

Building Windows Phone 7 applications with
SharePoint 2010 Products and Unified Access
Gateway

This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet Web site references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or

connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes. You may modify this

document for your internal, reference purposes.

Microsoft, SharePoint , Silverlight, Visual Studio, and Windows Phone 7 are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

© 2011 Microsoft Corporation. All rights reserved.



2

Building Windows Phone 7 applications with
SharePoint 2010 Products and Unified Access
Gateway

Dave Pae

Microsoft Corporation

Todd Baginski

Aptillon, Inc.

Matthew McDermott

Aptillon, Inc.

Ben Ari

Microsoft Corporation

March 2011

Applies to: Microsoft® SharePoint® Server 2010, Microsoft SharePoint Foundation

2010, Microsoft Forefront Unified Access Gateway, Windows Phone 7™

Summary:

This white paper addresses business scenarios for the development of mobile applications that

use the features of SharePoint 2010 Products for collaboration while authenticating through

Microsoft Forefront Unified Access Gateway (UAG). The main body of the paper introduces the

concepts and code required to access SharePoint list data in a secure manner from Windows

Phone 7. The Appendix details the installation and configuration of a developer instance of UAG

for the purposes of testing and developing mobile applications with SharePoint 2010 Products.

3

4

Contents
Contents ... 4
Overview and Goals .. 6
Architecture ... 7

SharePoint 2010 Products Intranet ... 7

UAG ... 7
Intranet Collaboration Scenario .. 7

Business Value of Collaboration ... 8

The Application .. 8
Security .. 12

Credential Storage ... 12

Authentication ... 12
SharePoint Services .. 13

Consuming Services ... 13

Accessing SharePoint List Data by Using the OData Client Library .. 13

Activity Feed RSS ... 21

User Profile Service - Colleagues .. 24

User Profile Service - User Profile Data ... 27
Testing ... 30

Testing the Application on the Emulator .. 30

Testing the Application on a Device .. 30
Marketplace Considerations ... 30
Conclusion... 34
Appendix – Installation and Configuration of UAG for SharePoint 2010 Products ... 35

1. Create a SharePoint Server Virtual Machine and a UAG Virtual Machine. .. 35

2. Set Up Hyper-V Host Machine Virtual Networks .. 36

3. Set Up Hyper-V Virtual Machine Networks ... 37

4. Prepare the UAG Server Virtual Machine for UAG Installation ... 41

5. Snapshot the UAG Server Virtual Machine ... 42

6. Install the UAG Server .. 42

7. Snapshot the UAG Server Virtual Machine ... 48

8. Initial UAG Server Configuration and Activation .. 48

9. Create the HTTP Trunk to Publish the SharePoint Site ... 64

10. Create the SharePoint Application ... 74

11. Configure the SharePoint Application .. 84

12. Activate the Configuration ... 86

13. Configure and Verify SharePoint Alternate Access Mappings ... 88

5

14. Add Hosts File Entries to the Development Environment .. 88

15. Test the Configuration ... 89

16. Test the Newsfeed RSS ... 94
Resources ... 97

Forefront Unified Access Gateway on TechNet .. 97

Closer to the Edge Blog .. 97

Silverlight Web Services Team Blog .. 97
About the Authors .. 97

Todd Baginski, MVP .. 97

Matthew McDermott, MVP ... 97

Ben Ari ... 98

6

Overview and Goals
As organizations grow and change and seek to keep pace with technology, their employees may feel
disconnected from the corporate community. Microsoft® SharePoint 2010 Products support many features
that enable employee engagement and collaboration — from lists and libraries that store and manage
documents and information, to centralized user profiles that enable employees to describe themselves and
the role they play in the organization, to tagging and notes that facilitate the discovery of information inside
and outside the firewall. Windows Phone 7™ is the latest version of mobile devices that supports Microsoft’s
vision of a mobile workplace. The Windows Phone is delivered with many features that support “Office in the
cloud,” including applications that can open and read Microsoft Office documents. The Windows Phone 7
development experience is tailored for the .NET Developer who already has a firm grasp of .NET and
Microsoft Silverlight® development. This white paper seeks to bridge the gap between the Windows Phone
developer and the SharePoint developer who want to create business applications that can leverage the
power of SharePoint 2010 Products from the Windows Phone.

Note In this white paper, SharePoint 2010 Products refers to Microsoft SharePoint® Server 2010 and
Microsoft SharePoint Foundation 2010 unless otherwise specified. The examples and scenarios use
SharePoint Server 2010.

This paper seeks to clarify the following development scenarios:

 How do I prepare for connecting to SharePoint 2010 Products from my Windows Phone 7 applications?

 How do I connect to SharePoint through the Unified Access Gateway?

 How do I connect to, authenticate, and consume SharePoint Web services?

 How do I create and update SharePoint list items?

 How do I consume RSS feeds provided by SharePoint?

7

Architecture
In the scenario illustrated in this white paper, Contoso enables their

employees to connect to SharePoint 2010 Products through Forefront Unified

Access Gateway (UAG). UAG translates the external host name configured on

the phone to the internal host name configured in SharePoint and adds a layer

of security and authentication that organizations require to protect and

control their corporate Web properties.

SharePoint 2010 Products
Intranet
The Contoso intranet is an enterprise implementation of SharePoint 2010

Products. The site is configured by using a User Profile Service Application and

Search Service Application. The mobile application will use the Web service

from the User Profile Service to enable employees to view User Profile

information on their mobile phones.

For more information about configuring the User Profile Service Application,

see User Profile service administration (SharePoint Server 2010)

(http://technet.microsoft.com/en-us/library/ee721050.aspx).

UAG
Publishing a SharePoint site through a UAG server in a development environment involves setting up

networks on the Hyper-V host machine, the server running SharePoint Server 2010, and the UAG server, in

addition to installing and configuring the UAG server.

The Appendix describes how to set up these networks and install and configure a UAG server to publish a

SharePoint site for Windows Phone 7 development. These steps are suitable for a development or other

non-production environment. Please see the SharePoint publishing solution guide

(http://go.microsoft.com/fwlink/?LinkID=206256) on TechNet when you deploy an environment like this to a

production environment.

Intranet Collaboration Scenario
Contoso has many talented people working in many different areas of production, including pharmaceuticals

and electronics. The leadership at Contoso has a vision for the integration of people and software to make

the workplace not only more productive but more connected, from the perspective of the employee.

Contoso wants everyone to enjoy interfacing with the data to enable a happy and productive workforce.

Contoso enjoys a strong starting foundation with their deployment of SharePoint 2010 Products. They see

SharePoint as the central enterprise application that consolidates user data and activities. Contoso wants to

reach further, offering a mobility solution for their associates. To that end, Contoso wants to develop a

SharePoint 2010 Domain Controller

Unified Access Gateway

Windows Phone

http://technet.microsoft.com/en-us/library/ee721050.aspx
http://go.microsoft.com/fwlink/?LinkID=206256

8

mobile application that will enable users to view their activities from SharePoint, keep track of their

colleagues, and update lists that are hosted on their SharePoint intranet.

Business Value of Collaboration
Although some companies may find it challenging to directly correlate business value to the collaboration

features of SharePoint 2010 Products, Contoso has found a direct relationship between connecting people to

each other and building a sense of community with SharePoint. The more employees feel connected to

friends at work, the more likely they are to be happy in their job. This happiness and job satisfaction leads to

better employee retention (and easier new employee onboarding). Better employee retention reduces the

cost of hiring and improves the company’s bottom line.

The Application
Through their mobile application, Contoso wants to replicate many of the features that SharePoint My Sites

offer in a Web browser. The flow of the application will consist of a panoramic page with list boxes for

Recently Viewed People, My Newsfeed, My Activities and My Colleagues. Anywhere a user selects another

user’s image, the profile of the user they select will open in a new page. Search results will be presented in a

list box, and selecting a user will display the user’s profile. Figure 1 illustrates these components.

Recent People My Newsfeed My Colleagues

User Profile

Personal Tasks

Figure 1: SharePoint social functionality Contoso wants to use in its Windows Phone 7 application.

Personal Task List
Every personal site has a task list that the employee can maintain to track personal progress on assignments.

The application will connect to the personal site task list and enable the employee to create, update, and

delete tasks.

My Newsfeed
The My Newsfeed (Figure 2) on the SharePoint My Site is the place for users to get the latest news from

around the company. Because My Newsfeed is extensible, organizations like Contoso can add additional

channels for activity events from other systems.

9

Figure 2: My Newsfeed on a SharePoint site as viewed in a Web browser.

My Colleagues
This list of colleagues maintained by a user ("the people I follow") is a valuable resource (Figure 3). Contoso

wants to duplicate that list in the mobile experience.

Figure 3: My Colleagues on a SharePoint site as viewed in a Web browser.

10

The Windows Phone application will make use of the panorama control to display the information, including

recently accessed profiles, on a continuous panel. (Figure 4)

Figure 4: The panorama control that displays the holistic view of the Windows Phone 7 application.

Profile Card
Selecting any user will display details from the user's profile (Figure 5). The profile card will show information

about the user in the mobile view.

11

Figure 5: Details about a user in a SharePoint site as viewed in a Web browser.

Figure 6: Details about a user in a SharePoint site as viewed on the Windows Phone 7 application.

12

Security
Security for the Windows Phone developer should be considered both for data in transit and data at rest.

Secure storage of credentials is achieved through the use of encryption and isolated storage. For more

information about the security capabilities of the phone, see Security for Windows Phone

(http://go.microsoft.com/fwlink/?LinkId=215977) on MSDN.

Credential Storage
Windows Phone 7 supports the following cryptographic algorithms:

 AES

 HMACSHA1

 HMACSHA256

 Rfc2898DeriveBytes

 SHA1

 SHA256

It is imperative that the developer of any mobile application that stores credentials on the phone consider

the security of the stored credentials in the event that the device is lost or compromised.

Authentication
Windows Phone 7 does not support NTLM authentication. Web service requests from the phone through

UAG must create the correct authentication header by retrieving the user’s credentials from encrypted

storage and then attaching the credentials to the header of the HttpWebRequest object. Web requests

should be made over HTTPS and the authentication headers passed, as in the following example.

upsRequest.Headers["Authorization"] = "Basic " +

 Convert.ToBase64String(

 Encoding.UTF8.GetBytes(AppSettings.Username + ":" + AppSettings.Password)) +

 System.Environment.NewLine;

When a WCF Service Reference is used, the header may be added to the SOAP client by accessing the

OperationContextScope, as in the following example.

using (OperationContextScope scope =

 new OperationContextScope(ups.InnerChannel))

{

 //Create the Request Message Property

 HttpRequestMessageProperty request = new HttpRequestMessageProperty();

 //Create the authentication and mobile agent header

 request.Headers[System.Net.HttpRequestHeader.Authorization] =

 "Basic " +

Convert.ToBase64String(Encoding.UTF8.GetBytes(AppSettings.Username + ":" +

http://go.microsoft.com/fwlink/?LinkId=215977

13

 AppSettings.Password)) + System.Environment.NewLine;

 request.Headers[System.Net.HttpRequestHeader.UserAgent] =

 "Microsoft Office Mobile";

 //Add the headers to the request

 OperationContext.Current.OutgoingMessageProperties.Add(

 HttpRequestMessageProperty.Name, request);

 //Call the method

 ups.GetUserColleaguesAsync(account);

}

SharePoint Services

Consuming Services
The application will consume several SharePoint services to meet the requirements of the business; as

summarized in the following table.

Requirement Service URL Method

Read and Update List

Data

http://sharepoint/_vti_bin/listdata.svc OData Client Library

View User Newsfeed http://mysitehost/_layouts/activityfeed.aspx?consolidate

d=true

Consume the RSS Feed

provided.

View User Colleagues http://mysitehost/_vti_bin/userprofileservice.asmx GetUserColleagues

View User Profile http://mysitehost/_vti_bin/userprofileservice.asmx GetUserProfileByName

Accessing SharePoint List Data by Using the
OData Client Library
Publishing a SharePoint site collection through a UAG server enables integration between Windows Phone 7

applications and the SharePoint REST APIs. The OData Client Library for Windows Phone 7 Series CTP

(http://go.microsoft.com/fwlink/?LinkId=215984) enables Windows Phone 7 devices to consume OData

feeds. The SharePoint REST APIs may be called by using the OData Client Library to provide create, read,

update, and delete (CRUD) operations on SharePoint list data. This provides the ability to integrate

Windows Phone 7 devices with collaboration applications built on the SharePoint platform. The following

code sample demonstrates how to use the OData Client Library and the SharePoint REST APIs to perform

CRUD operations on SharePoint list data.

http://go.microsoft.com/fwlink/?LinkId=215984
http://go.microsoft.com/fwlink/?LinkId=215984

14

Because you cannot add Service References for the SharePoint REST APIs to a Windows Phone 7 application,

you must generate a proxy class by hand and add the class as a reference to the project in Microsoft Visual

Studio®. DataSvcUtil.exe (http://go.microsoft.com/fwlink/?LinkID=215987) is used to generate the proxy

class. In this scenario, the proxy class is named ContosoIntranetDataContext. This class is used extensively in

the code samples that follow.

The LoadTask method demonstrates how to load tasks from a SharePoint Tasks list. In this method, the

ContosoIntranetDataContext class uses settings from IsolatedStorage to determine which SharePoint site to

connect to. The SendingRequest event handler is assigned to the instance of the

ContosoIntranetDataContext. This event handler is fired when the ContosoIntranetDataContext class

invokes a request to the SharePoint REST APIs. The requestUri defines the REST operation, and the

BeginExecute method submits the request. The BeginExecute method also registers the asynchronous

callback method that fires when the query is complete.

private void LoadTasks()

{

 Deployment.Current.Dispatcher.BeginInvoke(() =>

 {

 if (allTasks == null)

 {

 allTasks = new ObservableCollection<Task>();

 }

 ObservableCollection<TasksItem> tasks = new

 ObservableCollection<TasksItem>();

 //Retrieve the settings from isolated storage

 SettingsModel settings =

 (IsolatedStorageSettings.ApplicationSettings["Settings"]

 as SettingsModel);

 //Set up the ODATA context to point to the SharePoint site

 context = new ContosoIntranetDataContext(

 new Uri(settings.ServerUri + "/_vti_bin/listdata.svc"));

 //Register the event handler used to authenticate to UAG

 context.SendingRequest += new EventHandler<SendingRequestEventArgs>(

 context_SendingRequest);

 //Set the URI to query the Tasks list

 //Expand is used to retrieve lookup column values

http://go.microsoft.com/fwlink/?LinkID=215987

15

 Uri requestUri = new Uri(context.BaseUri.OriginalString +

 "/Tasks()?$expand=AssignedTo,CreatedBy,ModifiedBy");

 //Start the async call to query SharePoint

 context.BeginExecute<TasksItem>(requestUri, QueryCallback, null);

 });

}

The SendingRequest event handler is fired when the OData query is sent to SharePoint 2010 Products. The

code in this event handler is significant: without this code, a UAG server cannot correctly identify a Windows

Phone 7 device and interact properly to authenticate a user. The User-Agent header causes a UAG server to

respond with an HTTP 401 instead of a 302. The Authorization header includes the encrypted credentials for

the user accessing the OData feed. The encrypted credentials are used by the UAG server to authenticate

the user.

private void context_SendingRequest(object sender, SendingRequestEventArgs e)

{

 e.RequestHeaders["User-Agent"] = "Microsoft Office Mobile";

 e.RequestHeaders["Authorization"] = "Basic " + Convert.ToBase64String(

 Encoding.UTF8.GetBytes(App.Credential.Name + ":" +

 App.Credential.Password)) + System.Environment.NewLine;

}

After the query to the server running SharePoint Server is complete, the QueryCallback method fires. This

method parses the results returned from the query and adds them to the ObservableCollection bound to the

UI elements in the phone application.

private void QueryCallback(IAsyncResult asyncResult)

{

 IEnumerable<TasksItem> results;

 allTaskItems = new ObservableCollection<TasksItem>();

 results = context.EndExecute<TasksItem>(asyncResult).ToList()

 as IEnumerable<TasksItem>;

 ObservableCollection<Task> returnedTasks =

 new ObservableCollection<Task>();

 foreach (TasksItem tasksItem in results)

16

 {

 //Code omitted for brevity: Retrieve metadata about the task…

 //Create the new Task and set its properties

 Task task = new Task()

 {

 Title = tasksItem.Title,

 Priority = taskPriority,

 TaskStatus = taskStatus,

 Body = tasksItem.Description,

 Author = authorUser.Name,

 Editor = editorUser.Name,

 AssignedTo = assignedToUser.Name,

 StartDate = DateTime.Parse(tasksItem.StartDate.ToString()),

 Modified = DateTime.Parse(tasksItem.Modified.ToString()),

 Created = DateTime.Parse(tasksItem.Created.ToString()),

 DueDate = DateTime.Parse(tasksItem.DueDate.ToString()),

 UIVersion = 1,

 Last_x0020_Modified =

 DateTime.Parse(tasksItem.Modified.ToString()),

 Created_x0020_Date =

 DateTime.Parse(tasksItem.Created.ToString()),

 PercentComplete = (int)finalPercentComplete,

 ListID = tasksItem.Id

 };

 //Add each task to the ObservableCollection bound to UI elements.

 returnedTasks.Add(task);

 allTaskItems.Add(tasksItem);

 }

 allTasks = returnedTasks;

 //UI callback methods omitted for brevity

}

17

The SaveTask method creates new tasks and updates existing tasks. The following code demonstrates how

to use the OData Client Library to create new tasks or update existing tasks in a SharePoint task list from a

Windows Phone 7 device. The TasksItem class represents a task in a task list. A TasksItem instance is

created, and its properties are set to the values in the form used to create or edit tasks. The TasksItem

instance is then compared to the tasks already loaded into the phone to see if the task already exists. This

check determines whether the OData Client Library is used to create a new task in the SharePoint task list or

update an existing one. The BeginSaveChanges method invokes the proper operation and registers the

saveChangesCallBack callback method.

public void SaveTask(Task task, Action<Task> callback)

{

 taskToSave = task;

 #region Create/update new task object

 saveTaskCallback = callback;

 //Retrieve the settings from isolated storage

 SettingsModel settings =

 (IsolatedStorageSettings.ApplicationSettings["Settings"]

 as SettingsModel);

 //Set up the ODATA context to point to the appropriate SharePoint site

 context = new ContosoIntranetDataContext(

 new Uri(settings.ServerUri + "/_vti_bin/listdata.svc"));

 //Register the event handler used to authenticate to UAG

 context.SendingRequest +=

 new EventHandler<SendingRequestEventArgs>(context_SendingRequest);

 TasksItem tasksItem = new TasksItem();

 tasksItem.Title = task.Title;

 tasksItem.Description = task.Body;

 tasksItem.AssignedToId = assignedToUserID;

 tasksItem.PriorityValue = task.Priority.DisplayString;

 tasksItem.StartDate = task.StartDate;

 tasksItem.DueDate = task.DueDate;

 //Set percent complete

18

 if (task.PercentComplete > 0)

 {

 tasksItem.Complete = (double)task.PercentComplete / 100;

 }

 else

 {

 tasksItem.Complete = (double)0;

 }

 //Set tasks status

 tasksItem.StatusValue = task.TaskStatus.DisplayString;

 //If the task already exists then update it

 if (allTasks.Count > 0 && DoesTaskExist(taskToSave) && task.ListID != 0)

 {

 tasksItem.Id = task.ListID;

 context.AttachTo("Tasks", tasksItem, "*");

 context.UpdateObject(tasksItem);

 }

 //If the task does not exist then create it

 else

 {

 context.AddToTasks(tasksItem);

 }

 Deployment.Current.Dispatcher.BeginInvoke(

 () =>

 {

 //Start the async call to SharePoint to commit the changes

 context.BeginSaveChanges(saveChangesCallBack, context);

 }

);

}

19

After the query is complete, the saveChangesCallBack fires. This method parses the results returned from

the query and updates the ObservableCollection bound to the UI elements in the phone.

private void saveChangesCallBack(IAsyncResult asyncResult)

{

 Deployment.Current.Dispatcher.BeginInvoke(

 () =>

 {

 //Get the data context from the response

 context = asyncResult.AsyncState as ContosoIntranetDataContext;

 //Call the endsavechanges method to commit the change

 DataServiceResponse response = context.EndSaveChanges(asyncResult);

 //If the task already exists then update it

 if (allTasks.Count > 0 && DoesTaskExist(taskToSave))

 {

 for (int i = 0; i < allTasks.Count; i++)

 {

 if (allTasks[i].ListID == taskToSave.ListID)

 {

 //Update the corresponding task in the in-memory collection

 allTasks[i] = taskToSave;

 //Call the callback to tell the UI the save operation is complete

 saveTaskCallback.DynamicInvoke(taskToSave);

 break;

 }

 }

 }

 //If the task does not exist then create it

 else

 {

 //Add the task to the in-memory collection

 allTasks.Add(taskToSave);

 //Call the callback to tell the UI the save operation is complete

 saveTaskCallback.DynamicInvoke(taskToSave);

 }

 }

20

);

}

The DeleteTask method demonstrates how to use the OData Client Library to delete tasks in a SharePoint

task list from a Windows Phone 7 device. This method takes the ID associated with a task selected in the

Windows Phone 7 application and creates a Task object based on the ID. The Task object is used to locate the

corresponding TasksItem in the OData Client Library context associated with the SharePoint task list. After

the corresponding entry is located, it is marked for deletion. The BeginSaveChanges callback method

invokes the SharePoint REST API and registers the DeleteCallback callback method.

public void DeleteTask(int ID, Action callback)

{

 deleteTaskCallback = callback;

 taskToDelete = GetTask(ID);

 //Retrieve the settings from isolated storage

 SettingsModel settings =

 (IsolatedStorageSettings.ApplicationSettings["Settings"]

 as SettingsModel);

 //Set up the ODATA context to point to the appropriate SharePoint site

 context = new ContosoIntranetDataContext(

 new Uri(settings.ServerUri + "/_vti_bin/listdata.svc"));

 //Register the event handler used to authenticate to UAG

 context.SendingRequest +=

 new EventHandler<SendingRequestEventArgs>(context_SendingRequest);

 foreach (TasksItem tasksItem in allTaskItems)

 {

 if (tasksItem.Id == taskToDelete.ListID)

 {

 context.MergeOption = MergeOption.OverwriteChanges;

 context.AttachTo("Tasks", tasksItem, "*");

 context.DeleteObject(tasksItem);

 //Start the async call to SharePoint to commit the delete

 context.BeginSaveChanges(DeleteCallback, context);

 break;

 }

21

 }

}

After the query is complete, the DeleteCallback method fires. This method parses the results returned from

the query and removes the task in the ObservableCollection bound to the UI elements in the phone.

private void DeleteCallback(IAsyncResult asyncResult)

{

 Deployment.Current.Dispatcher.BeginInvoke(

 () =>

 {

 //Get the data context from the response

 context = asyncResult.AsyncState as ContosoIntranetDataContext;

 //Call the endsavechanges method to commit the change

 DataServiceResponse response = context.EndSaveChanges(asyncResult);

 // Remove the task from the in-memory collection as well

 if (taskToDelete != null)

 {

 //Remove the task from the in-memory collection

 GetAllTasks().Remove(taskToDelete);

 //Call the callback to tell the UI the delete operation is complete

 deleteTaskCallback.DynamicInvoke();

 }

 }

);

}

Activity Feed RSS

The personal newsfeed and recent activities are published from the My Site host as an RSS feed. The

application only needs to request the RSS feed, download the string, and add the results to a collection

object. The activities are published from the My Site host on the URL

http://<mysitehost>/_layouts/activityfeed.aspx?consolidated=true. (Ensure that you have tested the RSS

feed by following the directions in the Appendix at the end of this paper before trying to access it via the

code approach outlined below.)

22

The LoadNewsfeed method demonstrates how to request the consolidated activity feed for the

authenticated user through UAG. A new HtpWebRequest is created by passing the URI of the consolidated

activity feed. The necessary client headers are added to the request. Account and Password are variables

accessed from encrypted isolated storage. To facilitate the use of Model View View Model pattern, the

MVVM Light Toolkit is employed (for more information, see the MVVM Light Toolkit Web site

(http://go.microsoft.com/fwlink/?LinkId=216135)). In this sample, the

DispatcherHelper.CheckBeginInvokeOnUI is called to handle the ResponseStream and the results are passed

to AddNewsfeedItems to extract the result values and add them to the NewsfeedItems collection.

private void LoadNewsfeed()

{

 //My Newsfeed RSS URL

 string url =

String.Format(“{0}/my/_layouts/activityfeed.aspx?consolidated=true",

AppSettings.Url);

 System.Uri authServiceUri = new Uri(url);

 HttpWebRequest client =

 WebRequest.CreateHttp(authServiceUri) as HttpWebRequest;

 //Add the necessary headers for UAG

 client.Headers["User-Agent"] = "Microsoft Office Mobile";

 client.Headers["Authorization"] = "Basic " +

 Convert.ToBase64String(Encoding.UTF8.GetBytes(AppSettings.Username + ":" +

AppSettings.Password))+

 System.Environment.NewLine;

 client.AllowReadStreamBuffering = true;

 client.AllowAutoRedirect = true;

 // Call and handle the response.

 client.BeginGetResponse((asResult) =>

 {

 DispatcherHelper.CheckBeginInvokeOnUI(

 () =>

 {

 try

 {

 var response = client.EndGetResponse(asResult);

 StreamReader reader = new

 StreamReader(response.GetResponseStream());

http://go.microsoft.com/fwlink/?LinkId=216135

23

 string responseString = reader.ReadToEnd();

 AddNewsfeedItems(responseString);

 }

 catch (WebException failure)

 {

 throw failure;

 }

 });

 },

 null);

 }

After the download is complete, the AddNewsfeedItems adds the results to the collection that is bound to

the UI. The responseString is parsed into an XDocument, and the two namespaces are added. LINQ is used to

query the entries collection and create MyNewsfeedViewModel objects that store the resulting newsfeed

items and the author information. Finally, the items are added to the MyNewsFeedItems collection.

private void AddNewsfeedItems(string responseString)

{

 //Parse the XML Response

 XDocument newsfeedDoc = XDocument.Parse(responseString);

 //Add the necessary Namespaces

 XNamespace ns = "http://www.w3.org/2005/Atom";

 XNamespace af = "AF";

 //Use LINQ to extract the information into a ViewModel

 IEnumerable<MyNewsfeedViewModel> entries = from entry in

 newsfeedDoc.Descendants(XName.Get("entry", ns.NamespaceName))

 select new MyNewsfeedViewModel()

 {

 Summary = entry.Element(ns + "summary").Value,

 Published = entry.Element(ns + "published").Value,

 Author =

 (from author in entry.Descendants(XName.Get("author",

 ns.NamespaceName))

 select new PersonViewModel(NavigationService)

 {

 AccountName = author.Element(af + "AccountName").Value,

24

 Name = author.Element(ns + "name").Value,

 PersonalSiteUrl = author.Element(ns + "uri").Value,

 Email = author.Element(ns + "email").Value,

 PictureUrl = author.Element(af + "Picture").Value

 }).FirstOrDefault()};

 //Add the resulting items to the Collection bound to the UI controls

 DispatcherHelper.CheckBeginInvokeOnUI(() =>

 {

 foreach (MyNewsfeedViewModel e in entries.ToList())

 {

 MyNewsfeedItems.Add(e);

 }

 });

}

User Profile Service - Colleagues
The SharePoint User Profile service provides the ability to view, create, edit, and manage user profile

information in SharePoint 2010 Products. The service is the primary entry point for the application to retrieve

information about user colleagues and user profiles. The following code demonstrates how to call the User

Profile service from Windows Phone7 through UAG.

Create the User Profile Service Reference
Begin by adding a Service Reference to your Windows Phone 7 project. Enter the URL to the SharePoint User

Profile Service end point, for example:

http://spwp7intranet.contoso.com/_vti_bin/userprofileservice.asmx

Give the Service Reference a recognizable name, such as UserProfileService, and then click OK.

The GetUserColleagues Web Method
The LoadColleagueData method uses the GetUserColleaguesAsync method of the User Profile Service to

return a collection of colleagues as ContactData objects. After Creating the BasicHttpBinding and

EndpointAddress, a new UserProfileServiceSoapClient is created with the required parameters. The Service

calls in Silverlight must be performed asynchronously. A new OnCompleted event handler is added for the

GetUserColeaguesCompleted event. To add the headers required by UAG, an OperationContextScope is

used and an HttpRequestMessageProperty is created to hold the two headers that are required to

authenticate against UAG. The headers are added to the outgoing message, and the asynchronous call is

made to GetUserColleaguesAsync by using the user’s account as a parameter.

25

private void LoadColleagueData()

{

 string url =

String.Format("{0}/_vti_bin/userprofileservice.asmx", AppSettings.Url);

 BasicHttpBinding binding = new BasicHttpBinding();

 EndpointAddress endpoint = new EndpointAddress(url);

 UserProfileService.UserProfileServiceSoapClient ups =

 new UserProfileServiceSoapClient(binding, endpoint);

 //Add the Event Completed Handler

 ups.GetUserColleaguesCompleted +=

 new EventHandler<GetUserColleaguesCompletedEventArgs>(

 ups_GetUserColleaguesCompleted);

 //Add the credentials

 using (OperationContextScope scope =

 new OperationContextScope(ups.InnerChannel))

 {

 //Create the Request Message Property

 HttpRequestMessageProperty request = new HttpRequestMessageProperty();

 //Create the authentication and mobile agent header

 request.Headers[System.Net.HttpRequestHeader.Authorization] =

 "Basic " +

Convert.ToBase64String(Encoding.UTF8.GetBytes(AppSettings.Account +

 ":" + AppSettings.Password)) + System.Environment.NewLine;

 request.Headers[System.Net.HttpRequestHeader.UserAgent] =

 "Microsoft Office Mobile";

 //Add the headers to the request

 OperationContext.Current.OutgoingMessageProperties.Add(

 HttpRequestMessageProperty.Name, request);

 //Call the method

 ups.GetUserColleaguesAsync(account);

 }

}

26

When the GetUserColleaguesAsync method returns results, the ups_GetUserColleaguesCompleted event is

called. If there is no error, LINQ is used to create a list of PersonViewModels from the resulting ContactData.

The last step is to add the PersonViewModels from the list to the ColleaguesList on the UI thread by calling

CheckBeginInvoke and passing in our list of PersonViewModels.

private void ups_GetUserColleaguesCompleted(object sender,

 GetUserColleaguesCompletedEventArgs e)

{

 if (e.Error == null)

 {

 //Create a list of PersonViewModels

 IEnumerable<PersonViewModel> colleagues =

 from contact in e.Result

 select new PersonViewModel()

 {

 AccountName = contact.AccountName,

 UserProfileID = contact.UserProfileID.ToString(),

 Name = contact.Name,

 Title = contact.Title,

 Email = contact.Email,

 PersonalSiteUrl = contact.Url

 };

 //Load the Colleagues list on the UI thread

 DispatcherHelper.CheckBeginInvokeOnUI(() =>

 {

 foreach (PersonViewModel c in colleagues.ToList())

 {

 Colleagues.Add(c);

 }

 });

 }

 else

 {

 Debug.WriteLine("Error loading the Colleagues List: {0}",

 e.Error.Message);

 }

}

27

User Profile Service - User Profile Data
The GetUserColleagues Web method does not return user profiles. The method returns ContactData that

can be passed back to the User Profile Service GetUserProfileByName method that returns a complete User

Profile object, which can then be used to display a complete user profile. The following method is used to

return the user profile details for our colleagues. Specifically, we will return the fields AboutMe, WorkPhone,

MobilePhone, and PictureURL.

The GetUserProfileProperties method takes a PersonViewModel object for the person whose profile we

want to retrieve. In this method, we construct a message inspector to resolve an issue that causes the

PropertyData return value to fail to parse correctly. We then create a BasicHttpMessageInspectorBinding

that takes the message inspector as a parameter, passes the binding and endpoint to the constructor for the

UserProfileServiceSoapClient. and registers the GetUserProfileByNameCompleted event handler. To add

the request headers that UAG requires, an OperationContextScope adds the Authorization and UserAgent

headers to the request. Finally, we call the GetUserProfileByNameAsync method and pass the Account

Name for the user and the PersonViewModel we want to update.

private void GetUserProfileProperties(PersonViewModel person)

{

 //URL for the service

 string url = String.Format("{0}/_vti_bin/userprofileservice.asmx",

 AppSettings.ServerUrl);

 //Create the Message Inspector

 SPAsmxMessageInspector messageInspector = new SPAsmxMessageInspector();

 //Apply the Message Inspector to the Binding

 BasicHttpMessageInspectorBinding binding = new

 BasicHttpMessageInspectorBinding(messageInspector);

 EndpointAddress endpoint = new EndpointAddress(url);

 UserProfileService.UserProfileServiceSoapClient ups = new

 UserProfileServiceSoapClient(binding, endpoint);

 //Add the Event Completed Handler

 ups.GetUserProfileByNameCompleted += new

 EventHandler<GetUserProfileByNameCompletedEventArgs>

 (ups_GetUserProfileByNameCompleted);

28

 using (OperationContextScope scope = new

 OperationContextScope(ups.InnerChannel))

 {

 //Create the Request Message Property

 HttpRequestMessageProperty request = new HttpRequestMessageProperty();

 //Create the authentication and mobile agent header

 request.Headers[System.Net.HttpRequestHeader.Authorization] = "Basic " +

 Convert.ToBase64String(Encoding.UTF8.GetBytes(AppSettings.UserName + ":" +

 AppSettings.Password)) + System.Environment.NewLine;

 request.Headers[System.Net.HttpRequestHeader.UserAgent] =

 "Microsoft Office Mobile";

 //Add the headers to the request

 OperationContext.Current.

 OutgoingMessageProperties.Add(HttpRequestMessageProperty.Name, request);

 Debug.WriteLine("Getting User Profile for: {0}", person.AccountName);

 //Call the method

 ups.GetUserProfileByNameAsync(person.AccountName, person);

 }

}

When GetUserProfileByNameCompleted is called, the return property values (if there are any) are inspected
and assigned to the appropriate property on the PersonViewModel.

private void ups_GetUserProfileByNameCompleted(object sender,

 GetUserProfileByNameCompletedEventArgs e)

{

 if (e.Error == null)

 {

 Debug.WriteLine("Got the user profile for {0}",

 ((PersonViewModel)e.UserState).AccountName);

 foreach (UserProfileService.PropertyData propertyData in e.Result)

 {

 switch (propertyData.Name)

 {

 case "AboutMe":

29

 ((PersonViewModel) e.UserState).AboutMe = propertyData.Values.Count >

 0 ? (propertyData.Values[0].Value as string): String.Empty;

 break;

 case "WorkPhone":

 ((PersonViewModel)e.UserState).WorkPhone = propertyData.Values.Count >

 0 ? (propertyData.Values[0].Value as string) : String.Empty;

 break;

 case "CellPhone":

 ((PersonViewModel)e.UserState).MobilePhone = propertyData.Values.Count >

 0 ? (propertyData.Values[0].Value as string) : String.Empty;

 break;

 case "PictureURL":

 ((PersonViewModel)e.UserState).PictureUrl = propertyData.Values.Count >

 0 ? (propertyData.Values[0].Value as string) : String.Empty;

 break;

 }

 }

 }

 else

 {

 Debug.WriteLine(e.Error.Message);

 }

}

Note: The message inspector in this example is only recommended for use in an environment in which you

have applied the latest Silverlight updates. For more information, see Workaround for accessing some ASMX

services from Silverlight 4 (http://go.microsoft.com/fwlink/?LinkID=216134) and Silverlight and SharePoint

User Profile Service GUIDs (http://go.microsoft.com/fwlink/?LinkId=216136).

http://go.microsoft.com/fwlink/?LinkID=216134
http://go.microsoft.com/fwlink/?LinkID=216134
http://go.microsoft.com/fwlink/?LinkId=216136
http://go.microsoft.com/fwlink/?LinkId=216136

30

Testing

Testing the Application on the Emulator
The application in this sample is tested on the Windows Phone 7 development emulator. The emulator uses

the network connection of the host development machine. If necessary, host file entries may be added to the

development machine so that the emulator can resolve the addresses of the development UAG server.

Testing the Application on a Device
Testing the application on a physical Windows Phone device requires that the phone be connected to a

publicly available Wi-Fi connection that provides DNS and routing to the destination test UAG server or a test

UAG server exposed to the Internet.

Marketplace Considerations
After you have developed your Windows Phone 7 application, it is important to take the proper steps to

securely publish your application to the Windows Phone Marketplace. Microsoft has already put several

mechanisms in place to prevent software piracy of Windows Phone 7 applications. You can read more about

these measures in the Windows Phone Marketplace Anti-Piracy Model white paper

(http://go.microsoft.com/fwlink/?LinkId=216137).

At a high level, the minimum number of steps you must take to publish a Windows Phone 7 application to

the Windows Phone Marketplace include creating a developer account and publishing your application to the

marketplace. The App Hub Developer Registration Walkthrough article

(http://go.microsoft.com/fwlink/?LinkId=216138) describes how to register a developer account. It’s

important to note that a developer account may be tied to an individual or a company. Depending on your

needs, you can sign up for an account that makes the most sense for you. The registration fee for both

account types is the same. The Windows Phone 7 Application Submission Walkthrough article

(http://go.microsoft.com/fwlink/?LinkId=216139) describes how to submit your application for verification

and publication. If your application adheres to the Windows Phone 7 Application Certification Requirements

[PDF] (http://go.microsoft.com/?linkid=9730558), it will be published to the Windows Phone Marketplace.

At the time of publication of this white paper, there is no “private marketplace” for organizations to prevent

the public distribution of their applications. See the App Hub (http://create.msdn.com) for updates and

information about the ability of organizations to publish applications privately.

Although Microsoft has put many safeguards into place, you should still take extra precautions to safeguard

your code in the event that someone obtains a copy of the .xap file representing your Windows Phone 7

application. Before you go through the steps to publish your application to the Windows Phone

Marketplace, you should make sure you obfuscate your applications to protect your intellectual property.

There are already several different tools available to obfuscate Windows Phone 7 applications.

http://go.microsoft.com/fwlink/?LinkId=216137
http://go.microsoft.com/fwlink/?LinkId=216138
http://go.microsoft.com/fwlink/?LinkId=216139
http://go.microsoft.com/?linkid=9730558
http://go.microsoft.com/?linkid=9730558
http://create.msdn.com/

31

Although this may not be an all-inclusive list, it should give you a good starting point to explore the options

currently available.

PreEmptive Solutions Dotfuscator Windows Phone Edition

(http://www.preemptive.com/windowsphone7.html)

RedGate SmartAssembly 6 EAP (http://www.red-gate.com/MessageBoard/viewforum.php?f=116)

DeepSea Obfuscator (http://www.deepseaobfuscator.com/)

Proper obfuscation is an iterative process that takes time to test and verify. Be sure to build time into your

project plan to obfuscate your Windows Phone 7 applications, test them, and verify that the level of

obfuscation meets your needs.

You can use the Windows Phone 7 Application Deployment tool (Figure 7) to test obfuscated Windows Phone

7 applications. This tool allows you to deploy your obfuscated Windows Phone 7 applications to an actual

Windows Phone 7 device that you have registered by using your developer account, or to the Windows

Phone 7 emulator.

http://www.preemptive.com/windowsphone7.html
http://www.red-gate.com/MessageBoard/viewforum.php?f=116
http://www.deepseaobfuscator.com/

32

Figure 7: Windows Phone 7 Application Deployment Tool

After you deploy and test an obfuscated Windows Phone 7 application, you may find that at very high levels

of obfuscation (where you are turning on every possible option to protect your code) the application will not

run properly on a Windows Phone 7 device or in the Windows Phone 7 emulator. On the other hand, you

may find that using a minimal level of obfuscation settings will ensure your application runs properly, but the

level of obfuscation does not meet your needs.

You can take the following steps to determine what level of obfuscation is applied to your application by an

obfuscation tool. First, locate the .xap file representing your Windows Phone 7 application and rename the

file extension to .cab or .zip. Then, open the archive file and extract the contents. Next, use a tool like

RedGate .NET Reflector to open the assembly that corresponds to your application. Opening the Resources

node will allow you to see all the XAML files and save them to your hard disk. (Figure 8)

33

Figure 8: Saving XAML files with .NET Reflector

You can then examine the XAML files to see the level of obfuscation that has been applied to the code. You

may be surprised that low levels of obfuscation do not change the contents of a XAML file at all and high

levels merely remove whitespace. This really encourages the use of the Model View View Model pattern to

separate presentation logic and code from data access layers.

You can also examine the code in the assemblies that your Windows Phone 7 application relies on. Figure 9

shows an obfuscated assembly.

34

Figure 9: Obfuscation applied to a Windows Phone 7 application assembly.

One key thing to remember about obfuscation is that no level of obfuscation can prevent a very determined

hacker from reverse-engineering most of your source code. Obfuscation techniques are designed to protect

intellectual property by providing a barrier that makes it too hard to reverse-engineer code and steal it.

Conclusion
There are many resources available to the Windows Phone 7 developer. The place to start is the App Hub on

MSDN, http://create.msdn.com. The articles, blogs, and forums assist developers from beginner to advanced

development scenarios. SharePoint 2010 Products provide a wide array of capability for organizations that

want to collaborate and share knowledge, expertise, and information. Enterprise applications that leverage

the capabilities of both mobility and SharePoint will provide a powerful advantage to companies that can

efficiently manage, maintain, and deploy solutions based on the .NET platform.

http://go.microsoft.com/fwlink/?LinkId=216129
http://go.microsoft.com/fwlink/?LinkId=216129
http://create.msdn.com/

35

Appendix – Installation and Configuration of
UAG for SharePoint 2010 Products
This section describes how to set up networking and install and configure a UAG server to publish a

SharePoint site for Windows Phone 7 development. These steps are suitable for a development environment.

For information about deploying in a production environment, see the UAG publishing solution guide

(http://go.microsoft.com/fwlink/?LinkID=206256) on TechNet. The UAG server will request at least 4 GB RAM

during the installation process. For a demo environment, 2 GB is sufficient and the warning can be safely

ignored.

1. Create a SharePoint Server Virtual Machine
and a UAG Virtual Machine.
In this example, the 2010 Information Worker Demonstration and Evaluation Virtual Machine (RTM)

(http://go.microsoft.com/fwlink/?LinkID=189314) is used for the SharePoint Server Virtual Machine. To

create the UAG Server Virtual Machine, install Windows Server 2008 R2 in a new virtual machine, install all

updates by using Windows Update, and proceed with the steps below.

Networking
The following diagram illustrates how the server running SharePoint Server, UAG server, and Windows Phone

7 development machine are connected. The documentation that follows describes how to implement this

scenario.

http://go.microsoft.com/fwlink/?LinkID=206256
http://go.microsoft.com/fwlink/?LinkID=189314

36

Windows 7 Development Machine Hyper-V Host Machine

UAG Server Virtual
Machine

SharePoint Server
Virtual Machine

Visual Studio 2010

.5 .180 .171

.180

.1.6

192.168.150.x – Internal Network | 192.168.1.x – External Network

2. Set Up Hyper-V Host Machine Virtual
Networks
In the Hyper-V host machine, create two virtual networks as follows. Setting up two networks simulates a

DMZ environment where the UAG server talks to the Internet on one network adapter and talks to internal

resources — in this case, the server running SharePoint Server — on another network adapter.

Name Connection Type Description

Internal Internal Only Connection between the UAG server and

the server running SharePoint Server.

UAG

External

External – Bound to network adapter on

Hyper-V host machine.

Connection between the WP7

development machine and the UAG

server.

Note: The IP addresses may be slightly different in your environment. The key is to have the Internal network

operate on a different subnet than the external network.

Set the TCP/IP settings for the Internal network adapter on the Hyper-V host machine as follows.

37

 Set the TCP/IP settings for the External network adapter on the Hyper-V host machine as follows.

3. Set Up Hyper-V Virtual Machine Networks
On the UAG server Virtual Machine, add another network adapter and configure the UAG server Virtual

Machine to use the Internal and UAG External virtual networks in Hyper-V.

38

On the SharePoint Server Virtual Machine, add another network adapter and configure the SharePoint Server

Virtual Machine to use the Internal and UAG External virtual networks in Hyper-V.

Set the TCP/IP settings for the Internal network adapter on the UAG server Virtual Machine as follows.

39

Set the TCP/IP settings for the External network adapter on the UAG server Virtual Machine as follows.

Set the TCP/IP settings for the Internal network adapter on the SharePoint Server Virtual Machine as follows.

40

Set the TCP/IP settings for the External network adapter on the SharePoint Server Virtual Machine as follows.

41

4. Prepare the UAG Server Virtual Machine for
UAG Installation
Log on to the UAG server Virtual Machine. Rename the machine UAG1, join it to the contoso.com domain,

and reboot. Note: If you are not using the 2010 Information Worker Demonstration and Evaluation Virtual

Machine (RTM) (see http://go.microsoft.com/fwlink/?LinkID=189314), join the UAG server to the same

domain as the server running SharePoint Server. Make sure the 2010 Information Worker Demonstration and

Evaluation Virtual Machine (RTM) is running.

Use the following credentials to join the UAG server Virtual Machine to the contoso domain.

Username: contoso\administrator

Password: pass@word1

Reboot and log on by using the contoso\administrator credentials or the credentials specific to your

environment.

42

5. Snapshot the UAG Server Virtual Machine
Shut down the UAG server Virtual Machine and take a snapshot in the Hyper-V management console.

6. Install the UAG Server
First, mount UAG installation media to the UAG server Virtual Machine. Then, start the UAG server Virtual

Machine and log on by using the contoso\administrator credentials. After you have logged on, verify that you

have logged on by using the contoso administrator credentials. Open a command prompt, type whoami, and

then press ENTER to verify credentials.

Next, start the UAG Install from installation media. See Installing SP1 for Forefront UAG 2010

(http://go.microsoft.com/fwlink/?LinkId=216130) on TechNet for additional installation information. (Note:

you cannot install UAG during a remote session; you must install from the console.)

http://go.microsoft.com/fwlink/?LinkId=216130

43

Click Install Forefront UAG. In a development scenario, you can run the UAG server Virtual Machine with less

than 4 GB of RAM. If you have allocated less than 4 GB of RAM to the UAG server Virtual Machine, click

Continue.

44

On the Welcome wizard page, click Next >.

45

Click I accept the Licensing Terms for Microsoft Software, and then click Next.

46

On the Select Installation Location page, click Next.

47

At this point, the installation begins. The installer installs all the Roles and Features that UAG depends on and

configures the server for UAG.

48

On the Setup Wizard Completed page, click Finish.

7. Snapshot the UAG Server Virtual Machine
After the UAG server Virtual Machine reboots and finishes the UAG installation, shut down the UAG server

Virtual Machine and take a snapshot in the Hyper-V management console.

8. Initial UAG Server Configuration and
Activation
Start the UAG server Virtual Machine and log on by using the contoso\administrator credentials. After you

have logged on, verify that you have logged on by using the contoso administrator credentials: Open a

command prompt, type whoami, and then press ENTER to verify credentials.

49

To start the UAG configuration wizard, click Start | All Programs |Microsoft Forefront UAG | Forefront UAG

Management.

Click Configure Network Settings.

50

 Click Next.

51

Choose the network adapter settings as seen in the screenshot above, and then click Next.

52

Click Next.

53

Click Finish.

In this step, you define the UAG server as a “Single Server” configuration.

54

Click Define Server Topology.

Click Next.

55

Click Single Server, and then click Next.

56

Click Finish.

Click Join Microsoft Update.

57

Click Next.

58

Click Use Microsoft Update when I check for updates (recommended), and then click Next.

59

Choose Yes or No, and then click Next.

60

Click Finish.

61

Click Close.

Click Yes to activate the configuration.

62

Enter a password, and then click Next >.

Click Activate.

63

Click Finish.

The Activation Wizard is complete; however, UAG configuration may not be fully activated yet. To ensure it

is, turn on the Informational messages in the Message Window.

On the Messages menu, select Filter Messages.

Select the Informational messages check box.

Click OK.

Wait until the Message Window displays the message Activation completed successfully.

64

9. Create the HTTP Trunk to Publish the
SharePoint Site
In this scenario, an HTTP trunk is used for development purposes. Using an HTTP trunk instead of an HTTPS

trunk expedites the configuration by eliminating the steps involved with setting up security certificates to

enable Secure Sockets Layer (SSL). In a development environment, it is also easier to use HTTP because it

saves you from re-creating your temporary certificates every two weeks. In a testing environment and in a

production environment, an HTTPS trunk is recommended to secure communications between mobile

devices and the UAG server. See the SharePoint publishing topologies

(http://go.microsoft.com/fwlink/?LinkId=216131) on TechNet to learn about the commonly used topologies

for deploying servers running SharePoint 2010 Products through UAG.

To create the HTTP trunk, right click HTTP Connections, and then click New Trunk.

Click Next.

http://go.microsoft.com/fwlink/?LinkId=216131

65

In step 1 of the Create Trunk Wizard, click Portal Trunk, and then click Next.

66

In step 2 of the Create Trunk Wizard, enter ContosoMobile in the Trunk name text box. This name is not a

navigable URL; instead, it represents a friendly, identifiable name for the HTTP trunk.

In the Public Host Name text box, enter portal.contoso.com. This value exposes an endpoint to the HTTP

trunk that is used by UAG to create a single portal environment that publishes all of the applications in a

single page — for example, our SharePoint site.

Select the IP address corresponding to the external network IP for the UAG server Virtual Machine.

Click Next.

67

In step 3 of the Create Trunk Wizard, click Add to open the dialog box that allows you to add the

authentication server to the trunk.

Click Add.

In the Server type drop-down list, select Active Directory.

In the Server name text box, enter demo2010a.contoso.com. This is the fully qualified domain name (FQDN)

for the domain controller that is running on the SP2010-7a virtual machine.

68

In the Connection settings section, click Define domain controllers.

In the Connection settings section, click Define.

In the Domain Controllers dialog box, enter the internal IP address for the domain controller. In the SP2010-

7a virtual machine, this IP address is 192.168.150.1.

Click OK.

In the Search settings section, click the … button next to Base DN.

In the Search Root dialog box, in the Select Base DN drop-down list, select CN=Users,DC=contoso,DC=com.

Click OK.

Select the Include subfolders check box.

Set the Level of nested groups equal to 0.

In the Server access section, in the User (domain\user) text box, enter contoso\administrator.

In the password text box, enter pass@word1.

69

Click OK.

Click Yes.

Select the demo2010a.contoso.com server, and then click Select.

70

Click User provides credentials for each selected serve. (In a single server environment like this one, you

might choose User selects from a server list.)

Select the Use the same user name check box.

Click Next.

71

Click Use Forefront UAG access policies.

For development purposes, the default Forefront UAG access policies will suffice. In a production

environment, you may adjust these policies to a configuration more specific to your environment.

Click Next.

72

For development purposes, the default Forefront endpoint policies will suffice. In a production environment,

you may adjust these policies to a configuration more specific to your environment.

Click Next.

73

The final page in the Create Trunk Wizard displays a summary of the trunk configuration.

Click Finish to finalize the trunk configuration.

74

10. Create the SharePoint Application
In the Forefront UAG Management console Applications section, Click Add.

In the Add Application Wizard, click Next.

In step 2 of the Add Application Wizard, click Web.

In the Web drop-down list, select Microsoft SharePoint Server 2010.

75

Click Next >.

In the Application name text box, enter Contoso Intranet.

This is a friendly name for the application you are publishing with the UAG server. This name will appear on

the UAG Portal home page.

76

Click Next.

77

Click Next.

For development purposes, the default Forefront endpoint policies will suffice. In a production environment,

you may adjust these policies to a configuration more specific to your environment.

Click Configure an application server.

78

Click Next.

Leave Address type as IP/Host.

In the Addresses list, enter the host name or internal IP address of the server running SharePoint Server 2010

192.168.150.1. Depending on your environment, you may also choose to use the FQDN for the server

running SharePoint Server or the IP address for load balancing hardware.

In the Paths list, leave the default “/” entry. This indicates the published SharePoint application is published

at the root level.

Click Http port, and enter 80 in the box.

As previously mentioned, using a HTTP port instead of an HTTPS port simplifies development setup and

configuration. In a production environment, an HTTPS port should be used to encrypt the credentials passed

between client machines and the UAG server.

In the Public host name text box, enter spwp7intranet. This is the alternate access mapping URL on the

server running SharePoint that corresponds to the site collection you are publishing.

79

This value is the URL that the UAG server will use to publish the application to client machines. When

accessing the intranet.contoso.com site collection through the UAG server clients, use the URL

http://spwp7intranet.contoso.com. The UAG server then routes the request to SharePoint as

http://spwp7intranet.contoso.com after the user is authenticated. SharePoint alternate access mapping (to

be configured in later steps) will map the request to http://intranet.contoso.com.

Click Next.

Select the Use SSO check box.

Click Add.

In the Authentication and Authorization Server dialog box, select demo2010a.contoso.com.

80

Click Select.

In the Select client authentication method section, click Both.

Select the Allow rich clients to bypass trunk authentication check box.

Select the Use Office Forms Based Authentication for Office client applications check box.

Click Next.

81

Click Yes.

In the Portal Link dialog box, select the Open in a new window check box. The portal link is optional because

the Windows Phone 7 application directly accesses the SharePoint APIs, but the link is a good

troubleshooting tool.

82

Click Next.

Select the Authorize all users check box.

In a development environment, granting all users access to the published SharePoint site collection provides

maximum flexibility for testing purposes. In a production environment, only grant access to the specific users

and groups that are allowed to access the SharePoint site collection.

83

Click Next.

84

Click Finish.

11. Configure the SharePoint Application
In the Forefront UAG Management console, in the Applications section, select Contoso Intranet, and then

click Edit.

85

On the Portal Link tab, select the following check boxes: Computer portal, Premium mobile portal and Non-

premium mobile portal.

86

Click OK.

12. Activate the Configuration
In the Forefront UAG Management console, in the toolbar, click the Activate button.

The Activate Configuration dialog box appears.

87

Click Activate.

The new configuration is activated on the UAG server.

Click Finish.

Wait until the Message Window at the bottom of the Microsoft Forefront UAG Administration Console

displays the message Activation completed successfully. Although the Activation Configuration dialog box

indicated the configuration was activated successfully, it is really not completed until you see the message in

the Message Window.

88

13. Configure and Verify SharePoint Alternate
Access Mappings
SharePoint must be configured to respond to requests for http://spwp7intranet.contoso.com and map the

requests to http://intranet.contoso.com.

1. In SharePoint 2010 Central Administration, navigate to the Application Management section and choose Web

Application Management.

2. Select Intranet, and choose Extend (Extend Web Application) from the ribbon.

3. In the Extend Web Application to Another IIS Web Site dialog box, enter the following settings:

 Name: SharePoint - spwp7intranet.contoso.com – 80

 Port: 80

 Host Header: spwp7intranet.contoso.com

 Zone: Intranet

4. Click OK.

5. Confirm the settings by navigating to Application Management | Web Applications | Configure alternate

access mappings.

6. Choose the Alternate Access Mapping Collection for the Intranet and you should see the new entry for

http://spwp7intranet.com

14. Add Hosts File Entries to the Development
Environment
In this scenario, hosts file entries are used to resolve the UAG server and the server running SharePoint. DNS

entries could also be used, but hosts files are an acceptable workaround in a development environment. In a

production environment, DNS entries should be used for name resolution.

On the machine where you are running the Windows Phone 7 emulator, add an entry to the hosts file to

point to the public host name and IP address associated with the Contoso intranet portal application on the

UAG server. The hosts file is located in c:\windows\system32\drivers\etc.

192.168.1.171 spwp7intranet.contoso.com

Optionally, you can add an entry to the UAG Portal Home page.

192.168.1.171 portal.contoso.com

89

15. Test the Configuration
On the machine where you are running the Windows Phone 7 emulator, close all Web browsers to make sure

the hosts file entry is recognized. Then, open Internet Explorer and navigate to

http://spwp7intranet.contoso.com.

The UAG Server Application and Network Access Portal will appear.

Download and install the ActiveX control.

Click Install.

90

Click Yes.

Select the Trust this site check box, and then click Trust.

Enter credentials for a user who has access to the published SharePoint site, and then click Log On.

91

The SharePoint site is displayed in the Web browser. At this point, the SharePoint site published through UAG

may now be accessed via a mobile device such as a Windows Phone 7 device.

92

Optionally, you can test access to the UAG portal page by entering the portal URL http://portal.contoso.com

into a browser.

93

UAG also presents a Premium Mobile Portal to clients like the Windows Phone. From your emulator browser,

enter the URL for portal, http://portal.contoso.com, and you will be redirected to the login page:

Enter the Contoso credential (for example Contoso\tonip and pass@word1) and you will be redirected to the

Mobile Portal.

94

Select the Contoso Intranet link and you should see the SharePoint home page.

16. Test the Newsfeed RSS
When SharePoint 2010 Products are published through UAG, some of the default pages are not parsed

correctly. Of primary importance to this document is the Activityfeed.aspx page that renders the

consolidated newsfeed. Test your configuration by following the directions below.

95

Activityfeed.aspx
Go to the My Newsfeed page, and choose to view the RSS feed.

The following error is displayed.

Resolution
The default rule for hiding the log off is being applied to the ActivityFeed.aspx page. To change this rule to

prevent the application of the rule, perform the following steps:

Open the appropriate AppWrap configuration file in a text editor. The files are found in the directory

%ProgramFiles%\Microsoft Forefront Unified Access

Gateway\von\Conf\WizardDefaults\AppWrapTemplates.

Back up and edit the AppWrap file appropriate for the protocol of your portal:

HTTP_WhlFiltAppWrap_ForPortal for HTTP and HTTPS_WhlFiltAppWrap_ForPortal for HTTPS.

96

Locate the line:

<!-- for sharepoint 2010 conditional appwrap hide log off -->

<URL case_sensitive="false">.*\.aspx.*</URL>

Change it to read:

<!-- for sharepoint 2010 conditional appwrap hide log off changed to

 exclude ActivityFeed.aspx -->

<URL case_sensitive="false">^.*(?<!(^|\\|/)(activityfeed))\.aspx.*</URL>

Save the file and activate the new configuration.

Return to the My Newsfeed page, and click the RSS button. The page should render correctly and the URLs

should be correctly rewritten.

97

Resources

Forefront Unified Access Gateway on TechNet
http://go.microsoft.com/fwlink/?LinkId=216132

Closer to the Edge Blog
Author: Jason Jones

Forefront UAG SP1 Endpoint Assessment Changes Impact Mobile Devices like iPads/iPhones

(http://go.microsoft.com/fwlink/?LinkId=216133)

Silverlight Web Services Team Blog
Workaround for accessing some ASMX services from Silverlight 4

(http://go.microsoft.com/fwlink/?LinkId=216134)

About the Authors

Todd Baginski, MVP
Todd is an independent consultant and five-time Microsoft SharePoint Most Valuable Professional

who uses SharePoint, Silverlight, Office, Windows Phone 7, and .NET technologies to create Web

sites and custom solutions for information workers. Todd is the content author and presenter for

the Business Connectivity Services (BCS) portion of the SharePoint Microsoft Certified Masters

(MCM) program and a regular speaker at the TechEd, SharePoint Connections, and Microsoft

SharePoint conferences. Todd contributes regular columns to SharePointPro Connections

magazine and also recently served as the technical editor for Scot Hillier and Brad Stevenson’s

book, Professional Business Connectivity Services in SharePoint 2010. Todd also created the

Microsoft Business Productivity Online Suite (BPOS) training materials for SharePoint Online

(SPO) 2010 while BPOS 2010 was in the alpha and beta stages, and delivered the BPOS/SPO

training materials at a post-TechReady 11 conference for only Microsoft employees.

Todd is a very active person who enjoys spending time with his family and skiing every chance

he gets. Todd can be reached at todd@toddbaginski.com.

Matthew McDermott, MVP
Matthew McDermott, Microsoft SharePoint Server MVP, is a founding member of Aptillon, Inc.

and Principal Consultant for AbleBlue in Austin, Texas. AbleBlue specializes in SharePoint

integration, strategy and implementation consulting. Matthew is an author and specialist in

SharePoint technologies focused on Web content management, collaboration, search and social

computing, Matthew has led SharePoint implementations for Fortune 500 companies since 2002.

Matthew’s blog (www.ableblue.com/blog) features topics of interest to developers, IT pros, and

end users alike. Matthew can be reached at matthew@ableblue.com.

http://go.microsoft.com/fwlink/?LinkId=21613
http://go.microsoft.com/fwlink/?LinkId=216133
http://go.microsoft.com/fwlink/?LinkId=216134
mailto:todd@toddbaginski.com
http://www.ableblue.com/blog

98

Matthew’s free time is spent as a canine handler for K9 Search • Austin, a volunteer K9 search

team serving the FBI and Austin and San Antonio Police Departments. An accomplished cook

and bartender, in his spare time Matt spends as much time with his wife as his dogs will allow.

Ben Ari
Ben Ari is a senior security engineer with Microsoft who specializes in UAG and provides support

for the product for Microsoft’s Premier and Professional customers worldwide. Ben is also an

active journalist and blogger, and recently published the Microsoft Forefront UAG 2010

Administrator's Handbook (ISBN 978-1849681629). You can find Ben’s blog at

http://blogs.technet.com/b/ben.

http://blogs.technet.com/b/ben

