources in Power BI Desktop

Connecting Azure Synapse data to Power BI Desktop 215

3.	 Type the dedicated SQL endpoint in the Server field and then type the database
name. Select the Import option and then select OK:

Figure 8.20 – Connecting Azure Synapse Analytics (SQL DW) data to Power BI Desktop

4.	 Select the preferred authentication method. In this example, we will select Database.
Type User name and Password for the authentication and click on Connect:

Figure 8.21 – Providing authentication details for connecting a serverless SQL pool to Power BI

5.	 Select your view, and then click on Load.

In the following section, we will learn that we can perform data visualizations on the data
residing in a serverless SQL pool as well.

216 Integrating a Power BI workspace with Azure Synapse

Connecting to a Synapse serverless SQL pool
Similar to a dedicated SQL pool, we can use a serverless SQL endpoint to connect
serverless SQL pool data to Power BI desktop. Before we proceed further, we will try
to create a view in a serverless SQL pool by using the same example as provided in the
Microsoft documentation.

Follow these steps to create a view on a serverless SQL pool and then bring in the data
from this view to Power BI Desktop to create visualizations:

1.	 Open any SQL query tool, SQL Server Management Studio (SSMS), or Azure Data
Studio and connect it to a serverless SQL pool using the serverless SQL endpoint.

2.	 Open a new query window and run the following code against the master database:

-- Drop database if it exists

DROP DATABASE IF EXISTS Demo

GO

-- Create new database

CREATE DATABASE [Demo];

GO

3.	 After creating the database, run the following script against the Demo database in
SSMS to create a view, usPopulationView, on a serverless SQL pool:

-- There is no credential in data source. We are using
public storage account which doesn't need a secret.

CREATE EXTERNAL DATA SOURCE AzureOpenData

WITH (LOCATION = 'https://azureopendatastorage.blob.
core.windows.net/')

GO

DROP VIEW IF EXISTS usPopulationView;

GO

CREATE VIEW usPopulationView AS

SELECT

 *

FROM

 OPENROWSET(

Connecting Azure Synapse data to Power BI Desktop 217

 BULK 'censusdatacontainer/release/us_population_
county/year=20*/*.parquet',

 DATA_SOURCE = 'AzureOpenData',

 FORMAT='PARQUET'

) AS uspv;

4.	 Let's validate Records by running a SELECT statement on usPopulationView
in SSMS:

Figure 8.22 – Displaying the result set of the usPopulationView view in SSMS
Now that we have created a usPopulationView view in a serverless SQL pool,
we will try bringing data from this view to Power BI Desktop:

218 Integrating a Power BI workspace with Azure Synapse

5.	 Open the Power BI Desktop application and select Get data:

Figure 8.23 – A screenshot of Power BI Desktop connecting to a data source using the Get data tab

6.	 Select Azure SQL Database from the list of all data sources available.

7.	 Type the serverless SQL endpoint in the Server field, and then type the database
name. Select the Import option and then select OK.

8.	 Select the preferred authentication method. In this example, we will select
Database. Type your details into the User name and Password fields for the
authentication and then click on Connect:

Figure 8.24 – Providing authentication details for connecting a serverless SQL pool to Power BI

Connecting Azure Synapse data to Power BI Desktop 219

9.	 Select your view, and then click on Load.

10.	 Wait for the operation to complete, and then a popup will appear stating
There are pending changes in your queries that haven't been applied. Select
Apply changes.

11.	 Wait for the Apply query changes dialog box to disappear, which may take a
few minutes.

12.	 Once the load completes, select the Filled map visualization and then select the
countyName, population, and stateName columns in the same order to create the
report, as shown in the following screenshot in Figure 8.25.

13.	 After making all the required changes, you can publish this report to your workspace:

Figure 8.25 – A screenshot of the Power BI report generated by using the view created in
a SQL serverless pool

Important note
As of now, you cannot connect Synapse Spark data to Power BI.

220 Integrating a Power BI workspace with Azure Synapse

Summary
In this chapter, we learned how to integrate Power BI with Azure Synapse. Azure Synapse
has made it really convenient to keep data, analysis, and visualizations together. Now, we
do not need to go to the Power BI tool to generate a report using Synapse data.

Aside from a dedicated SQL pool, Synapse also enables us to create reports by using
serverless SQL pool data as well. Thus, by using Azure Synapse, we can read the data
directly from Azure Data Lake Gen2, create a view on top of that data, and create
visualizations in Power BI, in just a couple of minutes. In this chapter, not only did we
learn about integrating the Power BI workspace with your Synapse workspace, but also
how to create or modify reports directly in Synapse Studio. This chapter also outlined how
to create visualizations for the data stored in Synapse SQL pools.

In the next chapter, we are going to learn how to use Azure Synapse to perform real-time
analytics on streaming data.

9
Perform real-time

analytics on
streaming data

Azure Synapse has various built-in features that allow us to perform end-to-end
analysis on our data. One of the best features is the integration of Azure Synapse with
Azure Cosmos DB via Azure Synapse Link. It removes the pain of bringing data from
transactional data stores to analytical data stores using an ETL tool. You can read more
about this in Chapter 5, Using Synapse Link with Azure Cosmos DB. In this chapter, we are
going to use this feature to learn how to perform real-time analytics on streaming data
in Azure Synapse. We are also going to learn how to use Azure Stream Analytics jobs to
copy streaming data from Event Hubs to Azure Data Lake Storage Gen2. There is also a
brief section in this chapter on Azure Databricks. We will create a simple C# application
to generate streaming data that will be ingested in a Cosmos DB transactional store, and
finally, we will access this data in Synapse through the analytical store of Cosmos DB. We
will also learn how to generate Power BI reports using data on Synapse.

222 Perform real-time analytics on streaming data

The topics covered in this chapter will help you perform end-to-end real-time data
analysis and are as follows:

•	 Understanding the architecture and components

•	 Bringing data to Azure Synapse

•	 Implementation of real-time analytics on streaming data

Technical requirements
Before you start orchestrating your data, here are the prerequisites that you need to meet:

•	 You should have access to your Azure subscription or any other subscription with
contributor-level access.

•	 Create a Synapse workspace using your subscription. You can follow the
instructions from Chapter 1, Introduction to Azure Synapse, to create your
Synapse workspace.

•	 Create a Spark pool and SQL pool on Azure Synapse. This has been covered in
Chapter 2, Considerations for your compute environment.

•	 You should have already created your Azure Cosmos DB account; make sure
you have enabled your analytical store using your Azure Cosmos DB account. To
learn more about this, you can refer to Chapter 5, Using Synapse Link with Azure
Cosmos DB.

•	 Download Power BI Desktop to your machine and make sure you have access to the
Power BI workspace, where you can publish your Power BI Desktop file.

Understanding various architecture and
components
Azure provides various data services that can be used to perform real-time analytics in
different ways. In this section, we will learn about two different architectures and how
different components are stitched together in both of these architectures to deliver the
end result.

There are various use cases for real-time analytics, including the following:

•	 Anomaly detection: This technique is used to identify unusual behavior or patterns
that raises suspicions because of a significant difference from the rest of the data.

Understanding various architecture and components 223

•	 Supply chain analytics: This process is used to increase operational effectiveness by
using data and quantitative methods for decision making.

•	 Real-time personalization: This technique is used to gather information about the
user visiting your website and engage that user by providing tailored content on the
website based on their company, location, digital behavior, and so on.

The architecture shown in Figure 9.1 can be used for any of the use cases mentioned in the
preceding list. This architecture consists of a data ingestion layer, a data storage layer, and
a visualization layer:

Figure 9.1 – Architecture for real-time analytics on Azure using Azure Synapse Link

You can use an online application, Azure Data Factory or Azure Stream Analytics, to
stream the data to the Azure Cosmos DB transactional store. If you have enabled the
analytical store on your Azure Cosmos DB account, then your analytical store will
automatically be kept in sync with your transactional store in Azure Cosmos DB. The
next step is to connect Azure Synapse with the analytical store of your Azure Cosmos
DB container. You can refer to the following link (https://docs.microsoft.com/
azure/cosmos-db/synapse-link-use-cases#supply-chain-analytics-
forecasting--reporting) to learn more about this architecture. However, we will
try to implement this architecture end to end in the upcoming Implementation of real-time
analytics on streaming data section.

https://docs.microsoft.com/azure/cosmos-db/synapse-link-use-cases#supply-chain-analytics-forecasting--reporting
https://docs.microsoft.com/azure/cosmos-db/synapse-link-use-cases#supply-chain-analytics-forecasting--reporting
https://docs.microsoft.com/azure/cosmos-db/synapse-link-use-cases#supply-chain-analytics-forecasting--reporting

224 Perform real-time analytics on streaming data

We can use a different approach for real-time analytics by using Synapse. Instead of
feeding data to the Azure Cosmos DB account, we can ingest the data to Azure Data Lake
Storage Gen2. We can also use Azure Databricks to access the data stored on Azure Data
Lake Storage Gen2 and implement business logic on that data before sending it to Azure
Synapse. The architecture in the following screenshot displays the overall journey of the
data, from one end to the other. You can learn more about this architecture by using
the following link: https://docs.microsoft.com/azure/architecture/
solution-ideas/articles/real-time-analytics:

Figure 9.2 – Architecture for real-time analytics using Azure Databricks, Cosmos DB, and Synapse

Both the architectures shown in Figure 9.1 and Figure 9.2 are just examples; you can use
Azure services the way your business demands.

In the next section, we will find different ways to bring data to Azure Synapse, and later,
we will see an end-to-end implementation of the first architecture that we saw in Figure
9.1 in this section.

https://docs.microsoft.com/azure/architecture/solution-ideas/articles/real-time-analytics
https://docs.microsoft.com/azure/architecture/solution-ideas/articles/real-time-analytics

Bringing data to Azure Synapse 225

Bringing data to Azure Synapse
In the Understanding the architecture and components section, we saw how architectures
use different Azure services to perform real-time analytics on Azure. In this section, our
main focus is to bring data from all data sources to Azure Synapse. We are going to learn
about bringing data to Azure Synapse by using Azure Stream Analytics jobs, and later we
will see how we can use Azure Databricks to copy data to Azure Synapse.

Using Azure Stream Analytics
Azure Stream Analytics is a real-time analytics engine that is designed to process a large
volume of streaming data from various sources to various targets. Within Azure Stream
Analytics, you can create an Azure Stream Analytics job that consists of an input, a query,
and an output. You can use the Stream Analytics job to ingest data directly from the
source to the target as is, or you can perform certain aggregation operations on the input
data before sending it to the target.

These are the following instructions to ingest data to Azure Synapse Analytics (formerly
SQL DW) using Azure Stream Analytics:

1.	 Go to the Azure portal at https://portal.azure.com, and click on the
Create a resource link.

2.	 Search for Stream Analytics job in the search bar and select it from the drop-down
list of the search bar.

3.	 You can go through the overview of the Stream Analytics job on the next screen
before clicking on the Create button.

4.	 Provide an appropriate Job name value for your Stream Analytics job, and select
your Subscription, Resource Group, and Location values.

5.	 In this example, we are going to use Cloud for Hosting Environment, but feel free
to use Edge as per your business needs.

https://portal.azure.com

226 Perform real-time analytics on streaming data

6.	 Enter the appropriate value for Streaming units as per your requirements and click
on Create:

Figure 9.3 – Creating the Stream Analytics job in the Azure portal

7.	 It will take a couple of seconds to create the Stream Analytics job, after which we are
going to add details to this job. Go to your Stream Analytics job, click on the Inputs
tab, and click on + Add stream input.

8.	 You can select Event Hub, IoT Hub, or Blob storage/ADLS Gen2 from the drop-
down list; for this example, let's select Event Hub:

Bringing data to Azure Synapse 227

Figure 9.4 – Providing input for the Stream Analytics job

9.	 Next, provide connection details for Event Hub and click on OK.

10.	 Now, let's create an output for this job. Click on the Outputs tab on your Stream
Analytics job and click on +Add.

11.	 Select Azure Synapse Analytics (formerly SQL DW) from the drop-down list.
However, you can send data directly to ADLS Gen2 as well:

Figure 9.5 – Providing output for the Stream Analytics job

228 Perform real-time analytics on streaming data

12.	 Next, provide an appropriate Output alias value.

13.	 Provide details for Subscription, Database, Table, Username, and Password.

14.	 After verifying all the details, click on Save.

15.	 Now we are all set to run our business logic in the Query tab. Click on the Query
tab of your Stream Analytics job, and you will see the following script already
created for you:

SELECT

 *

INTO

 [YourOutputAlias]

FROM

 [YourInputAlias]

16.	 You can change the name of YourOutputAlias and YourInputAlias as per
your business needs:

Figure 9.6 – Writing a query to create a Stream Analytics job

Bringing data to Azure Synapse 229

Now that your data has come to Azure Synapse, you can perform various operations, such
as transformations, analytics operations, and more, on this data, which is now residing
within Azure Synapse.

This is one of the best possible ways to ingest streaming data to Azure Synapse; however,
there are a couple of other ways as well that might be better suited for your business needs,
and we are going to talk about those options in the following subsection.

Using Azure Databricks
Azure Databricks is a data analytics platform optimized for the Microsoft cloud platform.
You can create an Azure Databricks notebook to set up a connection with Event Hubs and
read data directly from there. You can perform various operations on the data coming
from Event Hubs, such as calculating aggregations, plotting charts, running Cognitive
Services, and so on. You can also ingest the transformed data to Azure Synapse to be
consumed further by Azure Analysis Services and Power BI.

In the previous section, we learned how to use an Azure Stream Analytics job to bring
data to Azure Synapse Analytics, and now, in this section, we will learn how can we use
Azure Databricks to access data from Event Hubs and write it to Azure Synapse using
Structured Streaming in Scala and Python notebooks.

We need the following in order to access Event Hubs from Azure Databricks:

•	 An Azure Event Hubs namespace

•	 An event hub within the namespace

•	 A connection string to access the Event Hubs namespace

•	 A shared access policy name and a policy key for Event Hubs

After capturing all the preceding information, we will fill in the corresponding values in
the following Scala code snippet:

import org.apache.spark.eventhubs._

 import com.microsoft.azure.eventhubs._

 // Build connection string with the above information

 val namespaceName = ''<EVENT HUBS NAMESPACE>''

 val eventHubName = ''<EVENT HUB NAME>''

 val sasKeyName = ''<POLICY NAME>''

 val sasKey = ''<POLICY KEY>''

230 Perform real-time analytics on streaming data

 val connStr = new com.microsoft.azure.eventhubs.
ConnectionStringBuilder()

 .setNamespaceName(namespaceName)

 .setEventHubName(eventHubName)

 .setSasKeyName(sasKeyName)

 .setSasKey(sasKey)

 val customEventhubParameters = \

 EventHubsConf(connStr.toString()).setMaxEventsPerTrigger(5)

 val incomingStream = spark.readStream.
format(''eventhubs'').options(customEventhubParameters.toMap).
load()

 incomingStream.printSchema

 // Sending the incoming stream into the console.

 // Data comes in batches! incomingStream.writeStream.
outputMode(''append'').format(''console'').option(''truncate'',
false).start().awaitTermination()

You can learn more about this by going through the following link (https://docs.
microsoft.com/azure/databricks/scenarios/databricks-stream-
from-eventhubs), where Twitter data has been used as a use case for streaming data
into Azure Databricks using Event Hubs.

You can write data to Azure Synapse from Azure Databricks by using Structured Streaming
in Scala and Python notebooks. PolyBase or COPY are used by the Azure Synapse
connector to transfer high volumes of data between a Databricks cluster and an Azure
Synapse instance. Let's go through the following steps to ingest the data from Databricks to
Azure Synapse. You can modify the Python code snippet as per your environment:

1.	 Set up the blob storage account access key in the notebook session config:

spark.conf.set(

 ''fs.azure.account.key.<your-storage-account-name>.
blob.core.windows.net'',

 ''<your-storage-account-access-key>'')

https://docs.microsoft.com/azure/databricks/scenarios/databricks-stream-from-eventhubs
https://docs.microsoft.com/azure/databricks/scenarios/databricks-stream-from-eventhubs
https://docs.microsoft.com/azure/databricks/scenarios/databricks-stream-from-eventhubs

Implementation of real-time analytics on streaming data 231

2.	 Prepare the streaming source; this could be Kafka or a simple rate stream:

df = spark.readStream \

 .format(''rate'') \

 .option(''rowsPerSecond'', ''100000'') \

 .option(''numPartitions'', ''16'') \

 .load()

3.	 Apply some transformations to the data and then use the Structured Streaming API
to continuously write the data to a table in Azure Synapse:

df.writeStream \

 .format(''com.databricks.spark.sqldw'') \

 .option(''url'', ''jdbc:sqlserver://<the-rest-of-the-
connection-string>'') \

 .option(''tempDir'', ''wasbs://<your-container-
name>@<your-storage-account-name>.blob.core.windows.
net/<your-directory-name>'') \

 .option(''forwardSparkAzureStorageCredentials'',
''true'') \

 .option(''dbTable'', ''<your-table-name>'') \

 .option(''checkpointLocation'', ''/tmp_checkpoint_
location'') \

 .start()

To learn more about this connector, you can refer to the following link: https://docs.
databricks.com/data/data-sources/azure/synapse-analytics.html.

After learning about the architecture and various components that make real-time
analytics possible on the Azure platform, it's time to learn how to implement this solution
end to end in your environment.

Implementation of real-time analytics on
streaming data
In this section, we are going to learn about a step-by-step process for implementing real-
time analytics using Azure Synapse. We are taking Figure 9.1 as our reference architecture.
There are various stages involved in implementing this architecture, and we will go
through all these steps in this section. We will learn how to configure all the required
resources according to your environment.

https://docs.databricks.com/data/data-sources/azure/synapse-analytics.html
https://docs.databricks.com/data/data-sources/azure/synapse-analytics.html

232 Perform real-time analytics on streaming data

Before jumping to the analytics part, we will learn how to ingest data to an Azure Cosmos
DB account.

Ingesting data to Cosmos DB
There are various ways to ingest streaming data to Azure Cosmos DB; however, in this
section, we are going to use an online application sample to ingested streaming data to the
Azure Cosmos DB account.

Follow the instructions to start streaming the data to your Cosmos DB account:

1.	 Go to your Azure Cosmos DB account in the Azure portal and click on the Data
Explorer tab.

2.	 Click on the New Container tab at the top of the screen and create a new container
called CovidData with demodb as the database ID and /country as Partition key.
Next, click on the Provision dedicated throughput for this container checkbox,
and make sure that the Analytical store radio button is set to On:

Figure 9.7 – Creating a new container in Azure Cosmos DB

3.	 Download the solution ZIP file from the following link and extract all the
files and save them on your local machine: https://github.com/
PacktPublishing/Limitless-Analytics-with-Azure-Synapse/
blob/master/Chapter%2009%20-%20StreamToCosmos.zip.

4.	 Open Visual Studio on your machine and click on File | Open | Project/Solution to
open the solution file that you extracted in the preceding step.

5.	 Right-click on your project and click on Build to build your project.

https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2009%20-%20StreamToCosmos.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2009%20-%20StreamToCosmos.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2009%20-%20StreamToCosmos.zip

Implementation of real-time analytics on streaming data 233

6.	 Double-click on the Program.cs file to open this file in Visual Studio:

Figure 9.8 – The StreamToCosmos project in the Visual Studio

7.	 Copy EndPointURI and the primary AccessKey from your Cosmos DB account
and paste them in the following code:

 // The Azure Cosmos DB endpoint for running this
sample.

 private static readonly string EndpointUri =
''<end point URL>'';

 // The primary key for the Azure Cosmos account.

 private static readonly string PrimaryKey =
''<primarykey>'';

8.	 After making the changes, build the project once again and click on the Start
button, which is at the top of the Visual Studio screen.

Important note
We have used COVID sample data (https://pandemicdatalake.
blob.core.windows.net/public/curated/covid-19/
ecdc_cases/latest/ecdc_cases.json) to feed into this
application. It has 60,000 records and the application has been set to push each
record at a 1-second interval, so the application will keep running for 60,000
seconds until stopped manually.

https://pandemicdatalake.blob.core.windows.net/public/curated/covid-19/ecdc_cases/latest/ecdc_cases.json
https://pandemicdatalake.blob.core.windows.net/public/curated/covid-19/ecdc_cases/latest/ecdc_cases.json
https://pandemicdatalake.blob.core.windows.net/public/curated/covid-19/ecdc_cases/latest/ecdc_cases.json

234 Perform real-time analytics on streaming data

You can see that the application is running on Visual Studio and the data is being copied
to the Cosmos DB account in Figure 9.9:

Figure 9.9 – Azure Cosmos DB account receives data from the application

Now you can go to your Cosmos DB account to verify whether data is being pushed
there correctly.

This is only an example of how to stream data to your Cosmos DB account; however, feel
free to use Data Factory, Stream Analytics, or any other method to stream the data to your
Azure Cosmos DB account. But one important thing that we should always keep in mind
is that an analytical store must be enabled for this Cosmos DB account.

Next, we will see how to make sure that data is in sync between the transactional and
analytical stores of your Azure Cosmos DB account.

Accessing data from the Azure Cosmos DB analytical
store in Azure Synapse
We're about halfway through the steps, and now it's time to read Cosmos DB data from
the Synapse notebook. We will be using the OPENROWSET function to read the data from
the Cosmos DB container.

Implementation of real-time analytics on streaming data 235

You can follow these instructions to query your data using Synapse:

1.	 Go to your Synapse workspace in the Azure portal and click on Synapse Studio.

2.	 Click on the Develop tab and click on the + icon to create a new SQL script.

3.	 Paste the following code in this cell and replace the values for SECRET and
CONNECTION with the corresponding values of your Azure Cosmos DB account:

SELECT TOP 10 *

FROM OPENROWSET(

 'CosmosDB',

 'Account=cosmosdbdemoacnt;Database=
demodb;Key=DLrm2Bt1uKj2rb4TU49qxzvsBJrgD1yzECnkh
pIQObmLTzBxsZxM0PtlhtbS407ceMLYkMdFdBTFwO9PwPgCIw==',

 CovidData

) with (date_rep varchar(20), cases bigint, geo_
id varchar(6)) as rows

In Figure 9.10, you can see the data in Synapse Studio directly, which is streaming in
from the Azure Cosmos DB account from the .NET console application:

Figure 9.10 – The COVID data in Synapse Studio being fetched from the
Cosmos DB account

236 Perform real-time analytics on streaming data

Now that you have got the data in Azure Synapse, you can perform machine learning
operations on it. But we will be learning how to use Azure Machine Learning with Azure
Synapse in our next chapter, Chapter 10, Generate Powerful insights on Azure Synapse
using Azure ML.

Loading data to a Spark DataFrame
The following Python syntax can be used to load Cosmos DB data to a Spark DataFrame
without impacting the transactional store:

df = spark.read.format(''cosmos.olap'')\

 .option(''spark.synapse.linkedService'', ''<enter linked
service name>'')\

 .option(''spark.cosmos.container'', ''<enter container
name>'')\

 .load()

You can visualize the data directly in Synapse notebooks; however, you can generate
Power BI reports to visualize your data as well. If you have the Power BI Premium license,
you will be able to share these reports with other colleagues as well.

Creating visualizations
You can create Power BI reports using the data transformed in your Synapse dedicated
SQL pool or Synapse Serverless SQL pool; however, as of now, you cannot create Power BI
reports against your Synapse Spark pool.

I suggest that you go through Chapter 8, Integrating a Power BI workspace with Azure
Synapse, before you proceed further in this section.

Make sure that you have access to the Power BI workspace before we proceed further. You
can go through the following instructions to visualize the report on Power BI Desktop:

1.	 Go to your Synapse workspace and copy the Serverless Copy endpoint to your
clipboard. We could create a view directly in Synapse Studio; however, we will
perform the same operation using the SQL Server Management Studio (SSMS)
tool instead.

2.	 Open SSMS on your machine and connect to the Serverless endpoint that you
copied in the preceding step.

Implementation of real-time analytics on streaming data 237

3.	 Open a new query window and run the following script to create a new
DemoDB database:

CREATE DATABASE DemoDB

4.	 Right-click on the demodb database from Object Explorer and click on
New Query:

Figure 9.11 – Creating a new database using SSMS

5.	 Paste the following script and execute this script to create a vwCovidData view,
but do not forget to change the Cosmos DB account name and the corresponding
access key:

CREATE OR ALTER VIEW vwCovidData

AS

SELECT *

FROM OPENROWSET(

 'CosmosDB',

238 Perform real-time analytics on streaming data

 'Account=cosmosdbdemoacnt;Database=demodb
;Key=DLrm2Bt1uKj2rb4TU49qxzvsBJrgD1yzECnkhpIQO
bmLTzBxsZxM0PtlhtbS407ceMLYkMdFdBTFwO9PwPgCIw==',

 CovidData

) with (date_rep varchar(20), cases bigint, geo_id
varchar(6)) as rows

6.	 Now that we have created the view, we will be creating the reports on top of this
view. Open the Power BI Desktop application and select Get data.

7.	 Select Azure SQL Database from the list of all data sources available.

8.	 Type the serverless SQL endpoint in the Server field, and then type the database
name. Select the Import option and then select OK:

Figure 9.12 – Providing serverless SQL pool details to Power BI

9.	 Select the preferred authentication method; in this example, we will select Database.
Fill in User name and password for authentication and click on Connect:

Implementation of real-time analytics on streaming data 239

Figure 9.13 – Providing authentication details to connect a serverless SQL pool to Power BI

10.	 Select your view under the demodb database, and then click on Load:

Figure 9.14 – Loading the data to Power BI Desktop

11.	 Wait for the operation to complete, and then a popup will appear stating There are
pending changes in your queries that haven't been applied. Select Apply changes.

240 Perform real-time analytics on streaming data

12.	 Wait for the Apply query changes dialog box to disappear, which may take a
few minutes.

13.	 Once the load completes, select Table visualization and select the geo_id, date_rep,
and cases columns, in that order, to create the report.

14.	 After making all the required changes, you can publish this report to your workspace.

Now we are able to visualize our data directly on Power BI Desktop, and this visualization
can be published to Power BI Service as well. Here, we added just one visualization.
However, you can create multiple visualizations on the same dashboard, which could
bring some meaningful insights for your data.

Summary
In this chapter, we learned how to perform real-time analytics using Azure Synapse. We
learned how to bring data to Azure Synapse by using Azure Stream Analytics and Azure
Databricks. We also learned how to create a view in a serverless SQL pool and how to
use this view to connect to Power BI Desktop for data visualizations. We used a sample
application in this chapter to stream data to an Azure Cosmos DB account by using a
sample JSON file. You can download and use this application if you want to perform a
proof of concept on this particular topic yourself.

In the next chapter, we are going to learn how to use Azure Machine Learning with Azure
Synapse. It is important to have prior knowledge of Azure Machine Learning before
plunging to the next chapter. You will also learn how to use machine learning models with
Azure Synapse SQL and Spark pools.

10
Generate powerful

insights on Azure
Synapse using

Azure ML
Machine Learning (ML) has become an integral part of the data ecosystem now and
Azure enables you to build powerful, cloud-based ML applications by using the Azure
Machine Learning service. Azure ML provides you with options to create supervised or
unsupervised ML models and its integration with Azure Synapse has opened a wide ocean
for data scientists.

In this chapter, we are going to learn about the integration of Azure Synapse with the
Azure ML service, and how we can leverage this unique feature to generate powerful
insights into our data.

242 Generate powerful insights on Azure Synapse using Azure ML

We will cover the following topics in order to understand how we can bring better insight
to our data using machine learning capabilities in Azure Synapse:

•	 Preparing the environment

•	 Creating an Azure ML linked service in Synapse

•	 Machine learning capabilities in Azure Synapse

•	 Use cases with Cognitive Services

Technical requirements
Before you start orchestrating your data, here are some of the prerequisites that you
should meet:

•	 You should have an Azure subscription or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a Spark pool on Azure Synapse. This was covered in Chapter 2, Consideration
for your compute environment.

•	 You should have already created your Azure Cosmos DB account. Make sure you
have enabled analytical storage in your Azure Cosmos DB account. To learn more
about this, you can refer to Chapter 5, Using Synapse Link with Azure Cosmos DB.

Preparing the environment
Before we can start learning about Azure ML integration with Azure Synapse, we need
to prepare the environment to run ML operations on Azure Synapse, by creating some
resources on Azure.

Preparing the environment 243

Creating a Text Analytics resource in the Azure portal
Text analytics is an AI service that is used to discover insights such as sentiment, entities,
key phrases, and so on, in unstructured text. This resource will be used for performing
sentiment analysis on data using a Synapse Spark pool in the Sentiment analysis section.

You can go through the following steps to create a Text Analytics resource in the
Azure portal:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Click on + Create a resource and select Text Analytics from the list of all
available resources.

3.	 You can see the overview of this service. Click on Create:

Figure 10.1 – Creating a Text Analytics resource in the Azure portal

4.	 Fill in the values for Subscription, Resource group, Region, Name, and
Pricing tier.

https://portal.azure.com

244 Generate powerful insights on Azure Synapse using Azure ML

5.	 You can leave the default values for the remaining fields and click on
Review + create:

Figure 10.2 – Providing the required details to create a Text Analytics resource in the Azure portal

Now that we have created a Text Analytics resource in the Azure portal, next we will be
creating an anomaly detector in the Azure portal.

Creating an Anomaly Detector resource in the
Azure portal
Anomaly detection is the process of identifying unexpected behavior of data as compared
to the rest of the records. We are going to use this resource to perform anomaly detection
on our data stored in the Anomaly detection section.

You can go through the following steps to create an anomaly detector in the Azure portal:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Click on + Create a resource and select Anomaly Detector from the list of all
available resources:

https://portal.azure.com

Preparing the environment 245

Figure 10.3 – Creating an Anomaly Detector resource in the Azure portal

3.	 You can see the overview of this service. Click on Create.

4.	 Fill in the values for Subscription, Resource group, Region, Name, and
Pricing tier.

5.	 You can leave the default values for the remaining fields and click on
Review + create:

Figure 10.4 – Providing the required details to create an Anomaly Detector resource in the Azure portal

246 Generate powerful insights on Azure Synapse using Azure ML

The Text Analytics and Anomaly Detector resources are both created now, and we are
going to use both of these resources later in this chapter.

Now it's time to create a key vault in the Azure portal. It will be used while creating linked
services in Synapse Studio.

Creating an Azure key vault
Azure Key Vault is a cloud service that is used to store secrets securely, such as passwords,
API keys, certificates, and so on. In this section, we are going to create an Azure key vault
and then we will learn how to use it for creating linked services in Synapse Studio:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Click on + Create a resource and select Key Vault from the list of all
available resources.

3.	 Fill in the values for Subscription, Resource group, Region, Name, and
Pricing tier.

4.	 You can leave the default values for the remaining fields and click on Review + create:

Figure 10.5 – Creating a key vault in the Azure portal

5.	 Once the key vault is created, go to the Access policies tab in your key vault and
click on + Add Access Policy:

https://portal.azure.com

Preparing the environment 247

Figure 10.6 – Adding an access policy in Key Vault

6.	 Select Key, Secret, & Certificate Management from the drop-down list of the
Configure from template (optional) field.

7.	 Select your Synapse workspace as the principal to grant permissions to read secrets
from the Azure key vault:

Figure 10.7 – Selecting a principal to grant permission to read secrets from the Azure key vault

248 Generate powerful insights on Azure Synapse using Azure ML

8.	 Go to your Cognitive Services resource, for example, Anomaly Detector | Keys
and Endpoint, and copy either of the two keys to the clipboard:

Figure 10.8 – Copying a key from the Anomaly Detector resource on the Azure portal

9.	 Go to your key vault (keyvaultdemosynapse)| Secret to create a new secret.
Specify the name of the secret, and then paste the key from Step 7 into the
Value field. Finally, click Create:

Figure 10.9 – Creating a secret in Azure Key Vault by using anomaly detector keys

Creating an Azure ML linked service in Azure Synapse 249

10.	 Next, go to Synapse Studio in the Azure portal and navigate to Linked services
under the Manage tab and click on + New to create a New linked service.

11.	 Select Key Vault from the list of all available Azure resources, fill in the required
details, and click on Create:

Figure 10.10 – Creating a linked service for a key vault in Azure Synapse

In order to use Azure ML services within Azure Synapse, we need to create a linked
service for Azure ML in Azure Synapse. The next section will cover this topic in detail.

Creating an Azure ML linked service in
Azure Synapse
Azure ML is a cloud-based service that can be used to create and manage machine
learning solutions. You can easily link an Azure Synapse Analytics workspace with an
Azure Machine Learning workspace in order to leverage various ML features within
Azure Synapse. With this linked service created within your Azure Synapse workspace,
you can directly bring a machine learning model from the Azure ML model registry and
score the model in the Synapse SQL pool.

Most importantly, you can run your Azure Machine Learning pipelines directly from
Azure Synapse by creating a Synapse pipeline and linking it to the ML linked service
created in Azure Synapse. We will go through the required steps in this section.

250 Generate powerful insights on Azure Synapse using Azure ML

For now, we will be creating an ML linked service in Azure Synapse, but before we do that,
we need to register an application on Azure Active Directory. So, go through the following
steps to complete the pre-requisites for creating ML linked services:

1.	 Log in to the Azure portal, at https://portal.azure.com.

2.	 Go to App registrations under Azure Active Directory in the Azure portal:

Figure 10.11 – The App registrations page of Azure Active Directory

3.	 Click on the New registration tab.

4.	 Next, provide an appropriate user-facing display name. Select Supported account
types as per your business need and click on Register:

Figure 10.12 – Registering an application in Azure Active Directory

https://portal.azure.com

Creating an Azure ML linked service in Azure Synapse 251

5.	 After the application is registered, generate a secret for the application. Go to Your
application | Certificates & secrets, and click on Add a client secret to generate a
secret. Save the secret in a notepad as it will be used later:

Figure 10.13 – Generating a client secret for a registered application in Azure Active Directory

Now that we have completed the prerequisite phase, we will go through the following
steps to create our ML linked services:

1.	 Launch Synapse Studio from your Synapse workspace and go to the Management tab.

2.	 Click on the Linked services tab and click on the + New tab:

Figure 10.14 – Creating linked services for Azure ML

252 Generate powerful insights on Azure Synapse using Azure ML

3.	 Select Azure Machine Learning from the list of all available resources and click
on Continue.

4.	 Fill in the details for Service principal ID and Service principal key in the
corresponding fields and click on Create:

Figure 10.15 – Creating a linked service for an Azure Machine Learning workspace

So, now we have completed the first step of using Azure ML services with Azure Synapse
to analyze our data at scale. Next, we will learn which capabilities of the Azure Machine
Learning service can be used on Azure Synapse.

Machine learning capabilities in Azure
Synapse
Data analysis is not a standalone process that can be executed without getting help from
other counterpart services. Before we learn how to use Azure ML services with Azure
Synapse, it's important to understand the various steps involved in any data analysis
process, such as data collecting, transforming, cleaning, and modeling data.

We are going to learn about these steps in brief in the following subsections.

Machine learning capabilities in Azure Synapse 253

Data ingestion and orchestration
This section is focused on the data collection and transformation process. In this section,
we are going to learn how to create a Synapse pipeline for data ingestion and how to use
notebooks for data orchestration.

Azure Synapse pipelines provide a variety of data sources to ingest data from. An Azure
Synapse pipeline is an integrated part of Azure Synapse used to Extract, Transform,
and Load (ETL) data. To learn more about Azure Synapse pipelines, you can refer to
Chapter 4, Using Synapse pipelines to orchestrate your data.

It's very easy to create a Synapse pipeline in Synapse Studio. You just need to go to the
Integrate hub in Synapse Studio and click on the + icon to create a new pipeline as shown
in Figure 10.16:

Figure 10.16 – Creating Azure Synapse pipelines in Synapse Studio

Azure Synapse provides various options to orchestrate your data as per the business need.
After bringing the data to Azure Synapse, you can proceed to the next stage in the data
analysis process.

Data preparation and exploration
Azure Synapse offers you different options to explore your data depending upon where the
data is stored or which tool you want to use for data exploration. You can use a Spark pool
or Serverless SQL pool in Azure Synapse to explore and visualize your data. We will learn
more about these options in the following sections.

254 Generate powerful insights on Azure Synapse using Azure ML

Azure Synapse Spark pools
It becomes really difficult when you are trying to transform and analyze data at scale, but
Spark pools provide capabilities to deal with this problem. Spark pools provide you with
the option to choose the tool for your data processing. Now it does not matter whether
you are comfortable with PySpark, Scala, or you just know .NET, Spark pools let you
choose whichever you are comfortable with.

We already saw in Chapter 7, Working with R, Python, Scala, .NET, and Spark SQL in Azure
Synapse, how to read data from data lake directly and use different libraries to transform
the data as per the business need. You can go to the following link if you need a quick-start
guide to start analyzing data using Spark pools: https://docs.microsoft.com/
azure/synapse-analytics/get-started-analyze-spark.

Azure Synapse Serverless SQL pool
Similar to Synapse Spark pools, you can also use Synapse Serverless SQL pool to analyze
your data. Using the OPENROWSET function is the easiest approach to begin with,
however, you can use T-SQL to transform and analyze your data very efficiently in
Serverless SQL pool.

If you want to learn about Serverless SQL pool, you can refer to Chapter 2, Considerations
for your compute environment. The following code snippet is just an example of reading
data by using the OPENROWSET function:

SELECT

 TOP 100 *

FROM

 OPENROWSET(

 BULK' https://azureopendatastorage.blob.core.windows.
net/nyctlc/yellow/puYear=*/puMonth=*/*.parquet',

 FORMAT = 'parquet'

) AS [result];

Important note
You can go through the following quick-start link if you are new to this
topic: https://docs.microsoft.com/azure/synapse-
analytics/get-started-analyze-sql-on-demand.

Once your data preparation is done, we can jump to the next section to learn about
training our machine learning models using this data.

https://docs.microsoft.com/azure/synapse-analytics/get-started-analyze-spark
https://docs.microsoft.com/azure/synapse-analytics/get-started-analyze-spark
https://docs.microsoft.com/azure/synapse-analytics/get-started-analyze-sql-on-demand
https://docs.microsoft.com/azure/synapse-analytics/get-started-analyze-sql-on-demand

Machine learning capabilities in Azure Synapse 255

Training machine learning models
Sometimes just visualizing data is not sufficient; we need to understand our data to
predict the future or to detect anomalous behavior in data. We can learn the trends and
behavior of our existing data, which can help us understand the nature of futuristic data.
But to understand millions and billions of records our life may pass by, so we define some
training data and train a model on various parameters by using this training data. In
simple terms, this process is called machine learning and a file that has been trained to
recognize certain types of patterns is called a machine learning model.

In this section, we will learn how to train a model with Automated ML (AutoML)
and MLlib.

Azure enables you with a resource called Azure Machine Learning that can be used to
train, deploy, automate, manage, and track ML models. Now, the integration of Azure
ML with Synapse has opened up a new world for our data to be explored and visualized
without much effort.

You can train your ML models either by using AutoML, which is also known as AutoML
or you can use Apache Spark MLlib to create your machine learning application. We will
learn about both options in the following sections.

Training models with Azure Machine Learning AutoML
The process of automating the iterative tasks of machine learning model development is
called AutoML. We can build highly scalable, efficient, and productive ML models using
AutoML. We can use Automated ML for classification, regression, or forecasting tasks as
per our business needs.

In this section, we will learn how to use automated machine learning in Azure Synapse
Analytics Studio. First, let's try to create our first model without writing any code in Azure
Synapse. Let's go through the following steps. You do not need to be an expert in data
science to perform these steps:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Go to your Synapse workspace and click on Synapse Studio to launch it.

3.	 If your data is residing in your storage account, you can use the following script
to create a Spark table:

blob_account_name = ''yourstorageaccountname''

blob_container_name = ''containername''

from pyspark.sql import SparkSession

https://portal.azure.com

256 Generate powerful insights on Azure Synapse using Azure ML

sc = SparkSession.builder.getOrCreate()

token_library = / sc._jvm.com.microsoft.azure.synapse.
tokenlibrary.TokenLibrary

blob_sas_token = token_library.
getConnectionString(''AzureBlobStorage'')

spark.conf.set(

 'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_
container_name, blob_account_name),

 blob_sas_token)

df = / spark.read.load('wasbs://containername@
yourstorageaccountname.blob.core.windows.net/sample.csv',
format='csv'

##If header exists uncomment line below

, header=True

)

spark_df.write.mode(''overwrite'').saveAsTable(''default.
sample'')

4.	 But if you are new to machine learning, you can use sample data for NYC Yellow
Taxi from Azure Open Datasets to create our Spark table. Go to the following
link to download a sample notebook: https://go.microsoft.com/
fwlink/?linkid=2149229.

5.	 Go to the Develop tab of Synapse Studio and click on + then Import to import the
downloaded notebook:

Figure 10.17 – Importing a sample notebook from the local machine

https://go.microsoft.com/fwlink/?linkid=2149229
https://go.microsoft.com/fwlink/?linkid=2149229

Machine learning capabilities in Azure Synapse 257

6.	 Select the Spark pool you want to use and click on Run all to run all the code
sections available in this notebook:

Figure 10.18 – Running all the cells in the imported notebook

7.	 Now let's go to the Data tab to validate that the Spark table has been created under
the default Spark database after the notebook run has completed.

8.	 Right-click on the Spark table (nyc_taxi) that got created in Step 6, select Machine
Learning from the dropdown and click on Enrich with new model:

Figure 10.19 – Using Machine Learning on a Spark table created in Synapse

258 Generate powerful insights on Azure Synapse using Azure ML

9.	 Select your Azure Machine Learning workspace that you want to use for this model.

10.	 Provide an appropriate Experiment name and Best model name in the
corresponding fields.

11.	 Select your Target column from the drop-down list.

12.	 Select your Apache Spark pool and click on Continue:

Figure 10.20 – Enriching data with a new model

13.	 On the next screen, choose Regression as your task type and click on Continue:

Machine learning capabilities in Azure Synapse 259

Figure 10.21 – Selecting the model type for the nyc_taxi data in Azure Synapse

14.	 You can leave the remaining fields with the default settings and click on Create run.
Instead of running it directly, you can click on Open in notebook and run all the
cells manually:

Figure 10.22 – Creating a run automatically in Azure Synapse

260 Generate powerful insights on Azure Synapse using Azure ML

Now we know how to enrich our data with a new or existing model, however, we
can use Python code as well to perform the same operation.

The following script can be used to configure your Azure ML workspace:
from azureml.core import Workspace

Enter your workspace subscription, resource group,
name, and region.

subscription_id = ''<enter your subscription ID>'' #you
should be owner or contributor

resource_group = ''<enter your resource group>'' #you
should be owner or contributor

workspace_name = ''<enter your workspace name>'' #your
workspace name

workspace_region = ''<enter workspace region>'' #your
region

ws = Workspace(workspace_name = workspace_name,

 subscription_id = subscription_id,

 resource_group = resource_group)

Pass the training settings to an AutoMLConfig object:
from azureml.train.automl import AutoMLConfig

automl_config = AutoMLConfig(task='regression',

 debug_log='automated_ml_errors.log',

 training_data = dataset_training,

 spark_context = sc,

 model_explainability = False,

 label_column_name =''fareAmount'',**automl_settings)

Important note
You can download the complete notebook from the following link: https://
github.com/PacktPublishing/Limitless-Analytics-
with-Azure-Synapse/blob/master/Chapter%2010-%20
Sample%20Notebooks.zip. This notebook will use the NYC Taxi sample
data to create the regression model.

Now that we have learned how to use Spark AutoML to train our models, let's try to learn
about training models using Spark MLlib.

https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip

Machine learning capabilities in Azure Synapse 261

Training models on Spark pools with MLlib
MLlib is Spark's machine learning library, it provides various tools to make practical
machine learning scalable and easy. These libraries can be used for any common learning
algorithms, such as classification, regression, clustering, and so on. Moreover, it provides
utilities for linear algebra, statistics, data handling, and more.

First, we need to import the model types required to use Spark MLlib libraries:

from pyspark.ml.classification import LogisticRegression

from pyspark.mllib.evaluation import
BinaryClassificationMetrics

from pyspark.ml.evaluation import BinaryClassificationEvaluator

In the preceding code section, we imported three different model types:

•	 LogisticRegression: Logistic regression is used to predict a categorical
response. Logistic regression is a statistical model that can be used to calculate the
probability of a certain class or a binary event occurring such as win/loss, healthy/
sick, present/not present, and so on.

•	 BinaryClassificationMetrics: An evaluator for binary classification.

•	 BinaryClassificationEvaluator: An evaluator for binary classification. It
accepts two parameters, label and prediction. The prediction column can be of type
double or vector.

Once the training and test DataFrames are ready, you can create your model formula to
run it against the training DataFrame and validate it against the testing DataFrame.

Let's go through the following steps to perform evaluation on the test data:

1.	 Create a new LogisticRegression object for the model:

logReg = LogisticRegression(maxIter=10, regParam=0.3,
labelCol = 'tipped')

2.	 Here's the formula for the model:

classFormula = RFormula(formula=''tipped ~ pickupHour +
weekdayVec + passengerCount + tripTimeSecs + tripDistance
+ fareAmount + paymentType+ trafficTimeBinsVec'')

262 Generate powerful insights on Azure Synapse using Azure ML

3.	 Undertake the training and create a logistic regression model:

lrModel = Pipeline(stages=[classFormula, logReg]).
fit(train_data_df)

4.	 Saving the model is optional but it's another form of intersession cache:

datestamp = datetime.now().strftime('%m-%d-%Y-%s')

fileName = ''lrModel_'' + datestamp

logRegDirfilename = fileName

lrModel.save(logRegDirfilename)

5.	 Predict tip 1/0 (yes/no) on the test dataset, and run the evaluation using AUROC:

predictions = lrModel.transform(test_data_df)

predictionAndLabels = predictions.
select(''label'',''prediction'').rdd

metrics = BinaryClassificationMetrics(predictionAndLabels)

print(''Area under ROC = %s'' % metrics.areaUnderROC)

Important note
You can download the complete notebook from the following link: https://
github.com/PacktPublishing/Limitless-Analytics-
with-Azure-Synapse/blob/master/Chapter%2010-%20
Sample%20Notebooks.zip. This notebook has been created by using the
NYC Taxi sample data to create a regression model.

To learn more about this example, please go to the following link: https://
docs.microsoft.com/azure/synapse-analytics/spark/
apache-spark-machine-learning-mllib-notebook.

So far in this chapter, we have seen a couple of examples using different ML models on our
data, and in the next section, we will learn about some of the common use cases for Azure
Synapse with Cognitive Services.

https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://github.com/PacktPublishing/Limitless-Analytics-with-Azure-Synapse/blob/master/Chapter%2010-%20Sample%20Notebooks.zip
https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-machine-learning-mllib-notebook
https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-machine-learning-mllib-notebook
https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-machine-learning-mllib-notebook

Use cases with Cognitive Services 263

Use cases with Cognitive Services
Cognitive Services are Microsoft-developed machine learning algorithms to solve
problems in the field of artificial intelligence. Cognitive Services are categorized into five
main categories:

•	 Vision

•	 Speech

•	 Language

•	 Decision

•	 Search

Azure Cognitive Services are cloud-based services with REST APIs. You can build intelligent
applications using client library SDKs. Go to the following link to learn about all supported
APIs for different categories of Cognitive Services: https://docs.microsoft.com/
azure/cognitive-services/what-are-cognitive-services.

Cognitive Services can be used to solve many day-to-day life problems without worrying
about creating a new ML model from scratch. One of the best examples is extracted and
enhanced texts from typewritten and handwritten notes, photos and diagrams, and other
unstructured data from the John F. Kennedy (JFK) files, which contain over 34,000 pages
of documents about the CIA investigation into the 1963 JFK assassination.

Azure Synapse enables you to easily enrich your data in Azure Synapse with existing
Cognitive Services models. As of now, you can see two existing models to enrich your
data, sentiment analysis and anomaly detector. We will learn about both these options
in the following sections.

Sentiment analysis
You can perform sentiment analysis on your text data with the existing models available
on Azure Synapse. But first, you need to have your data loaded to a Spark table. Make
sure your file is uploaded to the Azure Data Lake Gen2 account that is configured as the
default storage for your Azure Synapse Analytics workspace. You need to make sure that
you have the contributor level permission on the Azure Data Lake Gen2 filesystem where
your data is residing:

1.	 Go to the Data tab on your Azure Synapse Studio and expand your default
(Spark) database.

https://docs.microsoft.com/azure/cognitive-services/what-are-cognitive-services
https://docs.microsoft.com/azure/cognitive-services/what-are-cognitive-services

264 Generate powerful insights on Azure Synapse using Azure ML

2.	 Right-click on your Spark table, select Machine Learning from the drop-down list,
and click on Enrich with existing model:

Figure 10.23 – Enriching your data in a Spark table

3.	 Select Text Analytics - Sentiment Analysis from the list of existing models and
click on Continue:

Figure 10. 24 – Selecting Text Analytics - Sentiment Analysis for enriching data in Azure Synapse

4.	 Provide the details for the Azure Cognitive Services account and Azure Key Vault
linked service fields:

Use cases with Cognitive Services 265

Figure 10.25 – Providing configuration for your Cognitive Services account

5.	 Next, we just need to select the Language and Text columns that will be used for
sentiment analysis and click on Open notebook.

6.	 Now, click on Run All to run all the cells of the notebook and you will see the result.

We have learned how to perform sentiment analysis on your data in Azure Synapse with
just a couple of steps. Next, we will learn how to perform anomaly detection on your data.

Anomaly detection
Anomaly detection is a process of identifying data that shows unexpected behavior
as compared to the rest of the data. These anomalies might point out unusual bank
transactions, unusual network traffic, or dirty data that requires cleansing, and so on.

You can go through the following steps to perform anomaly detection on your data:

1.	 Go to the Data tab of your Azure Synapse Studio and expand the default
(Spark) database:

2.	 Right-click on your Spark table, select Machine Learning from the drop-down list,
and click on Enrich with existing model.

266 Generate powerful insights on Azure Synapse using Azure ML

3.	 Select Anomaly Detector from the list of existing models and click on Continue:

Figure 10. 26 – Selecting Anomaly Detector to enrich data in Azure Synapse

4.	 Provide the details for Cognitive Services and Azure Key Vault linked services.

5.	 Next, we need to fill in the values for Granularity, Timestamp column, Timeseries
value column, and Grouping column, as shown in Figure 10.27:

Figure 10.27 – Providing details for Anomaly Detector

6.	 Now, click on Run All to run all the cells on the notebook and you will see the result.

Summary 267

Now we have learned how we can use an existing ML model to enrich our data with just
a couple of steps. It would not be possible to cover all the topics on the Azure ML service
and its integration with Azure Synapse in just one chapter, but we have covered most of
the important topics that will help in exploring the benefits and usage of the Azure ML
service's integration with Azure Synapse.

Summary
In this chapter, we learned how to create a linked service for machine learning in Azure
Synapse and how to use a key vault to store secrets for cognitive services. We also learned
how to use Azure ML with Azure Synapse in order to use new or existing ML models to
enrich our data. We then learned how can we use Cognitive Services directly on our data
without writing even a single line of code. There are various steps involved before we
can start using Cognitive Services on our data and we went through all these technical
requirements. Sample notebooks were also provided to understand the approach to using
Spark AutoML and Spark MLlib on the data.

With this chapter, we've covered and understood all the concepts of Azure Synapse. In
the next chapter, we will learn different ways to perform backup and restore operations in
Azure Synapse.

The objective of this section is to guide you in terms of the best practices related to
security, coding, managing, and monitoring Azure Synapse.

This section comprises the following chapters:

•	 Chapter 11, Performing backup and restore in Azure Synapse analytics

•	 Chapter 12, Securing data on Azure Synapse

•	 Chapter 13, Managing and monitoring Synapse workloads

•	 Chapter 14, Coding best practices

Section 4:
Best practices

11
Performing backup

and restore in Azure
Synapse analytics

High-availability solutions ensure that your data is never lost, even in the case of
unplanned events, such as underlying hardware, software, or network failures. Azure
Synapse Analytics uses database screenshots to provide the high availability of dedicated
SQL pools. These screenshots create several restore points that can be used to recover your
data to a previous state.

In this chapter, you will learn about backup and restore operations on Azure Synapse
Analytics. We will begin this chapter by creating restore points for Azure Synapse
Analytics; we are also going to create geo-redundant restores using PowerShell. Then, we
will learn about the geo-backup and disaster recovery of Synapse SQL pools.

To learn more about these concepts, the following topics will be covered in this chapter:

•	 Creating restore points

•	 Geo-backups and disaster recovery

•	 Cross-subscription restore

272 Performing backup and restore in Azure Synapse analytics

Technical requirements
Before you start orchestrating your data, there are certain prerequisites to meet:

•	 You should have an Azure subscription or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a SQL pool on Azure Synapse. This has been covered in Chapter 2,
Considerations for your compute environment.

•	 Install Azure PowerShell on your machine.

Creating restore points
Azure Synapse Analytics creates various restore points throughout the day by using
screenshots. These restore points are available for 7 days and we do not have the luxury of
modifying this retention period. But we do have the luxury of creating a new SQL pool in
the primary region, by using any of the screenshots taken within the last 7 days. We can
create our own restore points as well. Let's learn about both types of restore points in the
following sections.

Automatic restore points
By using an automatic restore point, we can select any date and time within the range of
the last 7 days to restore the SQL pool in our primary region. This is a built-in feature, so
we do not need to enable this feature manually. However, if we pause our dedicated SQL
pool very frequently, then these automatic restore points cannot be generated. Users do
not have the privilege of deleting these restore points.

It takes just a couple of steps to create and restore a SQL pool, so let's go through the
following steps to restore your own SQL pool:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Navigate to your Synapse workspace and click on your dedicated SQL pool.

3.	 Click on the Restore link highlighted in Figure 11.1:

https://portal.azure.com

Creating restore points 273

Figure 11.1 – Restoring a dedicated SQL pool on the Azure portal

4.	 Select the Automatic restore points radio button for Restore point type.

5.	 Provide an appropriate value for a new dedicated SQL pool name.

6.	 Select the date and time for your restore point. It must not be older than 7 days.

7.	 Select your Synapse workspace name from the list of available workspaces in the
drop-down list.

8.	 Select the performance level as per your compute needs and click on Review + Restore:

Figure 11.2 – Selecting an automatic restore point to restore the dedicated SQL pool on the Azure portal

274 Performing backup and restore in Azure Synapse analytics

9.	 Review all the details and click on Create dedicated SQL pool – Restore database.

Important note
Screenshots are not taken when a dedicated SQL pool is paused.

Within a couple of minutes, a new dedicated SQL pool will be created for you. It will have
all the data available from the restore point that you selected. Once the pool is created,
you can log in to this SQL pool by using the dedicated SQL endpoints in SQL Server
Management Studio (SSMS) or Azure Data Studio to validate that you have got all the
required data in your new SQL pool.

You can run the following query on your dedicated SQL pool to see when the last
screenshot was created:

select top 1 *

from sys.pdw_loader_backup_runs

order by run_id desc

You can see the name of the last restore point in the following screenshot:

Figure 11.3 – Query output on the SSMS tool showing the last
restore point for the SQL pool

Similarly, we can use user-defined restore points to restore a dedicated SQL pool. We will
learn about this in the next section.

User-defined restore points
If you need to pause your dedicated SQL pool frequently, automatic restore points may
not get created sometimes. In such circumstances, it is better to create user-defined restore
points every time before you pause your SQL pool. Otherwise, you are at risk of losing
your data in the case of any failures.

Creating restore points 275

Unlike automatic restore points, first you need to create your own restore points in order
to restore your dedicated SQL pool, by using user-defined restore points. Go to your
dedicated SQL pool, click on + New restore point, and provide a name for your restore
point, as shown in Figure 11.4. It is best to append a date and time to the SQL pool name,
for example, sqlpooldemo_01272021_0740:

Figure 11.4 – Creating a new restore point for the dedicated SQL pool on the Azure portal

We will go through the following steps to create a restore point for the dedicated SQL pool:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Navigate to your Synapse workspace and click on your dedicated SQL pool.

3.	 Click on the Restore link.

4.	 Select the User-defined restore points radio button for Restore point type.

5.	 Provide an appropriate value for a new dedicated SQL pool name.

6.	 Select the restore point that you have already created, that is,
sqlpooldemo_01272021_0740PM.

7.	 Select your Synapse workspace name from the list of available workspaces in the
drop-down list.

https://portal.azure.com

276 Performing backup and restore in Azure Synapse analytics

8.	 Select the performance level as per your compute needs and click on
Review + Restore:

Figure 11.5 – Restoring the dedicated SQL pool by using user-defined restore points on the Azure portal

Important note
Restore points in a dedicated SQL pool will be automatically deleted when they
hit the 7-day retention period and when there are at least 42 restore points.
These restore points include user-defined and automatic restore points as well.

Again, a new dedicated SQL pool will be created in just a couple of minutes with all the
data available from the restore point that you selected. Both the options are easy and
straightforward; you can decide which option works better for you.

The following section outlines how to create geo-backups for implementing disaster
recovery solutions for dedicated SQL pools in Azure Synapse.

Geo-backups and disaster recovery 277

Geo-backups and disaster recovery
Synapse performs a geo-backup once per day to a paired data center automatically, and that's
why the option to enable a geo-backup policy for your dedicated SQL pool is disabled. The
Recovery Point Objective (RPO) for a geo-backup is 24 hours. This geo-backup can be
used to restore your SQL pool if the restore points in the primary region are not available.

In this section, we are going to create geo-redundant restore points using the Azure portal
and PowerShell script as well. This PowerShell script can be used for any dedicated SQL
pool just by providing correct values for the parameters in the script.

As shown in the following screenshot, we cannot create a geo-backup policy for a
dedicated SQL pool because the SQL pool is automatically backed up to the region pair.
You can read about region pairs at the following link—https://docs.microsoft.
com/azure/best-practices-availability-paired-regions:

Figure 11.6 – Geo-backup policy for the dedicated SQL pool on the Azure portal

We can restore the dedicated SQL pool from an Azure geographical region through the
Azure portal or PowerShell. We will learn about this in detail in the following sections.

https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/best-practices-availability-paired-regions

278 Performing backup and restore in Azure Synapse analytics

Geo-redundant restore through the Azure portal
You can restore a dedicated SQL pool by using the most recent backup of any dedicated
SQL pool in the subscription.

Go through the following steps to create a new SQL pool using the geo-backup of any SQL
pool in your subscription:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Go to the Synapse workspace in your primary region.

3.	 Click on the SQL pools tab in your Synapse workspace.

4.	 Click on + New to create a new dedicated SQL pool.

5.	 Provide a name for your dedicated SQL pool and go to the Additional settings tab.

6.	 For the Use existing data property under Data source, select Backup.

7.	 Select the backup file from the drop-down list of the Backup property that you want
to restore and click on Review + create.

8.	 Finally, after reviewing all the details, click on Create:

Figure 11.7 – Creating a dedicated SQL pool using geo-backup through the Azure portal

https://portal.azure.com

Geo-backups and disaster recovery 279

So, we learned that even if our restore points are not available in the primary region, we
can restore our dedicated SQL pool using a geo-backup that is created automatically.

Geo-redundant restore through PowerShell
In order to maintain a screenshot of your dedicated SQL pool in any other region
than your primary region, it is important to have the geo-restore option. In the case of
unplanned events in your primary region, you can switch to another region.

You can restore a dedicated SQL pool by using PowerShell script as well, but you need to
have Azure PowerShell installed on your machine.

Before running the PowerShell script, we need to have the following information available:

•	 Subscription name: The subscription name of your Azure subscription where the
Azure Synapse workspace has been created.

•	 Source resource group name: The resource group name where your source Azure
Synapse workspace is created.

•	 Source server name: The dedicated SQL endpoint of your Azure Synapse
workspace where you have created your source dedicated SQL pool.

•	 Source database name: The name of your source dedicated SQL pool.

•	 Target resource group name: The resource group name where your target Azure
Synapse workspace is created.

•	 Target server name: The dedicated SQL endpoint of your Azure Synapse workspace
where you have created your target dedicated SQL pool.

•	 Target database name: The name of your target dedicated SQL pool.

•	 Target service objective: The service objective for your target SQL pool, for
example, dw200.

280 Performing backup and restore in Azure Synapse analytics

You should be able to gather all these details if you go to your source and target Synapse
workspace on the Azure portal. The following screenshot highlights all the key parameters
that you will need to run the PowerShell script:

Figure 11.8 – An overview of the dedicated SQL pool on the Azure portal

Now that you have gathered all the required information, you can modify the values
accordingly in the following PowerShell script before running it:

$SubscriptionName="<YourSubscriptionName>"

$ResourceGroupName="<YourResourceGroupName>"

$ServerName="<YourServerNameWithoutURLSuffixSeeNote>"
Without database.windows.net

$TargetResourceGroupName="<YourTargetResourceGroupName>"
Restore to a different server.

$TargetServerName="<YourtargetServerNameWithoutURL
SuffixSeeNote>"

$DatabaseName="<YourDatabaseName>"

$NewDatabaseName="<YourDatabaseName>"

$TargetServiceObjective="<YourTargetServiceObjective-DWXXXc>"

Connect-AzAccount

Get-AzSubscription

Select-AzSubscription -SubscriptionName $SubscriptionName

Get-AzureSqlDatabase -ServerName $ServerName

Get the data warehouse you want to recover

Cross-subscription restore 281

$GeoBackup = Get-AzSqlDatabaseGeoBackup -ResourceGroupName
$ResourceGroupName -ServerName $ServerName -DatabaseName
$DatabaseName

Recover dedicated SQL pool

$GeoRestoredDatabase = Restore-AzSqlDatabase –FromGeoBackup
-ResourceGroupName $TargetResourceGroupName -ServerName
$TargetServerName -TargetDatabaseName $NewDatabaseName –
ResourceId $GeoBackup.ResourceID -ServiceObjectiveName
$TargetServiceObjective

Verify that the geo-restored data warehouse is online

$GeoRestoredDatabase.status

So, now we know various ways to restore our dedicated SQL pools in the same region or
a different region. The next important topic is cross-subscription restore. Let's try to learn
more about this feature in Azure Synapse in the following section.

Cross-subscription restore
As of the time of writing, cross-subscription restore is not supported in Azure Synapse.
However, there have been various requests submitted for this particular feature, hence the
Synapse team might consider this request for the next release cycle.

In the future, whenever this feature becomes available in Azure Synapse, we will capture it
in the book.

With this, we have learned everything about the backup and restoration of Azure Synapse
dedicated SQL pools, along with their limitations and usages.

Summary
In this chapter, we learned how data warehouse (dedicated SQL pool) screenshots create
various restore points automatically to provide high-availability solutions in Azure Synapse.
Apart from this, we also learned how can we create our own restore points in Azure
Synapse and when we would need to create these restore points. Later, we learned how to
leverage these restore points to restore our dedicated SQL pool within the same primary
region or to any other region. In this chapter, we covered both of the ways to restore our
SQL pool, through the Azure portal and PowerShell script as well.

In the next chapter, we are going to explore the security aspects of Azure Synapse. We will
learn how Azure Synapse protects our data, and about all the layers of security that Azure
Synapse provides us to protect our data.

12
Securing data on

Azure Synapse
Data is the new gold, so you have got to protect your wealth. Azure Synapse Analytics
provides a relational database service for the cloud. Azure provides multiple security
measures to access any data in Azure Synapse Analytics. However, it is important for the
user to be aware of all these security measures and how to use them appropriately. In this
chapter, we are going to learn about the different layers of security options provided by
Azure Synapse Analytics. We will learn how to secure the network to protect our data,
and the access management section will outline SQL authorization and Active Directory
integration. We are also going to learn about some of the advanced features provided by
Azure, including threat protection and information protection.

284 Securing data on Azure Synapse

Figure 12.1 represents the different layers of security surrounding
customer data:

Figure 12.1 – Different layers of enterprise-grade security in Synapse

Understanding all these security layers in detail will help us learn the importance of
security measures, and how we can implement them in our Synapse environment. In this
chapter, we will cover the following topics:

•	 Implementing network security

•	 Understanding access control

•	 Enabling threat protection

•	 Understanding information protection

Implementing network security
Azure Synapse Analytics helps protect your data by using IP firewall rules. We can also
use the managed workspace virtual network to isolate one workspace from another. We
are going to learn about these options in the following sections.

Managed workspace virtual network
Azure Synapse provides you with the option to enable a managed workspace virtual
network while creating your Synapse workspace. It ensures that your workspace is isolated
from another workspace. If you have enabled a managed workspace virtual network in
your Synapse workspace, then data integration and Spark resources are also deployed in
the same virtual network; however, SQL pools (dedicated or serverless) reside outside this
managed virtual network.

Implementing network security 285

You can go through the following steps to enable a managed workspace virtual network
on your Synapse workspace while creating it:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Click on the + Create a resource tab, select Azure Synapse Analytics from the list
of all available Azure resources, and then click on Create.

3.	 On the Basics tab, provide all the required information and then click on Next to go
to the Security tab.

4.	 On the Security page, provide information about your admin username and
password for your SQL pools and then click on Next.

5.	 Now, on the Networking page, we can enable a managed virtual network. Click
on the checkbox for Enable managed virtual network in the Managed virtual
network section:

Figure 12.2 – Enabling a managed virtual network in an Azure Synapse workspace

https://portal.azure.com

286 Securing data on Azure Synapse

6.	 Next, you need to decide whether you want to Allow outbound data traffic only
to approved targets. Select No to allow outbound traffic from the workspace to
any target; however, you can select Yes if you want to limit outbound traffic from a
managed workspace virtual network to any limited target through managed private
endpoints. We will learn about managed private endpoints in the following section.

7.	 If you selected Yes in the preceding step, then click on +Add to create a private
managed endpoint in an Azure Active Directory (AAD) tenant that differs from
the one that your subscription belongs to.

8.	 You can either select an AAD tenant from the dropdown or manually enter the
AAD tenant's ID:

Figure 12.3 – Selecting AAD tenants to set up private endpoints for Azure Synapse

9.	 Next, click on Review + create.

10.	 Review all the details, and then click on Create to create the Azure Synapse
workspace.

Now that we have enabled a managed workspace virtual network, it's time to learn about
managed private endpoints.

Implementing network security 287

Private endpoint for SQL on-demand
A private endpoint is used to provide secure connectivity between your storage and the
clients on the virtual network using a private IP address from your virtual network. It is
a network interface that enables you to connect to a service securely powered by Azure
Private Link. You can go to the following link (https://docs.microsoft.com/
azure/private-link/private-endpoint-overview) to understand Private
Link in detail.

You can configure a private endpoint for Azure Synapse SQL on-demand by using
Private endpoint connections in the workspace blade within the Azure portal:

1.	 Log in to the Azure portal at https://portal.azure.com.

2.	 Navigate to the Synapse workspace by typing the service name (or resource name)
directly into the search bar.

3.	 Click on the workspace where you want to create your SQL pool.

4.	 Click on Private endpoint connections in the workspace blade:

Figure 12.4 – Private endpoint connections in the workspace blade

https://docs.microsoft.com/azure/private-link/private-endpoint-overview
https://docs.microsoft.com/azure/private-link/private-endpoint-overview
https://portal.azure.com

288 Securing data on Azure Synapse

5.	 Click on + Private endpoint and provide appropriate information to create a new
private endpoint for SQL on-demand:

Figure 12.5 – Providing project and instance details to create a private endpoint

Implementing network security 289

6.	 Fill in all the details on the Basics page to create a private endpoint and then click
on the Next: Resource > link:

Figure 12.6 – Providing resource configuration for creating a private endpoint

290 Securing data on Azure Synapse

7.	 After completing all the information in the Resource tab, go to the Configuration
tab and then select the Virtual network option from the dropdown that you want to
use here:

Figure 12.7 – Providing configuration details to create a private endpoint

After providing the configuration details, you can create new tags and then click on
Review + create after reviewing all the details.

After setting up a virtual network, next we need to add IP firewall rules to the Azure
Synapse workspace to provide another layer of security for our data.

IP firewall rules
IP firewall rules enable you to access SQL pools from the IP addresses that are whitelisted
in these IP firewall rules. If your IP address has not been added to the IP firewall rules, then
you will get the following error while connecting to the SQL pool using an SSMS tool:

Implementing network security 291

Figure 12.8 – IP firewall error on the SSMS tool while connecting
to the dedicated SQL pool

If you checked the box for allowing connections from all IP addresses while creating your
Synapse workspace under the Security settings tab, then it will automatically set up an IP
firewall rule for your Synapse workspace that will permit access from any IP within the
range 0.0.0.0 to 255.255.255.255 and you will be able to connect to the SQL pool from
any IP address:

Figure 12.9 – Allowing connections from all IP connections under the Networking tab

292 Securing data on Azure Synapse

There is another way to set up IP firewall rules for your Synapse workspace if your
Synapse workspace has already been created:

1.	 Go to the Firewalls tab of your Azure Synapse workspace within the Azure portal.

2.	 Click on + Add client IP to add your current IP address to the IP firewall rules.

3.	 If you want to add just one IP address to the IP firewall rule, add the same IP
address value in the Start IP and End IP fields. However, if you want to add a range,
provide a starting IP address value in the Start IP field and an ending IP address
value in the End IP field and click on Save to save your changes.

Important note
Make sure you have deleted the allowAll rule, which allows all IP addresses,
starting from 0.0.0.0 to 255.255.255.255, if you want to provide access to only
limited IP addresses that can be connected to your Synapse workspace.

Figure 12.10 displays the firewall rules associated with your Synapse workspace:

Figure 12.10 – Setting up IP firewall rules for the Synapse workspace

Implementing network security 293

Now that we have provided an IP firewall restriction to our Synapse workspace, we will try
to learn how we can control access to the Synapse workspace through authorization and
authentication in the following section.

Understanding access control
The Azure Synapse workspace provides you with the option to create a SQL admin for
your SQL pools and, along with that, you get to provide permissions using AAD. In this
section, we are going to learn how to access Synapse SQL pools using SQL authentication
and Azure Active Directory. We will also learn how to implement RBAC in Azure Synapse
SQL pools toward the end of this section.

You can find an Administrator structure diagram at the following link: https://docs.
microsoft.com/azure/synapse-analytics/sql/active-directory-
authentication#administrator-structure.

Now we are going to learn about the SQL authorization and AAD authorization
techniques in detail in the following sections.

SQL authorization
Synapse SQL needs to have an administrative account that will have full access to the
Synapse SQL pool. However, you can also create a non-administrative account that can
provide access to SQL pools with limited access.

While creating the Synapse workspace, you need to provide a username and password for
your SQL pool. SQL Server creates this account as a login in the master database. You can
have only one of these accounts in your Synapse workspace.

Administrative accounts can add or remove members to the dbmanager and
loginmanager roles. This account has access to create, alter, or drop databases, logins,
users, and server-level IP firewall rules.

https://docs.microsoft.com/azure/synapse-analytics/sql/active-directory-authentication#administrator-structure
https://docs.microsoft.com/azure/synapse-analytics/sql/active-directory-authentication#administrator-structure
https://docs.microsoft.com/azure/synapse-analytics/sql/active-directory-authentication#administrator-structure

294 Securing data on Azure Synapse

In Figure 12.11, we can see how to create SQL administrator credentials while creating a
Synapse SQL pool:

Figure 12.11 – Providing SQL administrator credentials for Azure Synapse Analytics

By using an administrative account, we can create a SQL Server login in the master
database and then we can create a user based on this SQL Server login. Let's perform the
following steps to create a new SQL Server login and a new user:

1.	 Open SSMS or Azure Data Studio on your machine.

2.	 Using the administrator account, connect to the master database.

3.	 Run the following script in a new query window to create a SQL Server
authentication login:

CREATE LOGIN PacktLogin WITH PASSWORD = '<password>';

Implementing network security 295

4.	 Now, run the following script on the SSMS tool against the master database to create
a SQL Server authentication-contained database user:

CREATE USER PacktUser WITH PASSWORD = '<password>';

5.	 You can run the following SQL script to create a SQL Server user based on the SQL
Server authentication login:

CREATE USER PacktUser FROM LOGIN PacktLogin;

6.	 We need to add the user to the dbmanager database role so that this user can
create databases. Run the following script after creating a SQL Server user as
mentioned in the preceding step:

EXEC sp_addrolemember 'dbmanager', 'PacktMember';

You can connect to your dedicated SQL pool by using Azure Active Directory
authentication as well, and we will learn about this in the section that follows.

Azure Active Directory authorization
Azure Synapse provides you with an alternative option to use identities in Azure Active
Directory for authentication. The Azure Active Directory user or group can be an Azure
Active Directory administrator login, and the group administrator account can be used by
any group member.

Synapse SQL pools can be connected from SSMS by using Active Directory Universal
Authentication. Active Directory Universal Authentication supports two non-interactive
and one interactive authentication methods as listed here:

•	 Active Directory - Password

•	 Active Directory - Integrated

•	 Active Directory - Universal with MFA

296 Securing data on Azure Synapse

Figure 12.12 displays all the authentication methods available on SSMS to connect to
Synapse SQL pools:

Figure 12.12 – Selecting the authentication type to connect to a Synapse dedicated
SQL pool on the SSMS tool

All users invited from other AADs are called guest users. All these users must enter their
Azure Active Directory domain name or tenant ID if they need to be authenticated by
using universal authentication; for example, prashant@packt.onmicrosoft.com.

After learning about various authentication mechanisms in SQL pools, we will now learn
how to authorize a user to view the records in the following section.

Implementing RBAC in a Synapse SQL pool
RBAC stands for role-based access control, and only the Synapse administrator can
assign the Synapse RBAC role to any user. Synapse RBAC can be used to manage the
following permissions:

•	 For publishing and viewing code artifacts

•	 To execute code on Synapse Spark pools

mailto:prashant@packt.onmicrosoft.com

Implementing network security 297

•	 To access linked services

•	 To access the integration runtime for monitoring job execution and execution logs

Synapse RBAC can be managed by using Access control tools in the Manage hub of
Synapse Studio:

Figure 12.13 – Managing access control in Synapse Studio

We need to perform the following steps to create a new role assignment:

1.	 Go to the Access control tools in the Manage hub of Synapse Studio.

2.	 Click on + Add, as highlighted in Figure 12.13, to create a new role assignment.

298 Securing data on Azure Synapse

3.	 Select a Scope option to add a role assignment. We can select Workspace or
Workspace item as the scope. There are four workspace item types available to
choose from, namely, Apache Spark pool, Integration runtime, Linked service,
and Credential:

Figure 12.14 – Different workspace item types to define the scope for new role assignments

4.	 If you selected Workspace item as the scope, you need to select the workspace item
for the type selected.

5.	 Next, we need to select a Role option from the list of all available roles for a
particular scope:

Implementing network security 299

Figure 12.15 – Selecting a role to create a new role assignment in Synapse Studio

6.	 And finally, we need to provide a value for the Select User field. This could be
either users, groups, or service principals.

7.	 After providing all the details, click on Apply and your new role assignment
is created.

Important note
You can learn more about roles, actions, and the scope of Synapse RBAC
at the following link: https://docs.microsoft.com/azure/
synapse-analytics/security/synapse-workspace-
synapse-rbac-roles.

Even after securing your data on a SQL pool, it's important to keep eye on our data to
protect it from any sort of threat. Next, we are going to learn about some of the threat
protection measures in the following section.

https://docs.microsoft.com/azure/synapse-analytics/security/synapse-workspace-synapse-rbac-roles
https://docs.microsoft.com/azure/synapse-analytics/security/synapse-workspace-synapse-rbac-roles
https://docs.microsoft.com/azure/synapse-analytics/security/synapse-workspace-synapse-rbac-roles

300 Securing data on Azure Synapse

Enabling threat protection
It is important to protect our data from any anomalous activities that could be potentially
harmful attempts to exploit our databases. Synapse provides you with two ways to protect
your data against any threat. The first one is SQL auditing, which captures the activities
related to all the changes to security, access to tables, and many more activities besides, to
protect your data. The second is Azure Defender, which checks the vulnerability of your
SQL pools and provides advanced data security for your data.

Let's learn a little more about Azure SQL auditing in the next subsection.

Azure SQL auditing
Azure SQL auditing captures all the events in a Synapse SQL pool and writes them to
an audit log in your Azure Storage account. These audit logs can be used to analyze
anomalous activities or unexpected behavior in the SQL pool.

This feature will be disabled by default, but you can enable it on the Azure SQL Auditing
tab of your Azure Synapse workspace:

Figure 12.16 – Enabling Azure SQL auditing for your Synapse workspace

Enabling threat protection 301

You can store these audit log files in the storage account for as many days as you provide
a value for with Retention (Days) while selecting a storage account for the audit logs:

Figure 12.17 – Selecting a storage account for storing SQL audit log files

Once this feature is enabled, you can track events in the storage account that you selected
while enabling this feature. Make sure that nobody can delete these log files manually,
otherwise you may lose important data.

Important note
A storage account that has hierarchical namespace enabled is not supported
for Azure SQL auditing in Synapse.

Along with the SQL auditing feature, Azure enables you to protect your data using Azure
Defender. We will learn about this feature in the following section.

302 Securing data on Azure Synapse

Azure Defender for SQL
Azure Defender for SQL is a unified package for the vulnerability assessment of SQL pools
and advanced SQL security capabilities. Azure Defender for SQL provides protection just
for dedicated SQL pools in Azure Synapse, and there is an additional charge, apart from
the storage and compute cost, for leveraging this feature.

In this section, we will be learning about Azure Defender for SQL and how we can use it
for our Synapse SQL pools. Then, we will dive into transparent data encryption.

You can go to the Azure Defender for SQL tab in your Synapse workspace to enable this
feature for your dedicated SQL pools:

Figure 12.18 – Enabling Azure Defender for SQL in Azure Synapse

When we enable this feature for Synapse dedicated SQL pools, we need to provide settings
for vulnerability assessment and advanced threat protection.

So, let's try to learn a little bit more about vulnerability assessment in the following section.

Enabling threat protection 303

Vulnerability assessment
Vulnerability assessment is a service provided by Azure that provides insight into the
security of dedicated SQL pools and recommends to you actionable steps to resolve
security issues, if any.

We need to provide subscription and storage account details so that these assessment
results can be stored. Azure Synapse also provides us with the option for periodic
recurring scans; these scans are triggered automatically once a week. These scan summary
results are sent to the email addresses that you provide while enabling this feature in your
Azure Synapse workspace.

Figure 12.19 shows how to use Azure Defender for SQL for your Synapse SQL pools:

Figure 12.19 – Providing setting information for a vulnerability assessment of an Azure Synapse
dedicated SQL pool

These scan reports can also be sent to the admins and subscription owners by clicking on
the checkbox right below the Email addresses field.

Similar to the vulnerability assessment feature, now we will learn about the Advanced
Threat Protection feature in Azure Synapse dedicated SQL pools.

304 Securing data on Azure Synapse

Advanced Threat Protection
The Advanced Threat Protection feature for Azure Synapse dedicated SQL pools
detects unusual activities that could be potentially harmful attempts to access or exploit
databases. You need to provide the email addresses of the users who should be receiving
the alerts in case of any unusual activity in the SQL pool. You can click on the checkbox
right below the Email addresses field if you want to send the alert to admins and
subscription owners:

Figure 12.20 – Providing settings for Advanced Threat Protection in your Azure Synapse workspace

There are six different Advanced Threat Protection types. As shown in Figure 12.21, you
can select any or all of these types while enabling this feature for your Azure Synapse
dedicated SQL pool:

Figure 12.21 – Different types of Advanced Threat Protection in an Azure Synapse dedicated SQL pool

Understanding information protection 305

So far, we have learned about the various security layers of the Azure Synapse SQL pool,
and last, but by no means least, we are going to learn about the information protection
layer in the following section.

Understanding information protection
Sometimes, just storing data securely is not sufficient. We need to protect data even when
it is in motion and in use. Azure provides different security features to protect your data at
any given time so that you can meet all the data-related compliances. These are as follows:

•	 Encryption-in-flight (Transport Layer Security – TLS): The Synapse SQL pool
secures your data by encrypting data in motion with TLS.

•	 Encryption-at-rest (Transparent Data Encryption – TDE): TDE encrypts your
databases, backups, and logs at rest. This setting is specific to one particular SQL
pool. If you create another SQL pool in your Synapse workspace, then you need to
enable this setting separately for that pool.

Figure 12.22 shows how to enable data encryption for your Synapse
SQL pools:

Figure 12.22 – Enabling TDE for the dedicated SQL pool in Azure Synapse

•	 Encryption-in-use (always encrypted): The always encrypted feature is designed
to protect sensitive data; it only makes the data available to client-side applications,
and the data will not be visible to administrators either.

In this section, we learned how to keep our data secure when data is at rest, in motion, or
in use. Aside from this, you need to make sure that your data is secured while accessing
from your application side as well.

306 Securing data on Azure Synapse

Summary
In this chapter, we learned about different ways of securing our data in an Azure Synapse
SQL pool. We got to learn how to implement network security, access management, threat
protection, and information protection. We learned how to use SQL authorization and
AAD authorization for connecting to the dedicated SQL pool.

We also learned how to send alerts to any specific user in case of any malicious activity in
the SQL pool. Although we now know all the various layers of security in a SQL pool, we
need to be careful to implement these forms of security properly in order to secure our
data from all possible threats.

In the next chapter, we will learn how to manage and monitor various resources of your
Azure Synapse workspace using Synapse Studio.

13
Managing and

monitoring Synapse
workloads

Microsoft Azure Platform as a Service (PaaS) enables users to manage their resources on
the cloud efficiently and with minimal effort. Azure Synapse Analytics provides you with
a centralized experience to manage and monitor all the resources and workloads in your
Synapse workspace.

In this chapter, we are going to learn how to manage pools, connections, pipelines,
security, and source control, all in a single unified space – Synapse Studio. We will also
learn how we can monitor different activities happening across the Synapse workspace.

The following topics will be covered in this chapter in order to understand how we can
manage and monitor Synapse workloads:

•	 Managing Synapse resources

•	 Monitoring Synapse workloads

•	 Managing maintenance schedules

•	 Creating alerts for Azure Synapse Analytics

308 Managing and monitoring Synapse workloads

Technical requirements
Before you start orchestrating your data, here are certain prerequisites that you
should meet:

•	 You should have your Azure subscription, or access to any other subscription,
with contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create your SQL pool on Azure Synapse. This has been covered in Chapter 2,
Consideration for your compute environment.

•	 Create the logic app in the Azure portal, which is required to create the alert rule.
Please refer to the following link (https://docs.microsoft.com/azure/
logic-apps/logic-apps-overview) to explore Logic Apps if you have never
used it before.

•	 You must have an Azure DevOps account created in order to configure source
control for Azure Synapse Analytics.

Managing Synapse resources
The Manage hub within Azure Synapse Studio allows you to manage your workspace
within a unified experience. It gives you the option to create a new pool, pause an existing
provisioned pool, or delete your provisioned pools. You can also manage linked services,
triggers, and integration runtimes here.

You can also set up Synapse RBAC within the Manage hub on Synapse Studio and you can
manage Git configuration for your code artifacts as well. We are going to learn about all
these topics in the following sections.

Although we have already covered how to create a SQL or Spark pool in our previous
chapters, in the following section, we will try to learn how we can create these pools using
Synapse Studio.

https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview

Managing Synapse resources 309

Analytics pools
Azure Synapse supports two types of analytics pool, namely, SQL and Spark pools.
These pools are basically two different compute environments that can be used
independently as per business requirements. We will learn how to manage both types
of pools in this section.

SQL pool
If you have not created a SQL pool yet, you can only see a built-in serverless SQL pool
available under the SQL pools tab of the Manage hub.

You can create multiple SQL pools within the same Synapse workspace, and you can view,
pause, or delete all these pools in the Manage hub itself.

Figure 13.1 shows the Manage hub in Synapse Studio:

Figure 13.1 – SQL pools under the Manage hub of Synapse Studio

310 Managing and monitoring Synapse workloads

You cannot have more than one serverless SQL pool, so you do not get any option for
doing so. However, you can click on the +New link to create a new dedicated SQL pool,
as shown in Figure 13.1:

Figure 13.2 – Creating a new SQL pool using Synapse Studio

You may not need to run these SQL pools all the time, hence you may want to pause them
when not in use in order to save on the total cost of ownership. If you click on the three
dots (…) next to your SQL pool, you get options to Pause, Scale, Assign tags, and Delete
the SQL pool, which we can see in Figure 13.3:

Figure 13.3 – Options to pause, scale, assign tags, or delete the SQL pool

Managing Synapse resources 311

Let's go through all these options one by one:

•	 Pause: You can pause your SQL pool by selecting this option, but if your SQL
pool is already in a paused state, you will not see this option appearing on this list.
However, you will see the option to resume your SQL pool.

•	 Scale: Any time you need more or less computation power in your SQL pool, you
can click on the Scale option to change the performance level of your SQL pool:

Figure 13.4 – Changing the performance level of a SQL pool to modify its computational power

•	 Assign tags: You can assign tags to your SQL pools in order to group some of the
pools together for billing purposes.

•	 Delete: The last option is to delete your SQL pool. When you no longer need your
SQL pool, you can click on this option to delete your SQL pool permanently.

Now that we have already learned how we can manage SQL pools in Synapse Studio,
let's learn about managing Spark pools in Synapse Studio.

Spark pool
Similar to a SQL pool, you can also manage all your Spark pools within the Manage hub
of Synapse Studio. Click on the +New link to create a new Spark pool, and if you already
have a Spark pool, you can click on the three dots (…) next to your Spark pool to view all
the available options to manage your pool.

312 Managing and monitoring Synapse workloads

In Figure 13.5, you can see all the Spark pools in the Manage hub of Synapse Studio:

Figure 13.5 – Apache Spark pools in Synapse Studio

This allows performance of the following operations on your Spark pool:

•	 Auto-pause settings: While creating an Apache Spark pool in Synapse, you get
the option to enable auto-pause settings. You can see all of your Spark pools in
the Apache Spark pools tab under the Manage hub of Synapse Studio. Click on
the three dots (…) next to the Spark pool and select Auto-pause settings to modify
the auto-pause settings of your Spark pool:

Figure 13.6 – Modifying the auto-pause settings of a Spark pool

Managing Synapse resources 313

•	 Auto-scale settings: Similar to auto-pause settings, we can modify Auto-scale
settings for the Spark pool as well. Click on the three dots (…) next to your Spark
pool and select Auto-scale settings from the list of available options to modify
the settings:

Figure 13.7 – Modifying the auto-scale settings of an Apache Spark pool in Synapse Studio

314 Managing and monitoring Synapse workloads

•	 Packages: You can customize your Apache Spark pools with additional libraries
by uploading library requirement files:

Figure 13.8 – Uploading environment configuration files to the Apache Spark pool
You can find more detailed information on managing libraries in a Synapse Spark
pool in the following article: https://docs.microsoft.com/azure/
synapse-analytics/spark/apache-spark-azure-portal-add-
libraries.

•	 Apache Spark configuration: Similar to the preceding option, you can upload
library requirement files using this option as well.

•	 Assign tags: You can use this option to add tags to your Apache Spark pool to
categorize it with other resources if you wish to view the consolidated billing of all
the resources with this tag:

Figure 13.9 – Assigning tags to the Apache Spark pool in Synapse Studio

https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries
https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries
https://docs.microsoft.com/azure/synapse-analytics/spark/apache-spark-azure-portal-add-libraries

Managing Synapse resources 315

•	 View role assignment: You can view all the role assignments specific to your
Synapse workspace, but you will not be able to add any new role assignments here.
You must navigate to the Access control tab under the Manage hub in order to add
a new role assignment:

Figure 13.10 – Viewing role assignments for the workspace in Synapse Studio

•	 Delete: Click on this option if you want to delete your Apache Spark pool permanently.

Next, we will see how we can manage external connections in Synapse Studio.

External connections
Synapse Studio enables you to define the connection information needed for Azure
Synapse Analytics to connect to external resources. You can either create linked services
or connect to your Azure Purview account within the Manage hub of Synapse Studio.
This section outlines how to manage linked services within Synapse Studio. We will also
learn about integrating Azure Purview with Azure Synapse Analytics.

316 Managing and monitoring Synapse workloads

Linked services
Linked services are created to register external data repositories within Azure Synapse
Analytics. You can create linked services for Azure Machine Learning, a Power BI
workspace, a storage account, and so on.

Click on the +New link on the Linked services tab and follow the instructions to
create a new linked service. These linked services can be leveraged further in order to
do the following:

•	 Create Synapse pipelines

•	 Create a new Power BI report

•	 Create or use machine learning models

You can see all the linked services listed in Synapse Studio as shown in Figure 13.11:

Figure 13.11 – A screenshot of linked services displaying under the Manage hub of Synapse Studio

Other than linked services, you can also use Azure Purview to establish an external
connection. In the following section, we will learn how we can connect an Azure Synapse
workspace to the Azure Purview account.

Managing Synapse resources 317

Azure Purview (preview)
You can connect your Azure Synapse workspace to your Azure Purview account. The
Azure Purview service is a unified data governance service that can be used for the
following purposes:

•	 To register your data to expand your governance and cataloging scope

•	 For relevant data discovery through a global search bar based on keywords and
advanced filtering

Important note
We can connect Azure Purview data to our Synapse workspace to analyze
the data. The following link will help you to understand this topic in detail:
https://docs.microsoft.com/azure/purview/overview.

Figure 13.12 shows Azure Purview within Synapse Studio:

Figure 13.12 – Azure Purview in Synapse Studio

In the following section, we are going to learn how to manage triggers and integration
runtimes that are used within Synapse pipelines for data integration.

https://docs.microsoft.com/azure/purview/overview

318 Managing and monitoring Synapse workloads

Integration
Synapse pipelines are an integral part of the Azure Synapse workspace. We covered
Synapse pipelines in detail in Chapter 4, Using Synapse pipelines to orchestrate your
data. Synapse Studio provides you with a centralized experience to manage triggers and
integration runtimes in the same place. In this section, we will learn about the different
types of integration runtimes supported by Synapse pipelines. We will also learn how we
can manage triggers within Synapse Studio.

Integration runtimes
Pipelines use integration runtimes as the compute infrastructure to provide data
integration capabilities across different network environments. You can select Azure as
your network environment for running pipeline activities in a fully managed, serverless
compute in Azure. However, you can select Self-Hosted for running activities in an
on-premises or private network, as shown in Figure 13.13:

Figure 13.13 – The integration runtime in Synapse Studio

Managing Synapse resources 319

You need to follow all the instructions to create an integration runtime. You can go
through the Creating linked services section of Chapter 4, Using Synapse pipelines to
orchestrate your data, to create your linked services. You will be able to view all the
integration runtimes in the Manage hub of Synapse Studio. You can also view role
assignments associated with your integration runtimes:

Figure 13.14 – The integration runtimes in Synapse Studio

Now let's have a look at how to manage Synapse pipeline triggers in the Manage hub of
Synapse Studio.

Triggers
You can execute a Synapse pipeline either manually (on-demand) or by using a trigger.
Synapse supports a schedule trigger, a tumbling window trigger, and an event-based
trigger. You can create all these types of triggers within the Manage hub of Synapse Studio.
We have covered all these trigger types in detail in Chapter 4, Using Synapse pipelines to
orchestrate your data.

320 Managing and monitoring Synapse workloads

A Schedule or Event trigger can be used by multiple pipelines, but a Tumbling window
trigger can only be used with one pipeline. Click on the +New link in the Triggers tab of
the Manage hub, and provide all the required details in the corresponding field to create a
new trigger, as shown in Figure 13.15:

Figure 13.15 – Creating a trigger for Synapse pipelines in the Manage hub of Synapse Studio

Managing Synapse resources 321

We learned different ways to secure data in Azure Synapse Analytics in the preceding
chapter. We can manage access to the Synapse workspace within the Manage hub of
Synapse Studio.

In the next section, we are going to learn how we can manage data security within
Synapse Studio.

Security
We learned in Chapter 12, Securing data on Azure Synapse, that Azure provides multiple
security measures to access data on Azure Synapse Analytics. In this section, we are going
to learn how we can secure data using access controls and credentials within the Manage
hub of Synapse Studio. This section also outlines managing credentials for Azure Synapse
Analytics within Synapse Studio.

Access control
Access control can be used to grant others access to the Synapse workspace by assigning
roles to users, groups, or service principals. Synapse RBAC can be used to manage
permissions for publishing and viewing the code artifacts, to execute code on Synapse
Spark pools, to access linked services, and to access integration runtimes for monitoring
job execution and execution logs. Only Synapse administrators can assign any role to
users or service principals.

You can perform the following steps to create a new role assignment:

1.	 Go to the Access control tools in the Manage hub of Synapse Studio.

2.	 Click on +Add, as you can see in Figure 13.17, to create a new role assignment.

3.	 Select a Scope option to add the role assignment. Next, we can select Workspace
or Workspace item as the scope. There are four workspace item types available to
choose from, namely, Apache Spark pool, Integration runtime, Linked service,
Credential, and Scope pool.

4.	 If you selected Workspace item as the scope, you need to select a specific item for
the selected item type. However, if you selected Workspace as the scope, you are
granting access to all the items in your Synapse workspace.

322 Managing and monitoring Synapse workloads

5.	 Next, we need to select a Role option from the list of available roles for a
particular scope:

Figure 13.16 – Selecting a role for creating a new role assignment in Synapse Studio

6.	 And finally, we need to provide the value for the Select User field. This could be
either users, groups, or service principals.

7.	 After providing all the details, click on Apply and your new role assignment
is created.

Managing Synapse resources 323

You can click on the Access control tab in the Manage hub to see all of the users
and the roles associated with these users:

Figure 13.17 – A list of users and associated roles in the Manage hub of Synapse Studio

You can assign multiple roles to the same user, and the same role can be assigned to
multiple users; hence, users and roles share many-to-many relationships.

Now, let's see how we can create credentials in Synapse Studio to secure our data.

Credentials
Credentials are used to hold authentication details. These credentials can be used to access
data from your Azure Data Lake Storage account or any other data sources.

324 Managing and monitoring Synapse workloads

All the credentials will be listed under the Credentials section within the Manage hub of
Synapse Studio, as shown in Figure 13.18:

Figure 13.18 – A list of Credentials within Synapse Studio

Important note
You must have a service principal already created before proceeding further
in this section. You can go to the following link (https://docs.
microsoft.com/azure/active-directory/develop/
howto-create-service-principal-portal) to learn about the
service principal if you are not already familiar with it.

You need to have the following information in order to create credentials for your
Synapse workspace:

•	 Tenant ID: This can be found by going to your Azure Active Directory in the Azure
portal. In the Overview pane, you will be able to see your tenant ID.

•	 Service principal ID: This is a security identity used by apps or services to access
specific Azure resources.

•	 AKV linked service: AKV is an abbreviation for Azure Key Vault. You need to
add the linked service for AKV from the dropdown. This linked service needs to be
created before coming to this step.

https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal

Managing Synapse resources 325

•	 Secret name: You can provide the secret name that you created in your AKV
services to be used in your Azure Synapse workspace.

•	 Secret version: If you have multiple versions of your secret available in AKV, you
can specify the version; otherwise, it will select the latest version automatically.

Having provided all the details, click on Create and your credential is created:

Figure 13.19 – Creating a new credential in the Manage hub of Synapse Studio

Now, after managing security on a Synapse workspace, it's time to manage our code
development. Let's dive further into this topic in the next section.

326 Managing and monitoring Synapse workloads

Source control
This section will outline how to configure and use a Synapse workspace with the Git
repository enabled. You can associate your Synapse workspace with Azure DevOps Git
or GitHub. If you are using Azure DevOps GitHub as your repository, you need to select
your Azure Active Directory associated with your Synapse workspace, but if you are
planning to use GitHub as your repository, then you need to provide a GitHub account
to configure your repository with your Synapse workspace.

Figure 13.20 shows both types of repository options available in Azure Synapse:

Figure 13.20 – Selecting your repository type for your Synapse workspace

The following sections will cover how to configure your Synapse workspace with both the
repository types.

Connecting with an Azure DevOps Git account
Azure DevOps Git enables developers to collaborate on code development. This provides
repositories for the source control of your code in the cloud.

Managing Synapse resources 327

Important note
You need to have an Azure DevOps Git repository already in place to follow
these steps. If you do not yet have an account, please go to the following
link, https://docs.microsoft.com/azure/devops/user-
guide/sign-up-invite-teammates, to create your
account first.

Azure Synapse provides this feature to configure a repository for your Synapse
workspace. Perform the following steps to configure your repository using your Azure
DevOps Git account:

1.	 Go to the Manage hub of your Synapse workspace and select Git configuration in
the Source control section.

2.	 When connecting to the Azure DevOps Git repository, you must select Azure
DevOps Git as the repository type and then select Azure Active Directory from
the drop-down list and click on Continue.

3.	 On the next screen, provide the values for Azure DevOps organization name,
Project name, Repository name, Collaboration branch, Publish branch, and
Root folder.

Important note
When the Import existing resources to repository box is checked, your
workspace resources (except pools) will be imported into the associated Git
repository in JSON format. This action exports each resource individually.

https://docs.microsoft.com/azure/devops/user-guide/sign-up-invite-teammates
https://docs.microsoft.com/azure/devops/user-guide/sign-up-invite-teammates

328 Managing and monitoring Synapse workloads

4.	 And finally, set the working branch that you will be using for making your changes
and click on Apply:

Figure 13.21 – Configuring the repository for your Synapse workspace by using
Azure DevOps Git as the repository

If you have a GitHub account instead of an Azure DevOps account, you will still be able
to configure the repository for your Synapse workspace. In the next section, we will learn
how to configure GitHub for Azure Synapse Analytics.

Connecting with a GitHub account
GitHub also provides you with a repository for source control where you can record or
rewind any change to your code to keep all your team members in sync.

Monitoring Synapse workloads 329

Similar to the Azure DevOps Git repository type, you can follow the instructions to
configure your repository by using your GitHub account:

1.	 Go to the Manage hub of your Synapse workspace and select Git configuration in
the Source control section.

2.	 When connecting to the Azure DevOps Git repository, you must select GitHub as
the repository type, provide the GitHub account name, and then click on Continue.

3.	 Provide corresponding values for GitHub account, Repository name,
Collaboration branch, Root folder, and Import resource into this branch.

4.	 Next, click on Apply.

Next, we are going to learn about monitoring Synapse workloads using Synapse Studio.

Monitoring Synapse workloads
Monitoring workloads is critical for understanding any unexpected behavior with the
workload. Synapse pipelines, triggers, integration runtimes, Apache Spark applications,
SQL requests, data flow debugging, and analytical pools can be monitored directly on the
Monitor hub of Synapse Studio. You can also change the time range for certain workloads
if you want to monitor workloads for a specific time range. This section is going to cover
the monitoring of all activities and workloads within Azure Synapse Analytics.

You can glimpse the Monitor hub within Synapse Studio in Figure 13.22:

Figure 13.22 – Monitoring various resources of a Synapse workspace in Synapse Studio

Integration is associated with Synapse pipelines, and we will learn how to monitor
pipelines, triggers, and integration runtimes in the following section.

330 Managing and monitoring Synapse workloads

Integration
Synapse pipelines has various components that are stitched together to provide one of
the best ELT/ETL services in the cloud. Synapse Studio enables you to monitor critical
components of Synapse pipelines within the Monitor hub of Synapse Studio.

The following activities can be monitored in Synapse Studio with an option to apply date
filters if you wish to monitor activities only for that particular day:

•	 Pipeline runs: All the pipeline runs can be monitored here, and we can also find out
the error corresponding to any pipeline run failure, in order to investigate the root
cause of failure.

•	 Trigger runs: Similar to pipeline runs, we can monitor all the triggers as well. You
can monitor which pipelines are executed using these triggers, when these triggers
ran for the last time, what type of trigger it is, and so on.

•	 Integration runtimes: You can monitor the health of integration runtimes to
determine whether they are in a running state or unavailable.

In the next section, we will learn what types of activities can be monitored under the
Monitor hub of Synapse Studio.

Activities
We can run Apache Spark applications using various supported languages, or we can
run just a simple SQL query on Synapse or just a data flow. We have not spoken much
about data flow in this book because in order to cover all the concepts of data flow, we
would require a separate book. However, if you want to learn more about data flow, you
can go to the following link: https://docs.microsoft.com/azure/synapse-
analytics/concepts-data-flow-overview. So, Synapse lets you monitor all
these activities in just one place.

The following requests or jobs can be monitored within the Monitor hub of
Synapse Studio:

•	 Apache Spark Applications: Spark sessions and batch jobs can both be monitored
here. It provides us with information regarding the application name, submitter,
submit time, status, and pool. We have the option to add filters to narrow down the
details as per our business requirements.

https://docs.microsoft.com/azure/synapse-analytics/concepts-data-flow-overview
https://docs.microsoft.com/azure/synapse-analytics/concepts-data-flow-overview

Monitoring Synapse workloads 331

•	 SQL requests: Similarly, we can monitor all the SQL requests made in this
workspace. We get the Request ID, Request content, Submit time, Duration,
Submitter, Status, Queued duration, and Workload group options.

•	 Data flow debug: As data flow is associated with the Synapse pipelines, we can
get the information about the current session ID, Started by, Timeout(mins),
Integration runtime, Cores, Compute type, Last Activity Time, and Session ID.
This information helps in getting to the root cause of the problem in the event of
any issue.

The following section outlines how to monitor Analytics pools within a Synapse workspace.

Analytics pools
Synapse provides two separate compute environments; one is a SQL pool and the other
is an Apache Spark pool. Azure Synapse has really done an amazing job of providing a
monitoring facility for both the compute environments together as a unified experience.

The following bullet points outline the monitoring of SQL and Apache Spark pools within
Synapse Studio:

•	 SQL pools: The overall health of SQL pools can be monitored within the Monitor
hub of Synapse Studio, including CPU utilization and Memory utilization:

Figure 13.23 – Monitoring SQL pools in the Monitor hub of Synapse Studio

332 Managing and monitoring Synapse workloads

•	 Apache Spark pools: We can monitor Active users, Allocated vCores, and
Allocated memory (GB) for Apache Spark pools within the Monitor hub of
Synapse Studio:

Figure 13.24 – Monitoring Apache Spark pools in the Monitor hub of Synapse Studio

So far, we have learned how to manage and monitor Synapse workloads by using Synapse
Studio, but in the following section, we will learn how to manage maintenance schedules
of our SQL pools in the Azure Synapse workspace.

Managing maintenance schedules
As soon as the SQL pool deployment is completed, SQL pools have an 8-hour primary
and 8-hour secondary maintenance window applied by default. During this maintenance
window, all the patch updates will happen internally, and you may not be able to access
your resources for the time being. You will be notified when the maintenance job is
complete so that you can resume your work after that. Thus, you need to make sure that
the maintenance schedule is out of your regular business hours. In order to change the
maintenance schedules, perform the following steps:

1.	 Go to your Synapse workspace in the Azure portal.

2.	 Click on SQL pool and select your SQL pool.

3.	 Select the Maintenance schedule link on the Overview blade to open the page for
maintenance schedule settings.

4.	 Select Primary maintenance window and Secondary maintenance window settings
as per your business requirements and then click on Save to save your changes.

Figure 13.25 displays the maintenance window settings for the selected SQL pool:

Managing maintenance schedules 333

Figure 13.25 – The maintenance schedule settings of the selected SQL pool
in the Azure portal

During the maintenance window, your SQL pool will not remain offline. Selecting
maintenance windows only ensures that the maintenance might take place anytime within
this window only. This maintenance activity takes 5-6 minutes to complete, and you will
be able to use your SQL pools as this is after the maintenance has been completed. If your
SQL pool is paused during this time frame, then maintenance will take place when the
pool is resumed.

Important note
During the maintenance window, your SQL pools may experience multiple brief
connection losses if the performance level of your SQL pool is DW400c or lower.

It is a good practice to set up alerts to monitor our workload, as we cannot keep our eyes
on the machine 24x7. The following section covers this topic in detail.

334 Managing and monitoring Synapse workloads

Creating alerts for Azure Synapse Analytics
Azure has provided a built-in functionality to set up alerts for monitoring Azure resources
efficiently. Alerts can be set up for an individual Azure resource separately, and in this
section, we are going to learn how to set up alerts for Azure Synapse Analytics.

To create an alert, we need to select the target resource we need to monitor, which is called
the scope. After that, we need to define conditions for the alert, define the actions that will
be invoked when the alert rule triggers, and finally provide details on the alert rule.

Perform the following steps to configure an alert rule for your Synapse workspace:

1.	 Go to your Synapse workspace in the Azure portal.

2.	 Click on the Alerts link of the Overview blade of your Synapse workspace.

3.	 Click on +New alert rule to configure a new alert rule:

Figure 13.26 – Creating a new alert rule for Azure Synapse Analytics

4.	 Now we need to establish the scope for the alert rule. Scope is the target resource
on Azure that you wish to monitor. In this book, we are talking about Azure
Synapse Analytics, so we will restrict our scope to our Synapse workspace. Click
on Edit resource link under the Scope section.

5.	 Filter your subscription, resource type, and location to select a resource as the scope:

Creating alerts for Azure Synapse Analytics 335

Figure 13.27 – Selecting a resource to define the scope for creating an alert rule in the Azure portal

6.	 Next, we need to add a condition to define the logic in terms of when the alert rule
should trigger. Click on the Add condition link under the Condition section.

7.	 Select a signal name from the list of all the available signals. This will take you to
the next window:

Figure 13.28 – Selecting a signal name for defining the condition for creating an alert rule
in the Azure portal

336 Managing and monitoring Synapse workloads

8.	 On the next screen, we need to configure the alert logic. Select Static or Dynamic
for the Threshold field.

9.	 Select Operator, Aggregation type, and Unit options for configuring the logic and
provide a value for Threshold value.

10.	 Select the appropriate value for Aggregation granularity (Period) and Frequency
of evaluation as per your business requirements and then click on Done:

Figure 13.29 – Configuring signal logic to create an alert rule in the Azure portal

11.	 Now we need to configure Actions. Click on the Add action groups link. This will
take you to a new screen to select an action group to attach to this alert rule.

12.	 Select an action group name if you already have an action group that you want to
attach to this alert rule, otherwise click on +Create action group.

13.	 Provide appropriate values for Action group name and Display name in the
Basics tab.

14.	 On the Notifications tab, select Email/SMS message/Push/Voice as the
notification type.

Creating alerts for Azure Synapse Analytics 337

15.	 Provide the values for Email and Phone number in the corresponding fields and
then click on OK:

Figure 13.30 – Selecting the notification type and providing corresponding details
to configure the alert rule

16.	 Now, let's go to the Actions tab and select an option for Action type. In this
example, we are going to select Logic App as the action type.

17.	 Provide the corresponding values for Subscription, Resource group, and Select
a logic app for the action type selected, and then click on OK:

Figure 13.31 – Selecting an action type for configuring the alert rule in the Azure portal

18.	 Now, click on Review + create to review all the settings and then click on Create.

338 Managing and monitoring Synapse workloads

19.	 Coming back to the main screen for creating an alert rule, finally, we need to
provide appropriate values for Alert rule name, Description, Save alert rule to
resource group, and Severity in the Alert rule details section.

20.	 Make sure you have checked the box for Enable alert rule upon creation and then
click on Create alert rule:

Figure 13.32 – Providing alert rule details to create an alert rule in the Azure portal

This was just one example of how to create an alert rule. However, you can create multiple
alerts for your Synapse workspace.

Now that we have learned all the possible ways to manage and monitor Synapse
workloads, it's time to wrap up this chapter.

Summary
In this chapter, we learned how we can manage different resources on Azure Synapse. We
learned how to manage pipelines, triggers, various activities, and analytical pools within an
Azure Synapse workspace. We also learned how we can configure a code repository for our
workspace. With the built-in monitoring experience provided in Synapse Studio, we learned
how to monitor various workloads and integration-related activities. We learned about
creating alert rules for the Synapse workspace. We also got to know that we can modify
maintenance windows even after creating the SQL pool as per our business requirements.

In the next chapter, we are going to learn about the best practices for using Azure
Synapse Analytics.

14
Coding best

practices
Azure Synapse allows you to create a Structured Query Language (SQL) pool
or an Apache Spark pool with just a couple of clicks, without worrying too much about
maintenance and management. However, you need to follow certain best practices in
order to utilize these pools effectively and efficiently.

This chapter is crucial to the production environment. When you need to create
a SQL or Spark pool in your production environments, you must follow the coding
or development best practices. This chapter is mainly focused on the best practices for
coding, development, workload management, and cost management, for both SQL and
Spark pools on Azure Synapse.

In this chapter, we will cover the following topics:

•	 Implementing best practices for a Synapse dedicated SQL pool

•	 Implementing best practices for a Synapse serverless SQL pool

•	 Implementing best practices for a Synapse Spark pool

340 Coding best practices

Technical requirements
To follow the instructions in the next sections, there are certain prerequisites before we
proceed, outlined here:

•	 You should have your Azure subscription, or access to any other subscription with
contributor-level access.

•	 Create your Synapse workspace on this subscription. You can follow the instructions
from Chapter 1, Introduction to Azure Synapse, to create your Synapse workspace.

•	 Create a SQL pool and a Spark pool on Azure Synapse. This has been covered in
Chapter 2, Consideration of your compute environments.

Implementing best practices for a Synapse
dedicated SQL pool
In the previous chapters, we learned many things about Synapse dedicated SQL pools. In
this section, we will only learn about the best practices to maintain your dedicated SQL
pool and keep it healthy from a computational or storage point of view.

In order to get better performance, we need to have optimized code, but along with that
we need to consider various other factors as well. You may have sometimes experienced
that your query had been performing well until last week and then suddenly, its
performance dropped drastically. So, how do you avoid such kinds of hiccups in your
production environment? In the following section, we are going to learn about a couple
of features or implementations to keep your query performance constantly healthy.

Maintaining statistics
Statistics play a critical role in query performance. They provide a distribution of
column values to the query optimizer, and that is used by the SQL engine to get the
cardinality of the data (estimated number of rows). Thus, it is important to always
keep your statistics updated, and particularly when you are carrying out bulk data
INSERT/UPDATE operations.

In an Azure Synapse SQL pool, we can enable an AUTO_CREATE_STATISTICS
property that helps the query optimizer create missing statistics on an individual column
in the query predicate or join condition.

Statistics can be created with a full scan on sample data, or a range of data. In this section,
we are going to learn how to create statistics for different scenarios.

Implementing best practices for a Synapse dedicated SQL pool 341

The following command can be run against a SQL pool to validate whether this feature is
enabled or not:

SELECT name, is_auto_create_stats_on

FROM sys.databases

You can configure AUTO_CREATE_STATISTICS on your dedicated SQL pool by using
the following code:

ALTER DATABASE MySQLPool -- Your dedicated SQL pool name

SET AUTO_CREATE_STATISTICS ON

You can create statistics by examining every record in a table or by specifying the sample
size. The following code can be run to create statistics by examining every row:

CREATE STATISTICS col1_stats ON dbo.table1 (col1) WITH
FULLSCAN;

You can run the following code to create statistics by using sampling:

CREATE STATISTICS col1_stats ON dbo.table1 (col1) WITH SAMPLE =
50 PERCENT;

You can also create statistics on only some of the rows in a table by using a WHERE clause,
as illustrated in the following code snippet:

CREATE STATISTICS stats_col1 ON table1(col1) WHERE col1 >
'2000101' AND col1 < '20001231';

You can create multiple statistics on the same table. While updating the statistics,
you can decide whether you want to update all the statistics objects in a table or only
specific statistics objects.

The following code can be used to update all the statistics in a table:

UPDATE STATISTICS [schema_name].[table_name];

The following code can be used to update a specific statistics object in a table:

UPDATE STATISTICS [schema_name].[table_name]([stat_name]);

In the following section, we are going to learn how to use the correct distribution type for
a table in a Synapse SQL pool.

342 Coding best practices

Using correct distribution for your tables
In a distributed table, records are actually stored across 60 distributions, but at a high
level, all the records reside within one table. Synapse uses hash and round-robin
algorithms for data distribution.

A Synapse SQL pool supports hash-distributed, round-robin-distributed, and replicated
tables, outlined as follows:

•	 Hash-distributed tables: A hash-distributed table uses a hash algorithm to
distribute the records among 60 distributions. In cases where the table size is more
than 2 Gigabytes (GB) and the table has frequent INSERT, UPDATE, and DELETE
operations, then it is recommended to use hash-distributed tables.

•	 Round-robin-distributed tables: In these tables, data is distributed evenly across all
distributions by using a round-robin algorithm. This form of distribution should be
used when we don't have a column that is a good candidate for hash distribution,
or in the case of a temporary staging table.

•	 Replicated tables: If your table size is less than 2 GB when compressed, then
you should try using replicated tables instead of distributed tables. In a replicated
table, full data is copied to each compute node so that it can be accessed by any
compute node without any latency. Small-dimension tables are the best candidates
for replicated tables.

The following section outlines how to use partitions to enhance performance on Synapse
SQL pools.

Using partitioning
You have learned so far that a Synapse SQL pool distributes data across 60 distributions
for better performance. You should also know that a Synapse SQL pool lets you create
partitions on all three table types. Table partitions divide your data into smaller groups
of records. Partitions are mainly created for the benefit of easy maintenance and query
performance. A query with a filter condition can be limited to certain partitioned data
scanning, instead of scanning through all the records in a table.

It is important to decide how many partitions we need to create in a table. We already
have 60 distributions, but it is recommended to have 1 million rows per distribution
and partition, such that we have optimal performance and compression of clustered
columnstore tables. So, if we decide to create 10 partitions, we need to have 600 million
rows and 1 million rows in each distribution and partition for optimal performance.

Implementing best practices for a Synapse dedicated SQL pool 343

You can use the following code snippet to check the partitions and then the number of
records in each partition in a table:

SELECT QUOTENAME(s.[name])+'.'+QUOTENAME(t.[name]) as Table_
name

, i.[name] as Index_name

, p.partition_number as Partition_nmbr

, p.[rows] as Row_count

, p.[data_compression_desc] as Data_Compression_desc

FROM sys.partitions p

JOIN sys.tables t ON p.[object_id] = t.[object_
id]

JOIN sys.schemas s ON t.[schema_id] = s.[schema_
id]

JOIN sys.indexes i ON p.[object_id] = i.[object_
Id]

AND p.[index_Id] = i.[index_Id]

WHERE t.[name] = 'TableName';

Partitions are mostly created on the Date column, but you can decide which will be the
best candidate for partitioning your table. A partition can be created while creating a table
as well. The following code snippet is just an example of how to create a partition:

CREATE TABLE [dbo].[FactInternetSales]

(

 [ProductKey] int NOT NULLw

, [OrderDateKey] int NOT NULL

, [CustomerKey] int NOT NULL

, [PromotionKey] int NOT NULL

, [SalesOrderNumber] nvarchar(20) NOT NULL

, [OrderQuantity] smallint NOT NULL

, [UnitPrice] money NOT NULL

, [SalesAmount] money NOT NULL

)

WITH

(CLUSTERED COLUMNSTORE INDEX

, DISTRIBUTION = HASH([ProductKey])

, PARTITION ([OrderDateKey] RANGE RIGHT FOR VALUES

 (20000101,20010101,20020101

344 Coding best practices

 ,20030101,20040101,20050101

)

)

)

So far, we have learned different ways to enhance query performance on a SQL pool;
however, it is also important to pay attention to the column size while creating a table.
In the next section, we are going to learn how to use an adequate column size in Synapse
SQL pools.

Using an adequate column size
In most cases, we end up providing a default length for VARCHAR, NVARCHAR,
or CHAR data types. We should try to restrict the length to the maximum length of
the characters expected in that particular column. There are a few data types that are
supported in SQL Server but are not supported in Synapse SQL—for example, the XML
data type. We need to use VARCHAR in place of XML data types but keep the length
limited to the maximum character length of the XML values. For better performance,
we should try to have accurate precision for decimal numbers.

The next section outlines the advantages of using a minimum transaction size in Synapse
SQL pools.

Advantages of using a minimum transaction size
In the case of any transaction failure, we need to roll back all INSERT, UPDATE, or
DELETE operations. If you are trying to run these operations against a huge volume of
data, you may need to roll back all the changes in case of any failure, hence it's better to
divide bigger operations into smaller chunks.

You can reduce rollback risk by using minimal logging operations such as TRUNCATE,
CTAS, DROP TABLE, or INSERT on empty tables. You can also use PolyBase to load
and export data quickly, and we are going to learn more about this feature in the
following section.

Using PolyBase to load data
PolyBase is a tool that is designed to leverage the distributed nature of a system to load
and export data faster than with Azure Data Factory, Bulk Copy Program (BCP), or any
other tool. When you are dealing with a huge volume of records, it is recommended that
you use PolyBase to load or export the data. PolyBase loads can be run by using Azure
Data Factory, Synapse pipelines, CTAS, or INSERT INTO.

Implementing best practices for a Synapse dedicated SQL pool 345

Figure 14.1 displays PolyBase as a Copy method in Synapse pipelines for loading the data:

Figure 14.1 – Loading data to a Synapse SQL pool by using the PolyBase copy method within
Synapse pipelines

The next section teaches us about index maintenance, which is one of the key ways to keep
your indexes healthy and performance optimized for corresponding tables.

Reorganizing and rebuilding indexes
Index maintenance is crucial in keeping your query executions healthy. Sometimes,
due to bulk data loading or bad selection of the fill factor, you may end up having index
fragmentations, which may lead to bad performance in your query executions. You need
to set up a scheduled job to keep track of fragmentation and perform index reorganizing
or rebuilding accordingly.

You can use the following SQL code to check for fragmentation:

SELECT S.name as 'Schema',

T.name as 'Table',

I.name as 'Index',

346 Coding best practices

DDIPS.avg_fragmentation_in_percent,

DDIPS.page_count

FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL, NULL,
NULL) AS DDIPS

INNER JOIN sys.tables T on T.object_id = DDIPS.object_id

INNER JOIN sys.schemas S on T.schema_id = S.schema_id

INNER JOIN sys.indexes I ON I.object_id = DDIPS.object_id

AND DDIPS.index_id = I.index_id

WHERE DDIPS.database_id = DB_ID()

and I.name is not null

AND DDIPS.avg_fragmentation_in_percent > 0

ORDER BY DDIPS.avg_fragmentation_in_percent desc

If your fragmentation value is more than 30%, consider reorganizing indexes, but if it is
beyond 50%, you should rebuild your indexes.

You can use the following SQL script to reorganize/rebuild your indexes:

-- To Rebuild you rindex

ALTER INDEX INDEX_NAME ON SCHEMA_NAME.TABLE_NAME

REBUILD;

-- To Reorganize you rindex

ALTER INDEX INDEX_NAME ON SCHEMA_NAME.TABLE_NAME

REORGANIZE;

Next, we will see how materialized views can help in gaining better performance on a
dedicated SQL pool.

Materialized views
You can create standard or materialized views in a Synapse SQL pool. Materialized views
provide enhanced performance by storing data on a SQL pool, unlike with standard
views. You get pre-computed data stored in a SQL pool in the case of materialized views;
however, standard views compute their data each time we use them. But one thing that we
should always keep in mind is that materialized views are storing data in your SQL pool,
so there will be an extra storage cost involved when using materialized views. We need to
decide the trade-off between cost and performance as per our business needs.

Implementing best practices for a Synapse dedicated SQL pool 347

The following code will give you a list of all materialized views in your Synapse SQL pool:

SELECT V.name as materialized_view, V.object_id

FROM sys.views V

JOIN sys.indexes I ON V.object_id= I.object_id AND I.index_id <
2;

Next, we can see that the syntax for creating a materialized view is similar to that for a
standard view:

CREATE MATERIALIZED VIEW [schema_name.] materialized_view_
name

 WITH (

 <distribution_option>

)

 AS <select_statement>

[;]

<distribution_option> ::=

 {

 DISTRIBUTION = HASH (distribution_column_name)

 | DISTRIBUTION = ROUND_ROBIN

 }

<select_statement> ::=

 SELECT select_criteria

If you need to improve the performance of a complex query against large data volumes,
you can go for materialized views.

Next, we are going to learn how we can enhance query performance by using an
appropriate resource class.

Using an appropriate resource class
A resource class is used to determine the performance capacity of a query. By specifying
the resource class, you predefine the compute resource limit for query execution in a
Synapse SQL pool. There are two types of resource class, and we are going to learn about
them in the following sections.

348 Coding best practices

Static resource classes
Static resource classes are ideal for higher concurrency and a constant data volume.
These resource classes allocate the same data warehouse units, regardless of the current
performance level.

These are the predefined database roles associated with static resource classes:

•	 staticrc10

•	 staticrc20

•	 staticrc30

•	 staticrc40

•	 staticrc50

•	 staticrc60

•	 staticrc70

•	 staticrc80

Similar to static resource classes, you can also use dynamic resource classes. Let's learn
about these in the next section.

Dynamic resource classes
Dynamic resource classes are ideal for growing or variable amounts of data. These
resource classes allocate variable amounts of memory, depending upon the current service
level. By default, a smallrc dynamic resource class is assigned to each user.

These are the predefined database roles associated with dynamic resource classes:

•	 smallrc

•	 mediumrc

•	 largerc

•	 xlargerc

You can run the following script on your SQL pool to add a user to a largec role:

EXEC sp_addrolemember 'largerc', 'newuser'

If you need to remove any user from a largec role in your SQL pool, you can run the
following script:

EXEC sp_droprolemember 'largerc', 'newuser';

Implementing best practices for a Synapse serverless SQL pool 349

You can refer to the following link to learn more about resource classes in a Synapse
SQL pool: https://docs.microsoft.com/azure/synapse-analytics/
sql-data-warehouse/resource-classes-for-workload-management.

In the next section, we are going to learn about workload management in a SQL pool,
which is one of the most important features for managing query performance.

Implementing best practices for a Synapse
serverless SQL pool
Some of the best practices discussed in the preceding section will be valid even for a
serverless SQL pool; however, there are few other considerations for serverless SQL pools.
We are going to learn about some of these recommendations in the following sections.

Selecting the region to create a serverless SQL pool
If you are creating a storage account while creating a Synapse workspace, then your
serverless SQL pool and storage account will be created in the same region where you
created your workspace. But if you are planning to access other storage accounts, make
sure you are creating your workspace in the same region. If you try accessing your data in
a different region, there will be some network latency in data movement, but you can avoid
this by using the same region for your serverless SQL pool as for your storage account.

You need to keep in mind that once the workspace is created, you cannot change the
region of a serverless SQL pool separately.

Files for querying
Although you can query various file types in a serverless SQL pool, you will get
better performance if you are using Parquet files. So, if possible, try converting
Comma-Separated Values (CSV) files or JavaScript Object Notation (JSON) files in
to Parquet files. Parquet is a columnar data storage format that stores binary data in
a column-oriented way. These files enable good compression by organizing values of each
column adjacently, which makes the file size relatively smaller when compared to CSV
or JSON files.

However, if converting CSV to Parquet is not possible for any reason, try to keep the file
size between 100 Megabytes (MB) and 10 GB for optimal performance. It is also better to
use multiple small files instead of one large file.

https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/resource-classes-for-workload-management
https://docs.microsoft.com/azure/synapse-analytics/sql-data-warehouse/resource-classes-for-workload-management

350 Coding best practices

Using CETAS to enhance query performance
CETAS is an abbreviated form of CREATE EXTERNAL TABLE .. AS. This operation
creates external table metadata and exports the SELECT query result to a set of files in the
storage account.

The following code is an example of using CETAS to create an external table:

-- use CETAS to export select statement with OPENROWSET result
to storage

CREATE EXTERNAL TABLE population_by_year_state

WITH (

 LOCATION = 'aggregated_data/',

 DATA_SOURCE = population_ds,

 FILE_FORMAT = census_file_format

)

AS

SELECT decennialTime, stateName, SUM(population) AS population

FROM

 OPENROWSET(BULK 'https://azureopendatastorage.blob.core.
windows.net/censusdatacontainer/release/us_population_county/
year=*/*.parquet',

 FORMAT='PARQUET') AS [r]

GROUP BY decennialTime, stateName

GO

-- you can query the newly created external table

SELECT * FROM population_by_year_state

CETAS generates Parquet files, so statistics are automatically generated when you
use the external table for the first time, which helps in improving performance for
subsequent queries.

Now that we have learned how to implement best practices for a Synapse SQL pool, in the
following section we will learn how to implement best practices for a Synapse Spark pool.

Implementing best practices for a Synapse Spark pool 351

Implementing best practices for a Synapse
Spark pool
As with Synapse SQL pools, it is also important to keep our Spark pool healthy. In this
section, we are going to learn how to optimize cluster configuration for any particular
workload. We will also learn how to use various techniques for enhancing Apache
Spark performance.

Configuring the Auto-pause setting
There are some major advantages of using Platform-as-a-Service (PaaS) instead of an
on-premises environment, and the Auto-pause setting is one of the best features that
PaaS has to offer. If you are running a Spark cluster on your on-premises environment,
you need to pay for provisioning it even though you may only need to use this cluster
for a couple of hours a day. However, Synapse gives you the option to configure the
Auto-pause setting to pause a cluster automatically if not in use. Upon entering a value
for the Number of minutes idle field within the Auto-pause setting, the Spark pool will
go to a Pause state automatically if it remains idle for the specified duration, as shown in
Figure 14.2:

Figure 14.2 – Auto-pause setting for a Synapse Spark pool in the Manage hub of Synapse Studio

352 Coding best practices

When your Spark pool is paused, you are not being charged for the compute power.
However, your data is still residing in the storage account even if the Spark pool is paused,
hence you are only paying for the data storage.

Next, let's learn some best practices for enhancing Apache Spark performance.

Enhancing Apache Spark performance
In this section of the chapter, we are going to learn how data format, file size, caching,
and so on impact job execution performance on the Synapse Spark pool. We will also
learn about Spark memory recommendations and how bucketing helps in reducing
computational overhead during a job execution on Spark.

So, let's dive into the next section to learn how using an optimal data format can help in
getting better Apache Spark performance.

Using an optimal data format
Spark supports various data formats—for example, CSV, JSON, XML, Parquet,
Optimized Row Columnar (ORC), and AVRO; however, it is recommended to use
Parquet files for better performance. Parquet files are the columnar storage file format
of the Apache Hadoop ecosystem. Typically, Spark jobs are Input/Output (I/O)-bound,
not Central Processing Unit (CPU)-bound, so a fast compression codec will help in
enhancing performance. You can use a Snappy compression with Parquet files for best
performance on a Synapse Spark pool.

The following section will outline the use of caching for better performance on Spark.

Using the cache
There are different ways to use caching in Spark, such as persist(), cache(), and
CACHE TABLE. Spark uses Cache() and Persist() methods to store the intermediate
computation of a Resilient Data Distribution (RDD), DataFrame, and Dataset. This
intermediate data can be used for subsequent actions.

The following Scala code is an example of using the cache() method with a DataFrame:

import spark.implicits._

 val columns = Seq("Id","Text")

 val data = Seq(("1", "This is an exmple of Spark DataFrame

using Cache() method"),

 ("2", "We can replace Cache() with Persist() method in

this example"))

Implementing best practices for a Synapse Spark pool 353

 val df = data.toDF(columns:_*)

 val dfCache = df.cache()

 dfCache.show(true)

We can replace the cache() method with the persist() method in the preceding
example, as illustrated here:

 val dfCache = df.persist()

Figure 14.3 displays the execution of the code on a Synapse Spark pool:

Figure 14.3 – Running Scala code in a notebook within Synapse Studio

We can also use SQL's CACHE TABLE command to create a TableName table in memory.
A LAZY keyword can be used with CACHE TABLE to make caching lazy. Lazy cache tables
are created only when it is first used, instead of immediately.

The following code will create a CacheTable for the TableName table:

%%sql

CACHE TABLE CacheTable SELECT * FROM TableName

Similarly, the following code will create a CacheLazyTable table:

%%sql

CACHE LAZY TABLE CacheLazyTable SELECT * FROM TableName

354 Coding best practices

You can validate the records by running the following script in your Synapse notebook:

%%sql

SELECT * FROM CacheLazyTable

Figure 14.4 displays the records from CacheLazyTable:

Figure 14.4 – Running a SELECT query against CacheLazyTable using a Synapse Spark pool

Now that we have learned how to create tables in memory for better performance, it's time
to learn how to use memory efficiently within a Spark pool.

Spark memory considerations
Spark memory is responsible for storing intermediate state while executing tasks. Apache
Spark in Azure Synapse uses Apache Hadoop YARN (where YARN is an acronym for Yet
Another Resource Negotiator) to control the memory used by the container in each Spark
node. The main job of YARN is to split up the functionalities of the job scheduling into
separate daemons. Apache Spark memory is broken into two segments, namely the following:

•	 Storage memory: Cached data and broadcast variables are stored in storage
memory. Spark uses the Least Recently Used (LRU) mechanism to clean up the
cache for new cache requests.

•	 Execution memory: Objects created during the execution of a task are stored here
by Spark.

Implementing best practices for a Synapse Spark pool 355

If blocks are not used in execution memory, storage memory can borrow the space from
execution memory, and vice versa.

Important note
It is recommended to use DataFrames instead of RDD objects to utilize
memory in an optimized way.

The following section outlines how you can enhance the performance of your Spark jobs
with the use of bucketing.

Using bucketing
Bucketing is a technique in Spark that is used to optimize the performance of a task. We
need to provide the number of buckets for the bucketing column, and the data processing
engine will calculate the hash value during the load time to decide which bucket it is going
to reside in.

Bucketing can be used to optimize aggregations and joins, which we will learn about in
the next section.

Optimizing joins and shuffles
Joins play a critical role when developing a Spark job, so it's important to know about
optimizations while working with join operations. Let's try to learn about different join
types supported by Apache Spark. These are outlined here:

•	 SortMerge: Spark uses the SortMerge join type by default, which is a two-step
join. First, it sorts the left and right side of the data, and then merges the sorted
data from both sides. This join type is best suited for large datasets but may be
computationally expensive because of sorting operations. Although this is the
default join algorithm in Spark, you can turn it off by setting a False value for the
spark.sql.join.preferSortMergeJoin internal parameter.

•	 Merge: If you are using bucketing, then the Merge join algorithm can be used
instead of SortMerge, and you can avoid expensive sort operations on your dataset.

•	 Shuffle hash join: When the SortMerge join type is turned off, Spark uses the
Shuffle hash join type, which works on the concept of map reduce. With a Shuffle
hash join, the values of the join column are considered as the output keys, and the
DataFrame is shuffled based on these keys. In the end, DataFrames are joined in the
reduce phase. It is important to filter out rows that are irrelevant to the keys before
joining, in order to avoid unnecessary data shuffling.

356 Coding best practices

•	 Broadcast: In the case of broadcast joins, the smaller table is broadcasted to all the
worker nodes, and because of this it is considered to yield maximum performance
in the case of little datasets. We can use the following code to provide a hint to Spark
to broadcast a table:

import org.apache.spark.sql.functions.broadcast

val dataframe = largedataframe.
join(broadcast(smalldataframe), "key")

Spark maintains the threshold internally to automatically apply broadcast
joins based on the table size; however, we can modify the default
threshold value of 10 MB to any specific value by using spark.sql.
autoBroadcastJoinThreshold.

So far, we have learned about implementing various best practices on a Synapse Spark
pool. Now, in the next section, we will learn how to select the correct executor size for
Spark jobs.

Selecting the correct executor size
An executor is a process on a worker node that is launched for an application in
coordination with the cluster manager. Each application has its own executor, and they are
used to run tasks and keep data in memory or disk storage.

Figure 14.5 displays the components of a Spark application:

Figure 14.5 – Components of a Spark application

Summary 357

We need to consider the following best practices while working with Spark jobs:

•	 We should keep the heap size below 32 GB and reduce the number of cores to keep
garbage collection overhead below 10%.

•	 30 GB per executor is considered the best starting point.

•	 Increase the number of executor cores for larger clusters.

•	 For concurrent queries, create multiple parallel Spark applications and distribute
queries across these parallel applications.

In this section, we covered the best practices that are common for any Spark jobs, but the
list might be even longer based on different specific scenarios.

Summary
This chapter concludes the entire book. In this chapter, we learned about implementing
the best practices for Synapse SQL pools and Spark pools. We learned how we keep
indexes healthy in a SQL pool such that we gain better performance, and we also learned
about using PolyBase and materialized views in Synapse dedicated SQL pools for
enhanced performance. This chapter also included the best file type and size to be used
in the case of a Synapse serverless SQL pool. Configuring the Auto pause setting to help
save costs in terms of computational power was also highlighted in this chapter. Last but
not least, we learned about memory considerations and bucketing in a Spark pool.

I am thankful to you for traveling with me on this learning journey. Congratulations on
reaching the finish line in this book, and I wish you all the best as you continue exploring
Azure Synapse.

Hope to meet you again in my next learning journey!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

360 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Azure Data Factory Cookbook
Dmitry Anoshin, Dmitry Foshin, Roman Storchak, Xenia Ireton
ISBN: 978-1-80056-529-6

•	 Create an orchestration and transformation job in ADF

•	 Develop, execute, and monitor data flows using Azure Synapse

•	 Create big data pipelines using Azure Data Lake and ADF

•	 Build a machine learning app with Apache Spark and ADF

•	 Migrate on-premises SSIS jobs to ADF

•	 Integrate ADF with commonly used Azure services such as Azure ML, Azure
Logic Apps, and Azure Functions

•	 Run big data compute jobs within HDInsight and Azure Databricks

https://www.packtpub.com/product/azure-data-factory-cookbook/9781800565296

Other Books You May Enjoy 361

Azure Data Engineering Cookbook

Ahmad Osama

ISBN: 978-1-80020-655-7

•	 Use Azure Blob storage for storing large amounts of unstructured data

•	 Perform CRUD operations on the Cosmos Table API

•	 Implement elastic pools and business continuity with Azure SQL Database

•	 Ingest and analyze data using Azure Synapse Analytics

•	 Develop Data Factory data flows to extract data from multiple sources

•	 Manage, maintain, and secure Azure Data Factory pipelines

•	 Process streaming data using Azure Stream Analytics and Data Explorer

https://www.packtpub.com/product/azure-data-engineering-cookbook/9781800206557

362

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
AAD: 286, 293, 306
ABC: 164
ABFS: 12
accessed: 45, 91, 179, 342
accessibility: 36
AccessKey: 233
ACID: 165
Active: 94, 122, 212, 250-251, 283, 286,

293, 295-296, 324, 326-327, 332
active-directory: 324
AD: 94
AddressID: 151
addrolemember: 295, 348
adls: 189, 192, 226-227
admin: 285, 293
administer: 5
administrative: 293-294
administrator: 10, 293-296
administrators: 305, 321
admins: 303-304
Advanced: 13-14, 122, 283,

300, 302-304, 317
AI: 3, 243
AJAX: 212
AKV: 324-325

alerts: 304, 306-307, 333-334, 338
algorithm: 342, 355
algorithms: 261, 263, 342
Amazon: 44
Anaconda: 51
analysis: 12, 220-222, 229, 243,

252-253, 263-265
analytical: 17, 22, 31, 129-130, 132-136,

138, 141-142, 144, 221-223,
232, 234, 242, 329, 338

Analytics: 3-8, 12, 15, 20-21, 24, 43-45, 51,
57, 68, 79, 94, 99, 108, 112, 128-129,
133-134, 166-167, 178-179, 189,
192, 198, 212, 214-215, 220-229,
231-232, 234, 240, 243-244, 246,
249, 255, 263-264, 271-272,
283-285, 294, 307-309, 315-316,
321, 328-329, 331, 334, 338

Apache: 16, 21, 44-49, 51-52, 76, 177, 192,
229, 255, 258, 298, 312-315, 321,
329-332, 339, 351-352, 354-356

Apart: 281, 302
API: 134-135, 138, 192, 231, 246
APIs: 134, 263
App: 250, 308, 337
appliance: 166

364 Index

application: 45-47, 51, 133, 190, 206,
213-214, 218, 221, 223, 232-235, 238,
240, 250-251, 255, 305, 330, 356

applied: 58, 94, 150, 154, 219, 239, 332
architecture: 22, 28-30, 34, 41-42,

44-46, 55, 133, 222-225, 231
architectures: 222, 224-225
areaUnderROC: 262
array: 134-135, 142, 170, 172
artifacts: 296, 308, 321
artificial: 263
Atomic: 165
AUROC: 262
authentication: 16, 32, 69, 93-94, 215,

218, 238-239, 293-296, 323
AUTO: 58, 340-341, 357
Auto-create: 70
automated: 255, 260
AutoML: 255, 260, 267
AutoMLConfig: 260
Auto-pause: 21, 49, 312-313, 351
Autoscale: 48-49
Auto-scale: 313
autoSchemaMerge: 141
auto-sync: 136, 144
AVRO: 352
awaitTermination: 230
AWS: 44
Azure: 3-7, 11-13, 15-18, 20-27, 29-32, 34,

39-45, 47-48, 51-52, 55-58, 62, 68-69,
72-77, 79-83, 89-95, 97-102, 106-109,
112-113, 118, 120, 127-131, 134-138,
140-144, 147-151, 153, 155, 157-158,
161, 166-169, 173, 177-180, 183-186,
188-192, 194, 198-203, 208, 211-216,
218, 220-227, 229-236, 238, 240-256,
258-260, 262-267, 271-281, 283-287,
290, 292-296, 299-309, 314-318,
321, 323-340, 344, 349, 354, 357

AzureBlobStorage: 188, 256
azureml: 260
AzureOpenData: 216-217
azureopendatastorage: 216, 254, 350
azuresynapse: 212-213
AzureSynapseSQLPool: 69

B
backup: 24, 134, 166, 267,

271, 274, 278, 281
backups: 134, 305
BCP: 344
BI: 4-5, 18, 44, 133, 198-203, 205-211,

214-222, 229, 236, 238-240, 316
BIN: 163
Bing: 180
blob: 10, 12, 43, 80, 90, 92-94, 105, 123,

137, 141, 154, 168, 170, 172-173, 180,
182-183, 185-186, 188-192, 198, 216,
226, 230-233, 254-256, 260, 262, 350

block: 93, 142-143, 149-154,
157-158, 160, 163-164, 166,
172, 174-175, 189-190, 193

BREAK: 154, 157-159
broadcast: 47, 354, 356
build: 4, 12, 44, 176, 203, 229,

232-233, 241, 255, 263
built-in: 52, 166, 221, 272, 309, 334, 338
BULK: 72, 80, 119, 163, 168, 170, 172,

217, 254, 340, 344-345, 350
business: 3, 12, 21, 29, 31, 40, 48, 57-58,

60, 69, 71, 90, 92, 95, 121, 128-129,
133, 141, 148, 150, 158, 175-176,
189, 224-225, 228-229, 250, 253-255,
309, 330, 332, 336, 338, 346

BusinessEntityID: 151, 153

Index 365

C
cache: 47, 167, 262, 352-354
cached: 136, 354
CacheLazyTable: 353-354
CacheTable: 353
capabilities: 12, 62, 100, 242,

252, 254, 302, 318
capacity: 29, 45, 347
case: 29, 42, 87, 94, 120, 133-134, 152,

163-164, 166, 190, 230, 271, 274, 279,
304, 306, 342, 344, 346, 356-357

Cassandra: 134
CATCH: 164
Category: 155-156, 159-160, 162
censusdatacontainer: 217, 350
centralized: 307, 318
Certificate: 247
Certificates: 246, 251
classification: 255, 261
classifier: 167
CLR: 162
Cognitive: 229, 242, 248, 262-267
cognitive-services: 263
COLLATE: 163
command: 35, 39, 89, 165, 178,

188, 190, 341, 353
components: 3-5, 28-30, 41-42, 45-46,

55, 99, 222, 225, 231, 330, 356
compression: 37-38, 41, 90, 111,

196, 342-343, 349, 352
compute: 3, 21-22, 24, 27, 29-34, 36,

40-42, 44, 56, 62, 68, 98, 100-101, 130,
135, 148, 150, 166-167, 179, 200, 222,
242, 254, 272-273, 276, 302, 308-309,
318, 331, 340, 342, 346-347, 352

conf: 188, 191, 230, 256
config: 230, 260

configuration: 20, 24, 27, 50, 66, 73, 265,
289-290, 308, 314, 327, 329, 351

configure: 10, 21, 52, 73, 82-83, 231,
247, 260, 287, 308, 326-329,
334, 336-338, 341, 351

console: 5, 230, 235
container: 7, 78, 90, 93-94, 98,

105, 131-137, 140-142, 174,
186, 188, 190-192, 223, 232,
234, 236, 255-256, 354

containers: 98, 123, 130, 132, 135, 138, 198
contributor-level: 22, 56, 98, 130, 148,

178, 200, 222, 242, 272, 308, 340
Cosmos: 17, 128-144, 221-224,

232-237, 240, 242
CosmosDB: 142-143, 235, 237
cosmos-db: 130, 144, 223
CovidData: 232, 235, 238
CPU: 31, 331, 352
cross-subscription: 271, 281
Cryptology: 172
CSV: 44, 90, 92-93, 137, 140, 163, 170,

172, 188-189, 192, 256, 349, 352

D
dashboard: 199, 203, 240
database: 31, 39, 66, 68, 79, 81-82,

89, 106-108, 137-138, 142-143,
148, 163, 165, 167, 174, 212-213,
215-216, 218, 228, 232, 235, 237-239,
257, 263, 265, 271, 274, 279-280,
283, 293-295, 341, 346, 348

databases: 17, 21-22, 31, 39, 165, 167,
293, 295, 300, 304-305, 341

Databricks: 12, 40, 102, 221,
224-225, 229-231, 240

data-factory: 108

366 Index

DataFrame: 135-137, 181, 188-189,
191-194, 198, 236, 261, 352, 355-356

DataFrames: 141, 192, 198, 261, 355
datalake: 196-197
dataset: 67-68, 71, 75, 77, 79, 82, 97,

109-115, 118-119, 134, 149,
179-181, 185, 188, 190, 203-207,
209, 260, 262, 352, 355

datasets: 22, 97, 109, 113, 124,
127, 178-180, 198, 202-205,
209, 256, 355-356

data-sources: 231
DB: 17, 31, 82-88, 128-139, 141-144, 165,

221-224, 232-237, 240, 242, 346
dbmanager: 293, 295
dbo: 35-37, 81, 85, 89-90, 149, 154,

157-159, 162, 175, 341, 343
DDL: 165
Debug: 115, 119, 260, 331
debugging: 329
default: 12, 15, 35-36, 38, 58, 72, 75, 92-93,

102-103, 121, 123, 132, 134-135,
162, 165, 175, 181, 187-188, 190,
194, 244-246, 256-257, 259, 263,
265, 300, 332, 344, 348, 355-356

DENSE: 150
Desktop: 199-200, 203, 206-209, 211,

214-218, 222, 236, 238-240
Develop: 18, 140, 169, 173, 186,

202, 209-210, 235, 256, 324
developers: 3, 15, 51, 123, 192, 326
development: 213, 255, 325-326, 339
DevOps: 308, 326-329
distribution: 22, 30, 33-38, 40, 166-167,

175, 340-343, 347, 352
distributions: 30-31, 33-38, 166-167, 342
DMS: 30, 41-43
DMVs: 33

documentation: 5, 216
documents: 109, 169, 171, 263
download: 56, 64, 98, 130, 141, 148, 200,

206, 222, 232, 240, 256, 260, 262
DQP: 41-42
DROP: 39, 134, 162, 194, 216, 293, 344
DW: 24, 27, 29, 214-215, 225, 227, 279, 333
DWU: 30-31
DWUs: 24, 27, 30-32, 34, 42, 52
dynamic: 33, 108, 116-118,

154, 168, 336, 348

E
ecosystem: 76, 241, 352
EDW: 44
elements: 147-149, 154, 158, 176, 188
ELT: 4, 330
enabled: 9, 14, 30, 32, 48-49, 131-132,

134-135, 141, 222-223, 234,
242, 284, 286, 301, 326, 341

Enabling: 14, 43, 129-131,
284-285, 300-305

ENCODING: 90, 93
encrypted: 305
encrypting: 305
Encryption: 162, 302, 305
Encryption-at-rest: 305
Encryption-in-flight: 305
Encryption-in-use: 305
endpoint: 83, 102, 212-216, 218, 233,

236, 238, 248, 279, 286-290
endpoints: 99, 102, 199, 212, 214, 274, 286
engine: 21-22, 29-30, 41-42,

44, 225, 340, 355
enhance: 37, 342, 344, 347, 350, 355
enhanced: 263, 346, 357
environment: 3, 21, 50, 56-57, 63, 68,

Index 367

98, 100, 130, 135, 148, 179, 200,
222, 225, 230-231, 242, 254, 272,
284, 308, 314, 318, 339-340, 351

environments: 3, 62, 100, 309,
318, 331, 339-340

error: 93, 138, 164, 212, 290-291, 330
ETL: 4, 12, 81, 99, 133, 144, 221, 253, 330
Event: 102, 105, 112, 212, 221, 226-227,

229-230, 261, 320, 331
exception: 164-165
exceptions: 163, 166
EXEC: 154, 159-161, 295, 348
execute: 29, 47, 89, 154, 157, 159,

161, 237, 296, 319, 321
execution: 33, 62, 88-89, 100, 136,

162-163, 195, 297, 321, 347, 352-355
export: 344, 350
exports: 327, 350

F
Factory: 4, 18, 40, 55, 58, 62, 72-74,

77-82, 99-100, 127, 223, 234, 344
feature: 44, 129, 133, 135, 144,

168, 200, 221, 241, 272, 281,
300-305, 327, 341, 344

features: 4-5, 40, 52, 72, 131,
147-148, 176, 179, 194, 221,
249, 283, 305, 340, 349, 351

files: 4, 41, 43, 78, 93-94, 98, 105, 109,
111-112, 116, 118-119, 123, 130, 137,
140-141, 168-170, 183, 189, 192, 197,
204, 232, 263, 301, 314, 349-350, 352

filesystem: 263
Financial: 200, 204-206, 210
firewall: 138, 284, 290-293
Firewalls: 25, 292

G
gallery: 127, 178-180, 185, 197
GB: 34, 36, 332, 342, 349, 357
Gen: 8-9, 12-15, 17, 30, 43, 75-77, 90,

92-94, 98, 106-107, 109, 118, 121,
178, 183-186, 188-190, 192, 194,
198, 220-221, 224, 226-227, 263

geo: 169, 235, 238, 240
GeoRestoredDatabase: 281
GitHub: 56, 130, 141, 232, 260,

262, 326, 328-329

H
Hadoop: 12, 47, 76, 173-174, 352, 354
HDFS: 12
HDInsight: 12, 102
HTAP: 133
html: 231
http: 56, 90, 98, 128, 148, 155
https: 4-6, 12, 23, 25, 37, 47, 51, 56, 72, 90,

92, 108, 130, 134, 137, 141, 143-144,
153-154, 168-170, 172, 179, 186,
191, 200, 203, 206, 212-213, 216,
223-225, 230-233, 243-244, 246, 250,
254-256, 260, 262-263, 272, 275,
277-278, 285, 287, 293, 299, 308,
314, 317, 324, 327, 330, 349-350

hub: 16-20, 57, 185-186, 209, 226-227, 229,
253, 297, 308-309, 311-312, 315-316,
319-321, 323-325, 327, 329-332, 351

Hubs: 16, 221, 229-230

368 Index

I
import: 55, 57, 72, 81, 89, 119, 188, 192,

205, 215, 218, 229, 238, 255-256,
260-261, 327, 329, 352, 356

imported: 93, 257, 261, 327
index: 35-38, 166-167, 343, 345-347
indexes: 37, 166-167, 343, 345-347, 357
infrastructure: 41, 44, 62,

100-101, 176, 318
ingest: 16, 30, 80, 136-137, 141, 189,

196, 224-225, 229-230, 232, 253
ingestion: 18, 44, 57-58, 72,

81, 95, 223, 253
INNER: 151, 346
INSERT: 34, 72, 80, 90, 93, 119, 134,

159-160, 189, 195-196, 340, 342, 344
install: 50-51, 56, 64-65, 100-101, 272
installation: 64, 100-101
installed: 56, 60, 206, 279
instructions: 22, 51, 56, 64-65, 98,

109, 120, 130, 137, 148, 179,
200, 222, 225, 232, 235-236, 242,
272, 308, 316, 319, 329, 340

IoT: 226
IP: 25, 138, 284, 287, 290-293
IR: 100-101
isolated: 132, 134, 165, 284
isolation: 165

J
JavaScript: 44, 169, 349
jdbc: 231
JFK: 263
JSON: 44, 142-143, 169-173, 189,

192, 233, 240, 327, 349, 352

K
Kafka: 231

L
LAG: 153
Lake: 3-4, 8-9, 12-15, 17, 30, 43-44,

56, 75-77, 80, 92-94, 98, 106-107,
109, 118, 124, 168, 173, 176, 178,
183-186, 188-190, 192, 194, 198,
220-221, 224, 254, 263, 323

language: 21, 41, 80, 98, 136, 144,
147-149, 154, 158, 162, 165,
176, 178, 181, 187-188, 190-192,
194, 198, 263, 265, 339

languages: 4-5, 20, 147, 176, 178,
185-186, 198-199, 330

launch: 26, 51, 82, 106, 169,
179, 186, 251, 255

libraries: 51, 254, 261, 314
library: 188, 256, 261, 263, 314
license: 56, 81, 236
local: 36, 39, 56, 60, 66, 81, 175,

200, 203-206, 232, 256
location: 12, 56, 82, 90, 174-175, 196-197,

200, 216, 223, 225, 231, 334, 350
Log: 12, 23, 25, 32, 47, 51, 72, 130,

137, 169, 179, 186, 243-244,
246, 250, 255, 260, 272, 274-275,
278, 285, 287, 300-301

LRU: 354

M
machine: 4, 44, 51, 56, 60, 65-66, 81,

102, 200, 203-206, 222, 232, 236,
240-242, 249, 252, 254-258, 261,
263-265, 267, 272, 279, 294, 316, 333

Index 369

maintenance: 37, 307, 332-333,
338-339, 342, 345

management: 3, 15, 33, 47, 157,
167-168, 176, 216, 236, 247,
251, 274, 283, 306, 339, 349

mechanism: 93-94, 354
mechanisms: 93-94, 296
memory: 22, 31, 41, 331-332, 348, 352-357
metadata: 8, 114-116, 119, 136,

142-143, 189, 350
method: 55, 72, 80, 94, 119, 215,

218, 234, 238, 345, 352-353
methods: 172, 223, 295-296, 352
MFA: 32, 295
microsoft: 4-6, 37, 44, 56, 65-66, 108, 130,

134, 143-144, 153-154, 168, 179, 188,
200, 206, 216, 223-224, 229-230, 254,
256, 262-263, 277, 287, 293, 299,
307-308, 314, 317, 324, 327, 330, 349

Microsoft-developed: 263
ML: 5, 133, 236, 241-242, 249-252,

255, 260-263, 267
MLlib: 255, 260-261, 267
models: 147, 240-241, 254-255,

260-264, 266-267, 316
MongoDB: 134-135
MPP: 22, 29-30, 41

N
network: 62-63, 100, 212, 265, 271,

283-287, 290, 306, 318, 349
Networking: 10-11, 13, 285, 291
node: 22, 24, 27, 30, 33, 36, 38, 41-42,

47-48, 167, 342, 354, 356
nodes: 22, 24, 27, 29-31, 33-36, 38,

42, 45-48, 166-167, 188, 356
NULL: 35-39, 151-153, 175, 343, 346
NYC: 256-257, 259-260, 262

O
object: 39, 44, 90, 135, 166-167,

169-170, 192, 237, 260-261,
341, 343, 346-347, 349

on-demand: 21-22, 41-44, 52, 102, 168,
171, 173, 177, 199, 212, 287-288, 319

onmicrosoft: 296
on-premises: 57, 60, 62, 66, 100, 318, 351
Open: 11, 16, 26, 58, 62, 76, 85, 87,

168, 170, 174, 178-180, 190, 198,
200-201, 206, 214, 216, 218, 232-233,
236-238, 256, 259, 265, 294, 332

OPENJSON: 142-143
operation: 12, 22, 41, 81, 101, 122, 133,

136, 196, 219, 236, 239, 260, 350
operational: 17, 128, 132-134, 223
operations: 34-35, 99, 102, 133, 149, 153,

163, 166, 178, 185, 225, 229, 236, 242,
267, 271, 312, 340, 342, 344, 355

optimized: 22, 41, 129, 134, 158,
229, 340, 345, 352, 355

ORC: 90, 93, 352
orchestrate: 18, 57, 62, 71, 95,

97, 253, 318-319
orchestrating: 98, 130, 148, 178,

200, 222, 242, 272, 308
orchestration: 4, 57, 81, 95, 253
overview: 83, 124-125, 180, 211, 213, 225,

243, 245, 280, 317, 324, 332, 334

P
PaaS: 81, 307, 351
package: 62, 81-82, 88-89, 100, 302
Packages: 50, 82, 314
parameters: 108, 127, 158, 162,

175, 255, 261, 277, 280

370 Index

performance: 12, 24, 27, 29-30,
32-35, 37-39, 41, 72, 133, 158,
166, 273, 276, 311-312, 333,
340, 342, 344-352, 354-357

permission: 56, 125, 167, 247, 263
permissions: 4, 91, 94, 98,

247, 293, 296, 321
pipeline: 16, 19, 57-58, 62, 66, 72, 74-75,

79-80, 97, 99-104, 106, 108-109,
113-115, 119-122, 124, 126-128,
249, 253, 262, 318-320, 330

pipelines: 18, 52, 55, 57, 62, 71-72, 81-82,
95, 97-100, 102-103, 105-106,
108-109, 113, 120, 123-124,
127-128, 133, 249, 253, 307,
316-320, 329-331, 338, 344-345

policy: 229, 246-247, 277
pool: 3, 20-37, 39-52, 55-58, 68, 79-80,

83-84, 87, 90, 92, 98, 108, 112-113,
123, 125-126, 130, 141, 147-148,
153-155, 158-162, 165-166, 173-174,
179, 181, 188, 197-200, 212-220,
222, 236, 238-240, 242-243,
249, 253-254, 257-258, 272-281,
287, 290-291, 293-296, 298-300,
303-306, 308-315, 321, 330-333,
338-342, 344-354, 356-357

pools: 10, 19-20, 26, 39, 48, 51,
147-149, 151, 161, 163, 194, 198,
211, 214, 220, 240, 254, 261, 271,
276, 278, 281, 284-285, 290, 293,
295-296, 300, 302-305, 307-312,
314, 321, 327, 329, 331-333,
338-340, 342, 344, 349, 351, 357

portal: 3-4, 6, 11-12, 15, 22-23, 25, 32,
43, 47-48, 51-52, 72, 74, 83, 91, 100,
130, 137, 169, 179, 185-186, 211-213,
225-226, 232, 235, 243-246, 248-250,
255, 272-273, 275-278, 280-281,
285, 287, 292, 308, 324, 332-338

Power: 4-5, 18, 44, 198-203,
205-211, 214-222, 229, 236,
238-240, 311, 316, 352, 357

powerbi: 203
PowerShell: 271-272, 277, 279-281
practices: 338-340, 349-352, 356-357
prerequisites: 4, 22, 47, 56, 72, 98, 130,

148, 178, 200, 222, 242, 272, 308, 340
preview: 6, 86, 125, 173, 317
primary: 8, 94, 100, 137, 178, 194-195,

197, 233, 272, 277-279, 281, 332
private: 62, 91, 100, 182, 233, 286-290, 318
Protocol: 25
public: 90-91, 168, 170, 194, 216, 233
publish: 75, 111, 114, 119, 122, 140, 203,

207-209, 211, 219, 222, 240, 327
PySpark: 177, 181, 186, 188,

194, 198, 254-255, 261
Python: 4, 44, 51, 130, 136, 144,

177, 181-182, 186, 188, 190,
229-230, 236, 254, 260

R
RBAC: 293, 296-297, 299, 308, 321
RDD: 188-189, 262, 352, 355
real-time: 129, 133, 220-225, 231, 240
real-time-analytics: 224
rep: 169, 235, 238, 240

Index 371

resource: 4, 6-7, 11-12, 23, 25, 29, 32,
41-42, 47, 49, 51, 72-73, 91, 168,
186, 225, 243-246, 248, 255, 260,
279, 285, 287, 289-290, 327, 329,
334-335, 337-338, 347-349, 354

resources: 7, 12, 15-16, 19, 31, 44, 47,
56, 74, 177, 231, 242-244, 246, 249,
252, 284-285, 306-308, 314-315,
324, 327, 329, 332, 334, 338

ROLLBACK: 164, 344
ROLLUP: 155-156, 162
ROUND: 35-36, 175, 347
ROWTERMINATOR: 90, 92-93, 163, 172
RPO: 277
runtime: 21, 43, 45, 62-66, 100, 154, 158,

162, 297-298, 318-319, 321, 331
runtimes: 5, 20-21, 62, 308,

317-319, 321, 329-330

S
SAS: 30, 91-92, 94, 174, 185-186,

188, 190-191, 256
Scala: 4, 44, 51, 177, 187-188, 190-191,

194, 198, 229-230, 254, 352-353
scalable: 12, 44, 255, 261
scale: 12, 29, 31-33, 40, 49, 177,

252, 254, 310-311
schema: 68, 70, 90, 133-135, 141,

144, 193, 341, 343, 345-347
scope: 298-299, 317, 321-322, 334-335
script: 16, 36, 56, 89-90, 92, 116, 118,

148, 155, 165, 169-170, 172-175,
181-182, 189-190, 192, 194-195,
216, 228, 235, 237, 255, 260, 277,
279-281, 294-295, 346, 348, 354

scripts: 18, 20, 123-124, 154, 170, 173-174,
176, 178, 185, 190, 197, 212

security: 4, 10-11, 281, 283-285,
290-291, 299-300, 302-303,
305-307, 321, 324-325

Server: 21, 30, 39, 55-57, 60, 62, 64-68,
79, 81-83, 85, 100, 108, 147-149, 154,
157-158, 160, 176, 215-216, 218, 236,
238, 274, 279-280, 293-295, 344

serverless: 41, 101, 135, 141-142,
147-148, 162, 177, 213, 215-220,
236, 238-240, 253-254, 284,
309-310, 318, 339, 349, 357

service: 4, 23, 25, 30-31, 44, 47, 51, 58,
61-62, 67, 69, 75, 77, 79, 81, 94, 99,
106-108, 110, 112, 118, 136-139, 141,
183-185, 200-201, 203, 207-211, 236,
240-243, 245-246, 249-250, 252, 264,
267, 279, 283, 287, 298-299, 303,
307, 316-317, 321-322, 324, 348

services: 5, 17, 20, 44, 55-56, 62, 68,
77, 81-83, 91, 94, 97, 99-100,
106, 108, 127, 137-139, 144, 185,
201, 212, 222, 224-225, 229, 242,
246, 248-252, 262-267, 297, 308,
315-316, 319, 321, 324-325, 330

Shared: 30, 91-92, 94, 174,
185-186, 200, 229

SLQ: 87
source: 52, 58-63, 65, 68, 70, 75-76,

78-79, 82, 85-87, 90, 93, 97, 99, 106,
108-109, 111-114, 116, 118-119,
136, 162-163, 168, 174-175, 183,
203, 211, 216-218, 225, 231,
278-280, 307-308, 326-329, 350

sources: 4, 18, 55, 57, 60, 89, 99, 106, 109,
211, 214, 218, 225, 238, 253, 323

372 Index

Spark: 3-5, 16-18, 20-22, 44-52, 55-56,
98, 125-126, 129-130, 135-137,
140-141, 176-177, 179, 185, 187-200,
219, 222, 229-231, 236, 240,
242-243, 253-258, 260-265, 267,
284, 296, 298, 308-309, 311-315,
321, 329-332, 339-340, 350-357

SQL: 3-4, 10, 16-18, 20-37, 39-44, 51-52,
55-58, 60, 62, 66, 68-69, 75, 79-85,
87, 89-90, 92, 98, 100, 106-108,
112-113, 123-124, 130, 134-135,
137-138, 141-142, 144, 147-151,
153-163, 165-171, 173-177, 179,
188-189, 192, 194-200, 211-220, 222,
225, 227, 235-236, 238-240, 249,
253-255, 271-281, 283-285, 287-288,
290-291, 293-296, 299-306, 308-311,
329-333, 338-342, 344-351, 353-357

SSIS: 62, 81-82, 85-86, 88-89, 100
SSMS: 157-158, 161, 164, 216-217,

236-237, 274, 290-291, 294-296
STDEV: 152
STDEVP: 152
storage: 8-10, 12, 14, 29-30, 34, 39-43,

56, 75-77, 80, 89-94, 98, 105-107,
109, 116, 118, 129, 132-133, 135,
137, 140, 168, 173-174, 178, 180,
182-186, 188-192, 194-195, 197-198,
216, 221, 223-224, 226, 230, 242,
255, 263, 287, 300-303, 316, 323,
340, 346, 349-350, 352, 354-356

streaming: 51, 220-223,
225-226, 229-232, 235

Structured: 21, 98, 147, 168,
176, 229-231, 339

Studio: 3, 11, 15-20, 22, 25-27, 31, 39,
51-52, 56-57, 62, 74, 81-82, 89,
99, 104-106, 108-109, 113, 120,
123-125, 127, 137-138, 140-141,
157-158, 161, 169-170, 173, 176,
178-180, 183, 185-187, 190, 193,
197, 199-203, 205, 209-211, 216,
220, 232-236, 246, 249, 251, 253,
255-256, 263, 265, 274, 294, 297, 299,
306-325, 329-332, 338, 351, 353

subscription: 4, 7, 21-22, 30, 32, 56,
73, 77, 79, 98, 107, 130, 138, 148,
178-179, 184, 200, 212, 222, 225, 228,
242-243, 245-246, 260, 272, 278-279,
286, 303-304, 308, 334, 337, 340

SUM: 149, 152, 155-156, 159-160, 162, 350
Summary: 11, 20, 52, 72, 95, 127,

144, 176, 198, 220, 240, 267,
281, 303, 306, 338, 357

supervised: 241
supports: 4, 41, 43-44, 93-94, 97, 108,

128, 132, 134, 147, 153, 160, 166,
192, 295, 309, 319, 342, 352

Synapse: 3-8, 11-12, 15-34, 37, 39-45,
47-52, 55-58, 62, 66, 68, 71-72,
74-75, 79-84, 87, 89-90, 92, 94-95,
97-106, 108-109, 112-114, 120-121,
123-125, 127-131, 133-138, 140-141,
143-144, 147-151, 153-158, 162-163,
166-171, 173, 175-183, 185-190,
192-194, 196-203, 205, 208-216,
219-225, 227, 229-231, 234-236,
240-243, 246-247, 249-257, 259,
262-267, 271-273, 275-281, 283-287,
290-297, 299-332, 334, 338-342,
344-347, 349-354, 356-357

synapse-analytics: 5, 143, 168, 231,
254, 262, 293, 299, 314, 330, 349

sync: 129, 133, 223, 234, 328
syntax: 39, 89-90, 136, 141-142,

148, 158, 194, 236, 347
sys: 30-31, 33, 38, 154, 165-167,

274, 341, 343, 346-347
system: 10, 12, 22, 30, 40-41,

147-148, 154, 166, 176, 344

T
TCO: 133
TDE: 305
Technical: 4, 22, 56, 58, 72, 98, 106,

130, 148, 178, 200, 204, 206,
222, 242, 267, 272, 308, 340

technique: 89, 154, 222-223, 355
temporary: 36, 39-40, 149-150, 161, 342
threat: 4, 283-284, 299-300, 302-304, 306
transactions: 148, 163, 165-166, 176, 265
transform: 44, 75, 97, 99, 108,

128, 253-254, 262
trigger: 52, 58, 80, 102-105,

120-123, 319-320, 330, 335
triggers: 20, 102-105, 120, 127, 308,

317-320, 329-330, 334, 338
T-SQL: 4, 30, 41, 44, 80, 89, 98, 141,

144, 147-149, 152-154, 157-158,
161, 168, 176, 194, 254

U
unified: 3, 15, 44, 302, 307-308, 317, 331
UPDATE: 34, 51, 133-134, 157,

159, 340-342, 344
URL: 15, 56, 64, 168, 213, 231, 233

URLs: 212
usage: 34, 39, 155, 158, 161, 171, 267
UTC: 58, 122
UTF: 90, 93

V
virtual: 162, 284-287, 290
visualization: 209, 219, 223, 240
visualizations: 189, 210-211,

214-216, 220, 236, 240

W
warehouses: 44, 214
warehousing: 3-5, 15
window: 32, 58, 63, 65, 67, 74-75, 79,

82-83, 85, 89, 103-104, 109, 114-115,
119, 123, 125-126, 150, 195, 210, 216,
237, 294, 319-320, 332-333, 335

windows: 52, 90, 92, 104, 168, 170,
172, 174, 188-189, 191-192,
213, 216, 230-231, 233, 254,
256, 280, 333, 338, 350

X
XML: 344, 352

Y
YARN: 47, 354

	Preface
	Section 1:
The basics and
key concepts
	1
	Introduction to Azure Synapse
	Technical requirements
	Introducing the components of Azure Synapse
	Creating a Synapse workspace
	Understanding Azure Data Lake
	Exploring Synapse Studio
	Summary

	2
	Considerations for your compute environment
	Technical requirements
	Introducing SQL Pool
	Creating a SQL pool
	Understanding Synapse SQL Pool architecture and components
	Examining DWUs
	Understanding distributions in Synapse SQL Pool
	Understanding partitions in Synapse SQL Pool
	Using temporary tables in Synapse SQL Pool
	Discovering the benefits of Synapse SQL Pool

	Understanding Synapse SQL on-demand
	SQL on-demand architecture and components
	Learning about the benefits of Synapse SQL
on-demand

	Understanding Spark pool
	Spark pool architecture and components
	Creating a Synapse Spark pool
	Learning about the benefits of a Synapse Spark pool

	Summary

	Section 2:
Data Ingestion and Orchestration
	3
	Bringing your data to Azure Synapse
	Technical requirements
	Using Synapse pipelines to import data
	Bringing data to your Synapse SQL pool using Copy Data tool
	Using Azure Data Factory to import data
	Using SQL Server Integration Services to import data
	Using a COPY statement to import data
	Loading data from a public storage account
	Loading data from a private storage account using an SAS token
	Using authentication mechanisms

	Summary

	4
	Using Synapse pipelines to orchestrate
your data
	Technical requirements
	Introducing Synapse pipelines
	Integration runtime
	Activities
	Pipelines
	Triggers

	Creating linked services
	Defining source and target datasets
	Using various activities in Synapse pipelines
	Scheduling Synapse pipelines
	Creating pipelines using samples
	Summary

	5
	Using Synapse
Link with Azure Cosmos DB
	Technical requirements
	Enabling the analytical store in Cosmos DB
	Data storage
	Transactional store
	Analytical store

	Querying the Cosmos DB analytical store
	Querying with Azure Synapse Spark
	Querying with Azure Synapse SQL Serverless

	Summary

	Section 3:
Azure Synapse for Data Scientists and Business Analysts
	6
	Working with T-SQL in Azure Synapse
	Technical requirements
	Supporting T-SQL language elements in a Synapse SQL pool
	CTEs
	SELECT – OVER clause
	Using dynamic SQL in Synapse SQL
	Learning GROUP BY options in Synapse SQL
	Using T-SQL loops in Synapse SQL

	Creating stored procedures and views in Synapse SQL
	Stored procedures
	Views

	Optimizing transactions in Synapse SQL
	Supporting system views in a Synapse SQL pool
	Using T-SQL queries on semi-structured and unstructured data
	Reading Parquet files
	Reading JSON documents
	External tables

	Summary

	7
	Working with R, Python, Scala, .NET, and Spark SQL in Azure Synapse
	Technical requirements
	Using Azure Open Datasets
	Using sample scripts
	PySpark (Python)
	Spark (Scala)
	.NET Spark (C#)
	Spark SQL

	Summary

	8
	Integrating a Power BI workspace with Azure Synapse
	Technical requirements
	Connecting to a Power BI workspace
	Creating your own dashboard on Azure Synapse
	Creating new Power BI datasets
	Creating Power BI reports

	Connecting Azure Synapse data to Power BI Desktop
	Connecting to a Synapse-dedicated SQL pool
	Connecting to a Synapse serverless SQL pool

	Summary

	9
	Perform real-time
analytics on streaming data
	Technical requirements
	Understanding various architecture and components
	Bringing data to Azure Synapse
	Using Azure Stream Analytics
	Using Azure Databricks

	Implementation of real-time analytics on streaming data
	Ingesting data to Cosmos DB
	Accessing data from the Azure Cosmos DB analytical store in Azure Synapse
	Loading data to a Spark DataFrame
	Creating visualizations

	Summary

	10
	Generate powerful insights on Azure Synapse using
Azure ML
	Technical requirements
	Preparing the environment
	Creating a Text Analytics resource in the Azure portal
	Creating an Anomaly Detector resource in the
Azure portal
	Creating an Azure key vault

	Creating an Azure ML linked service in
Azure Synapse
	Machine learning capabilities in Azure Synapse
	Data ingestion and orchestration
	Data preparation and exploration
	Training machine learning models

	Use cases with Cognitive Services
	Sentiment analysis
	Anomaly detection

	Summary

	Section 4:
Best practices
	11
	Performing backup and restore in Azure Synapse analytics
	Technical requirements
	Creating restore points
	Automatic restore points
	User-defined restore points

	Geo-backups and disaster recovery
	Geo-redundant restore through the Azure portal
	Geo-redundant restore through PowerShell

	Cross-subscription restore
	Summary

	12
	Securing data on Azure Synapse
	Implementing network security
	Managed workspace virtual network
	Private endpoint for SQL on-demand
	IP firewall rules
	SQL authorization
	Azure Active Directory authorization
	Implementing RBAC in a Synapse SQL pool

	Enabling threat protection
	Azure SQL auditing
	Azure Defender for SQL

	Understanding information protection
	Summary

	13
	Managing and monitoring Synapse workloads
	Technical requirements
	Managing Synapse resources
	Analytics pools
	External connections
	Integration
	Security
	Source control

	Monitoring Synapse workloads
	Integration
	Activities
	Analytics pools

	Managing maintenance schedules
	Creating alerts for Azure Synapse Analytics
	Summary

	14
	Coding best practices
	Technical requirements
	Implementing best practices for a Synapse dedicated SQL pool
	Maintaining statistics
	Using correct distribution for your tables
	Using partitioning
	Using an adequate column size
	Advantages of using a minimum transaction size
	Using PolyBase to load data
	Reorganizing and rebuilding indexes
	Materialized views
	Using an appropriate resource class

	Implementing best practices for a Synapse serverless SQL pool
	Selecting the region to create a serverless SQL pool
	Files for querying
	Using CETAS to enhance query performance

	Implementing best practices for a Synapse Spark pool
	Configuring the Auto-pause setting
	Enhancing Apache Spark performance

	Summary
	Why subscribe?

	Other Books You May Enjoy
	Index
	_GoBack

