Storage Management Technical Specification, Part 1 Common Architecture Version 1.6.0, Revision 4 Abstract: This SNIA Technical Position defines an interface between WBEM-capable clients and servers for the secure, extensible, and interoperable management of networked storage. This document has been released and approved by the SNIA. The SNIA believes that the ideas, methodologies and technologies described in this document accurately represent the SNIA goals and are appropriate for widespread distribution. Suggestions for revision should be directed to http://www.snia.org/feedback/. SNIA Technical Position 10 February, 2012 # **Revision History** # **Revision 1** #### **Date** 16 July 2010 #### SCRs Incorporated and other changes Normative references - Added a reference to DSP0223 for Generic Operations (CORE-SMIS-SCR-00044) - Added a reference to DSP8016 for common messages (CORE-SMIS-SCR-00045) Definitions, symbols, abbreviations, and conventions (CORE-SMIS-SCR-00044) - Did major cleanup of definitions to meet INCITS/ISO guidelines Transport and Reference Model (CORE-SMIS-SCR-00044) - Removed all references to WSDM in all documents. - Removed paragraph on convergence of WS-Man and WSDM - Figure 6 CIMxml changed to CIM-XML, added WS-Management, removed CIM Operations over HTTP Standard Messages Clause (CORE-SMIS-SCR-00045) - Remove the existing SNIA Common Message registry. Add DMTF DSP8016 registry as its replacement. - Update the Standard Messages clause to differentiate generic messages and profile-oriented messages. DSP8016 will be the first registry included in the generic section. - Removed Experimental start marker at beginning and Experimental Stop marker at end - Updated registry XML to indicate which messages are experimental (for now, any message used in an alert indication is NOT experimental) - Fixed all "TBD"s in the registries #### SMI-S Roles (CORE-SMIS-SCR-00044) - Figure 22 CIMxml changed to CIM-XML, added WS-Management, removed CIM Operations over HTTP (or change to Generic Operations) - Removed a paragraph on WS-Man WSDM convergence - Changed "Basic WBEM Operations" to "Generic Operations" - Changed "Required Intrinsic methods" to "Required Operations" - Changed the list of operations to those directly relevant to SMI-S - Did some other minor edits Annex A: (Informative) Mapping CIM Objects to SNMP MIB Structures (CORE-SMIS-SCR-00044) - Changed "protocol (xmlCIM)," to "WBEM protocol" #### **Comments** Editorial notes and DRAFT material are displayed. #### **Revision 2** #### **Date** 7 October 2010 # SCRs Incorporated and other changes Standard Messages Clause (CORE-SMIS-SCR-00045) - Fixed all "TBD"s in the registries # Comments Editorial notes and DRAFT material are displayed. #### **Revision 3** #### Date 10 March 2011 # SCRs Incorporated and other changes Standard Messages Clause - Promoted section "8.3 Registry for Generic Messages" to Experimental (CORE-SMIS-SCR-00045) - Added an FSM Message Registry (FSM-TWG-SCR00077 & FSM-TWG-SCR00078) - Extended the SML Message Registry for VTL Capacity and Reporting (SMIS-160-Draft-SCR00006) #### Comments Editorial notes are displayed. DRAFT material was hidden. Suggestion for changes or modifications to this document should be sent to the SNIA Storage Management Initiative Technical Steering Group (SMI-TSG) at http://www.snia.org/feedback/ #### **Revision 4** #### Date 28 September 2011 # SCRs Incorporated and other changes Front matter - Paragraph added to Maturity Level explanation, as requested by ISO editor for SMI-S 1.1.1. #### **Comments** Editorial notes and DRAFT material are hidden. The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that: - Any text, diagram, chart, table or definition reproduced must be reproduced in its entirety with no alteration, and. - 2) Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced must acknowledge the SNIA copyright on that material, and must credit the SNIA for granting permission for its reuse. Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved to SNIA. Permission to use this document for purposes other than those enumerated above may be requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. Copyright © 2003-2012 Storage Networking Industry Association. # INTENDED AUDIENCE This document is intended for use by individuals and companies engaged in developing, deploying, and promoting interoperable multi-vendor SANs through the Storage Networking Industry Association (SNIA) organization. # DISCLAIMER The information contained in this publication is subject to change without notice. The SNIA makes no warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this specification. Suggestions for revisions should be directed to http://www.snia.org/feedback/. Copyright © 2003-2012 SNIA. All rights reserved. All other trademarks or registered trademarks are the property of their respective owners. Portions of the CIM Schema are used in this document with the permission of the Distributed Management Task Force (DMTF). The CIM classes that are documented have been developed and reviewed by both the SNIA and DMTF Technical Working Groups. However, the schema is still in development and review in the DMTF Working Groups and Technical Committee, and subject to change. # CHANGES TO THE SPECIFICATION Each publication of this specification is uniquely identified by a three-level identifier, comprised of a version number, a release number and an update number. The current identifier for this specification is version 1.2.0. Future publications of this specification are subject to specific constraints on the scope of change that is permissible from one publication to the next and the degree of interoperability and backward compatibility that should be assumed between products designed to different publications of this standard. The SNIA has defined three levels of change to a specification: - Major Revision: A major revision of the specification represents a substantial change to the underlying scope or architecture of the SMI-S API. A major revision results in an increase in the version number of the version identifier (e.g., from version 1.x.x to version 2.x.x). There is no assurance of interoperability or backward compatibility between releases with different version numbers. - Minor Revision: A minor revision of the specification represents a technical change to existing content or an adjustment to the scope of the SMI-S API. A minor revision results in an increase in the release number of the specification's identifier (e.g., from x.1.x to x.2.x). Minor revisions with the same version number preserve interoperability and backward compatibility. - Update: An update to the specification is limited to minor corrections or clarifications of existing specification content. An update will result in an increase in the third component of the release identifier (e.g., from x.x.1 to x.x.2). Updates with the same version and minor release levels preserve interoperability and backward compatibility. # TYPOGRAPHICAL CONVENTIONS # **Maturity Level** In addition to informative and normative content, this specification includes guidance about the maturity of emerging material that has completed a rigorous design review but has limited implementation in commercial products. This material is clearly delineated as described in the following sections. The typographical convention is intended to provide a sense of the maturity of the affected material, without altering its normative content. By recognizing the relative maturity of different sections of the standard, an implementer should be able to make more informed decisions about the adoption and deployment of different portions of the standard in a commercial product. This specification has been structured to convey both the formal requirements and assumptions of the SMI-S API and its emerging implementation and deployment lifecycle. Over time, the intent is that all content in the specification will represent a mature and stable design, be verified by extensive implementation experience, assure consistent support for backward compatibility, and rely solely on content material that has reached a similar level of maturity. Unless explicitly labeled with one of the subordinate maturity levels defined for this specification, content is assumed to satisfy these requirements and is referred to as "Finalized". Since much of the evolving specification content in any given release will not have matured to that level, this specification defines three subordinate levels of implementation maturity that identify important aspects of the content's increasing maturity and stability. Each subordinate maturity level is defined by its level of implementation experience, its stability and its reliance on other emerging standards. Each subordinate maturity level is identified by a unique typographical tagging convention that clearly distinguishes content at one maturity model from content at another level. # **Experimental Maturity Level** No material is included in this specification unless its initial architecture has been completed and reviewed. Some content included in
this specification has complete and reviewed design, but lacks implementation experience and the maturity gained through implementation experience. This content is included in order to gain wider review and to gain implementation experience. This material is referred to as "Experimental". It is presented here as an aid to implementers who are interested in likely future developments within the SMI specification. The contents of an Experimental profile may change as implementation experience is gained. There is a high likelihood that the changed content will be included in an upcoming revision of the specification. Experimental material can advance to a higher maturity level as soon as implementations are available. Figure 1 is a sample of the typographical convention for Experimental content. Figure 1 - Experimental Maturity Level Tag # **Implemented Maturity Level** Profiles for which initial implementations have been completed are classified as "Implemented". This indicates that at least two different vendors have implemented the profile, including at least one provider implementation. At this maturity level, the underlying architecture and modeling are stable, and changes in future revisions will be limited to the correction of deficiencies identified through additional implementation experience. Should the material become obsolete in the future, it must be deprecated in a minor revision of the specification prior to its removal from subsequent releases. Figure 2 is a sample of the typographical convention for Implemented content. Figure 2 - Implemented Maturity Level Tag #### **Stable Maturity Level** Once content at the Implemented maturity level has garnered additional implementation experience, it can be tagged at the Stable maturity level. Material at this maturity level has been implemented by three different vendors, including both a provider and a client. Should material that has reached this maturity level become obsolete, it may only be deprecated as part of a minor revision to the specification. Material at this maturity level that has been deprecated may only be removed from the specification as part of a major revision. A profile that has reached this maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next. As a result, Profiles at or above the Stable maturity level shall not rely on any content that is Experimental. Figure 3 is a sample of the typographical convention for Implemented content. Figure 3 - Stable Maturity Level Tag # **Finalized Maturity Level** Content that has reached the highest maturity level is referred to as "Finalized." In addition to satisfying the requirements for the Stable maturity level, content at the Finalized maturity level must solely depend upon or refine material that has also reached the Finalized level. If specification content depends upon material that is not under the control of the SNIA, and therefore not subject to its maturity level definitions, then the external content is evaluated by the SNIA to assure that it has achieved a comparable level of completion, stability, and implementation experience. Should material that has reached this maturity level become obsolete, it may only be deprecated as part of a major revision to the specification. A profile that has reached this maturity level is guaranteed to preserve backward compatibility from one minor specification revision to the next. Over time, it is hoped that all specification content will attain this maturity level. Accordingly, there is no special typographical convention, as there is with the other, subordinate maturity levels. Unless content in the specification is marked with one of the typographical conventions defined for the subordinate maturity levels, it should be assumed to have reached the Finalized maturity level. # **Deprecated Material** Non-Experimental material can be deprecated in a subsequent revision of the specification. Sections identified as "Deprecated" contain material that is obsolete and not recommended for use in new development efforts. Existing and new implementations may still use this material, but shall move to the newer approach as soon as possible. The maturity level of the material being deprecated determines how long it will continue to appear in the specification. Implemented content shall be retained at least until the next revision of the specialization, while Stable and Finalized material shall be retained until the next major revision of the specification. Providers shall implement the deprecated elements as long as it appears in the specification in order to achieve backward compatibility. Clients may rely on deprecated elements, but are encouraged to use non-deprecated alternatives when possible. Deprecated sections are documented with a reference to the last published version to include the deprecated section as normative material and to the section in the current specification with the replacement. Figure 4 contains a sample of the typographical convention for deprecated content. DEPRECATED Content that has been deprecated appears here. DEPRECATED Figure 4 - Deprecated Tag # **USAGE** The SNIA hereby grants permission for individuals to use this document for personal use only, and for corporations and other business entities to use this document for internal use only (including internal copying, distribution, and display) provided that: - 1) Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no alteration. - 2) Any document, printed or electronic, in which material from this document (or any portion hereof) is reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for granting permission for its reuse. Other than as explicitly provided above, you may not make any commercial use of this document, sell any or this entire document, or distribute this document to third parties. All rights not explicitly granted are expressly reserved to SNIA. Permission to use this document for purposes other than those enumerated above may be requested by e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a brief description of the purpose, nature, and scope of the requested use. # **Contents** | | sion History | | |------------|---|----| | | f Tables | | | | f Figures | | | | vord | | | 1. S | Scope | 1 | | 2. N | Normative references | 3 | | 2.1 | General | | | 2.2 | Approved references | | | 2.3 | DMTF references (Final) | 3 | | 2.4 | IETF references | _ | | 2.5 | References under development | | | 2.6 | Other references | | | 3. C | Definitions, symbols, abbreviations, and conventions | | | 3.1 | Definitions | 7 | | 3.2 | Acronyms and abbreviations | | | 3.3 | Keywords | | | 3.4 | Conventions | | | 4. T | Fransport and Reference Model | 15 | | 4.1 | Introduction | 15 | | 4.2 | Transport Stack | 16 | | 4.3 | Reference Model | | | 5. F | Health and Fault Management | 19 | | 5.1 | Objectives | | | 5.2 | Overview | | | 5.3 | Terms | | | 5.4 | Description of Health and Fault Management | | | 6. C | Object Model General Information | | | 6.1 | Model Overview (Key Resources) | | | 6.2 | Techniques | | | | Correlatable and Durable Names | | | 7.1 | Overview | | | 7.2 | Guidelines for SCSI Logical Unit Names | | | 7.3 | Guidelines for FC-SB-2 Device Names | | | 7.4 | Guidelines for Port Names | | | 7.5 | Guidelines for Storage System Names | | | 7.6 | Standard Formats for Correlatable Names | | | 7.7 | Testing Equality of correlatable Names | | | 7.8 | iSCSI Names | | | | Standard Messages | | | 8.1
8.2 | Overview Required Characteristics of Standard Messages | | | 8.3 | · | | | 8.4 | Registry for Generic MessagesRegistries for Profile-Related Standard Messages | | | | · · · · · · · · · · · · · · · · · · · | | | | Service Discovery | | | 9.1
9.2 | Objectives | | | 9.2 | SLP Messages | | | 9.3 | Scopes | | | 9.5 | Services Definition | | | 9.6 | User Agents (UA) | | | 9.7 | Service Agents (SAs) | | | 9.8 | Directory Agents (DAs) | | | | , 9 (-, | | | 9.9 | Service Agent Server (SA Server) | 222 | |--------
--|-----| | 9.10 | Configurations | 225 | | 9.11 | 'Standard WBEM' Service Type Templates | 228 | | 10. S | MI-S Roles | 233 | | 10.1 | Introduction | 233 | | 10.2 | SMI-S Client | 234 | | 10.3 | Dedicated SMI-S Server | 234 | | 10.4 | General Purpose SMI-S Server | | | 10.5 | , | | | | Combined Roles on a Single System | | | 11. In | nstallation and Upgrade | 239 | | 11.1 | | | | 11.2 | Role of the Administrator | 239 | | | Goals | | | | Server Deployment | | | | WBEM Service Support & Related Functions | | | | | | | | , and the state of | | | | Issues with Discovery Mechanisms | | | | ecurity | | | | Objectives | | | | Overview | | | 12.3 | · · · · · · · · · · · · · · · · · · · | | | 12.4 | , | | | Anne | ex A (informative) Mapping CIM Objects to SNMP MIB Structures | | | A.1 | Purpose of this appendix | | | A.2 | CIM-to-MIB Mapping Overview | | | A.3 | The SML MIB | | | | x B (normative) Compliance with the SNIA SMI Specification | | | B.1 | Compliance Statement | | | B.2 | How Compliance of the Architecture is Declared | | | B.3 | How Compliance of the Model Is Declared | | | B.4 | The Server Profile and Compliance | | | B.5 | Backward Compatibility | | | B.6 | Rules for Combining (Autonomous) Profiles | | | B.7 | Rules for Vendor Extensions | | | | x C (normative) Indication Filter Strings | | | C.1 | Introduction to Indication Filter Strings | | | C.2 | Instance Creation | | | C.3 | Instance Deletion | | | C.4 | Modification of any value in an array property | | | C.5 | Modification to either of Two Specific values in an Array Property | | | C.6 | Alert | 276 | # **List of Tables** | Table 1. | OperationalStatus for Disk Drive | 20 | |-----------|---|----| | Table 2. | Standard Formats for StorageVolume Names | 38 | | Table 3. | Standard Formats for Port Names | | | Table 4. | Standard Formats for Storage System Names | 42 | | Table 5. | Standard Operating System Names for Tape Devices | 44 | | Table 6. | LogicalDisk.Name for disk partitions | 45 | | Table 7. | GenericDiskParittion.Name for disk partitions | 45 | | Table 8. | Standard Operating System Names for Unpartitioned DIsks | 45 | | Table 9. | Example Standard Message Declaration | 50 | | Table 10. | Example Standard Message Values | 50 | | Table 11. | Error Properties for Access denied | 51 | | Table 12. | Operation not supported by WBEM service infrastructure Message Arguments | 52 | | Table 13. | Error Properties for Operation not supported by WBEM service infrastructure | 52 | | Table 14. | Namespace not found Message Arguments | 53 | | Table 15. | Error Properties for Namespace not found | 54 | | Table 16. | Missing input parameter Message Arguments | 55 | | Table 17. | Error Properties for Missing input parameter | 56 | | Table 18. | Duplicate input parameter Message Arguments | 57 | | Table 19. | Error Properties for Duplicate input parameter | 58 | | Table 20. | Unknown input parameter Message Arguments | 59 | | Table 21. | Error Properties for Unknown input parameter | 60 | | Table 22. | Incompatible input parameter type Message Arguments | 61 | | Table 23. | Error Properties for Incompatible input parameter type | 62 | | Table 24. | Instance not found Message Arguments | | | Table 25. | Error Properties for Instance not found | 64 | | Table 26. | Class not found Message Arguments | 65 | | Table 27. | Error Properties for Class not found | 66 | | Table 28. | Qualifier type not found Message Arguments | 67 | | Table 29. | Error Properties for Qualifier type not found | 68 | | Table 30. | Instance already exists Message Arguments | | | Table 31. | Error Properties for Instance already exists | | | Table 32. | Class already exists Message Arguments | | | Table 33. | Error Properties for Class already exists | 72 | | Table 34. | No such method Message Arguments | | | Table 35. | Error Properties for No such method | | | Table 36. | Method not supported by class implementation Message Arguments | | | Table 37. | Error Properties for Method not supported by class implementation | | | Table 38. | No such property Message Arguments | | | Table 39. | Error Properties for No such property | | | Table 40. | Unknown query language Message Arguments | | | Table 41. | Error Properties for Unknown query language | | | Table 42. | Query language feature not supported Message Arguments | | | Table 43. | Error Properties for Query language feature not supported | | | Table 44. | Invalid query Message Arguments | | | Table 45. | Error Properties for Invalid query | | | Table 46. | Class has subclasses Message Arguments | | | Table 47. | Error Properties for Class has subclasses | 84 | | Table 48. | Class has instances Message Arguments | | |-----------|---|-----| | Table 49. | Error Properties for Class has instances | 86 | | Table 50. | Superclass not found Message Arguments | 87 | | Table 51. | Error Properties for Superclass not found | 88 | | Table 52. | Other failure Message Arguments | | | Table 53. | Error Properties for Other failure | 90 | | Table 54. | Operation not supported by class implementation Message Arguments | 91 | | Table 55. | Error Properties for Operation not supported by class implementation | 91 | | Table 56. | Method invocation not supported by WBEM service infrastructure Message Arguments | 92 | | Table 57. | Error Properties for Method invocation not supported by WBEM service infrastructure | 93 | | Table 58. | Class has referencing association classes Message Arguments | 94 | | Table 59. | Error Properties for Class has referencing association classes | 95 | | Table 60. | Incompatible class modification Message Arguments | 96 | | Table 61. | Error Properties for Incompatible class modification | 97 | | Table 62. | Class or its subclasses have instances Message Arguments | 98 | | Table 63. | Error Properties for Class or its subclasses have instances | 99 | | Table 64. | Qualifier type is used Message Arguments | 100 | | Table 65. | Error Properties for Qualifier type is used | 101 | | Table 66. | Incompatible modification of qualifier type Message Arguments | 102 | | Table 67. | Error Properties for Incompatible modification of qualifier type | 103 | | Table 68. | Continuation on error not supported Message Arguments | 104 | | Table 69. | Error Properties for Continuation on error not supported | 105 | | Table 70. | WBEM service is shutting down Message Arguments | 106 | | Table 71. | Error Properties for WBEM service is shutting down | 107 | | Table 72. | Filter queries not supported by WBEM service infrastructure Message Arguments | 108 | | Table 73. | Error Properties for Filter queries not supported by WBEM service infrastructure | 109 | | Table 74. | Pull operation has been abandoned due to enumeration context closure Message Arguments | 110 | | Table 75. | Error Properties for Pull operation has been abandoned due to enumeration context closure | 111 | | Table 76. | Pull operation cannot be abandoned Message Arguments | 112 | | Table 77. | Error Properties for Pull operation cannot be abandoned | 112 | | Table 78. | WBEM service limits are exceeded Message Arguments | 113 | | Table 79. | Error Properties for WBEM service limits are exceeded | 114 | | Table 80. | Invalid enumeration context Message Arguments | 115 | | Table 81. | Error Properties for Invalid enumeration context | 116 | | Table 82. | Invalid timeout Message Arguments | 116 | | Table 83. | Error Properties for Invalid timeout | 117 | | Table 84. | Timeout Message Arguments | 118 | | Table 85. | Error Properties for Timeout | 119 | | Table 86. | Filter queries not supported by class implementation Message Arguments | 120 | | Table 87. | Error Properties for Filter queries not supported by class implementation | 121 | | Table 88. | Qualifier type inconsistent with DSP0004 Message Arguments |
121 | | Table 89. | Error Properties for Qualifier type inconsistent with DSP0004 | 122 | | Table 90. | Instance cannot be deleted due to referencing association Message Arguments | 123 | | Table 91. | Error Properties for Instance cannot be deleted due to referencing association | 124 | | Table 92. | Instance cannot be deleted due to multiplicity underflow Message Arguments | 125 | | Table 93. | Error Properties for Instance cannot be deleted due to multiplicity underflow | | | Table 94. | Qualifier type already exists Message Arguments | 127 | | Table 95. | Error Properties for Qualifier type already exists | 128 | | Table 96. | Invalid input parameter value Message Arguments | 129 | | Table 97. | Error Properties for Invalid input parameter value | 130 | |-------------|--|------| | Table 98. | Authorization Failure Message Arguments | 131 | | Table 99. | Error Properties for Authorization Failure | 131 | | Table 100. | Operation Not Supported Message Arguments | 132 | | Table 101. | Property Not Found Message Arguments | 133 | | Table 102. | Invalid Query Message Arguments | 133 | | Table 103. | Parameter Error Message Arguments | 133 | | Table 104. | Error Properties for Parameter Error | 134 | | Table 105. | Query Syntax Error Message Arguments | 134 | | Table 106. | Error Properties for Query Syntax Error | 135 | | Table 107. | Query Too Expensive Message Arguments | 135 | | Table 108. | Error Properties for Query Too Expensive | 135 | | Table 109. | Class or Property Invalid in Query Message Arguments | 136 | | Table 110. | Error Properties for Class or Property Invalid in Query | 136 | | Table 111. | Invalid Join in Query Message Arguments | 136 | | Table 112. | Error Properties for Invalid Join in Query | 136 | | Table 113. | Unexpected Hardware Fault Message Arguments | 137 | | Table 114. | Error Properties for Unexpected Hardware Fault | 137 | | Table 115. | Too busy to respond Message Arguments | 138 | | Table 116. | Shutdown Started Message Arguments | 138 | | Table 117. | Shutdown Started Alert Information | 138 | | Table 118. | Component overheat Message Arguments | 139 | | | Error Properties for Component overheat | | | | Component overheat Alert Information | | | | Device Failover Message Arguments | | | | Functionality is not licensed Message Arguments | | | | Error Properties for Functionality is not licensed | | | | Invalid Property Combination during instance creation or modification Message Arguments | | | | Error Properties for Invalid Property Combination during instance creation or modification | | | | Property Not Found Message Arguments | | | | Error Properties for Property Not Found | | | | Proxy Can Not Connect Message Arguments | | | | Error Properties for Proxy Can Not Connect | | | | Not Enough Memory Message Arguments | | | | Error Properties for Not Enough Memory | | | | Error Properties for Object Already Exists | | | | Device Not ready Message Arguments | | | | Error Properties for Device Not ready | | | | Error Properties for Internal Bus Error | | | | Error Properties for DMA Overflow | | | | Error Properties for Firmware Logic Error | | | | Front End Port Error Message Arguments | | | | Front End Port Error Alert Information | | | | Back End Port Error Message Arguments | | | | Back End Port Error Alert Information | | | | Remote Mirror Error Message Arguments | | | | Error Properties for Remote Mirror Error | | | | Remote Mirror Error Alert Information | 149 | | 1 2010 1/15 | ETOT PRODUCES INTO SEND MOMONY ETTOT | 1710 | | | Error Properties for Unable to Access Remote Device | | |------------|---|-----| | | Error Reading Data Alert Information | | | Table 148. | Error Writing Data Alert Information | 151 | | Table 149. | Error Validating Write (CRC) Alert Information | 151 | | Table 150. | Error Properties for Copy Operation Failed | 152 | | Table 151. | Error Properties for RAID Operation Failed | 152 | | Table 152. | Error Properties for Invalid RAID Type | 153 | | Table 153. | Error Properties for Invalid Storage Element Type | 153 | | | Error Properties for Configuration Change Failed | | | Table 155. | Error Properties for Buffer Overrun | 154 | | Table 156. | Stolen Capacity Message Arguments | 155 | | Table 157. | Error Properties for Stolen Capacity | 155 | | | Invalid Extent passed Message Arguments | | | | Error Properties for Invalid Extent passed | | | | Error Properties for Invalid Deletion Attempted | | | | Error Properties for Job Failed to Start | | | | Job was Halted Message Arguments | | | | Invalid State Transition Message Arguments | | | | Error Properties for Invalid State Transition | | | | Invalid SAP for Method Message Arguments | | | | Error Properties for Invalid SAP for Method | | | | Resource Not Available Message Arguments | | | | Error Properties for Resource Not Available | | | | Resource Limit Exceeded Message Arguments | | | | Error Properties for Resource Limit Exceeded | | | | Thin Provision Capacity Warning Message Arguments | | | | Thin Provision Capacity Warning Alert Information | | | | Thin Provision Capacity Critical Message Arguments | | | | Thin Provision Capacity Critical Alert Information | | | | Thin Provision Capacity Okay Message Arguments | | | | Thin Provision Capacity Okay Alert Information | | | | Masking Group Membership Changed Message Arguments | | | | Masking Group Membership Changed Alert Information | | | | Zone Database Changed Message Arguments | | | | Zone Database Changed Alert Information | | | | ZoneSet Activated Message Arguments | | | | ZoneSet Activated Alert Information | | | | Error Properties for Session Locked | | | | Error Properties for Session Aborted | | | | Switch Status Changed Message Arguments | | | | Switch Status Changed Alert Information | | | | Fabric Merge/Segmentation Message Arguments | | | | Fabric Merge/Segmentation Alert Information | | | | Switch Added/Removed Message Arguments | | | | Switch Added/Removed Alert Information | | | | Fabric Added/Removed Message Arguments | | | | Fabric Added/Removed Alert Information | | | | Security Policy change Message Arguments | | | Table 194. | Security Policy change Alert Information | 170 | | Tahla 105 | System OperationalStatus Bellwether Message Arguments | 17∩ | |-------------|--|------------| | | System OperationalStatus Bellwether Message Arguments System OperationalStatus Bellwether Alert Information | | | | NetworkPort OperationalStatus Bellwether Message Arguments | | | | NetworkPort OperationalStatus Bellwether Alert Information | | | | LogicalDisk OperationalStatus Bellwether Message Arguments | | | | LogicalDisk OperationalStatus Bellwether Message Arguments LogicalDisk OperationalStatus Bellwether Alert Information | | | | Required Firmware Version Message Arguments | | | | Required Firmware Version Alert Information | | | | Recommended Firmware Version Message Arguments | | | | Recommended Firmware Version Alert Information | | | | Controller OK Message Arguments | | | | Controller OK Alert Information | | | | Controller not OK Message Arguments | | | | Controller not OK Alert Information | | | | Bus rescan complete Alert Information | | | | | | | | Disk initialize Failed Message Arguments | | | | Disk initialize Failed Alert Information | | | | - | | | | Write Warning Alert Information | | | | | | | | Media Alert Information | | | | Read Failure Alert Information. | | | | Write Failure Alert Information | | | | Media Life Alert Information | | | | Not Data Grade Alert Information | | | | Write Protect Alert Information | | | | No Removal Alert Information | | | | Cleaning Media Alert Information | | | | Unsupported Format Alert Information | | | | Recoverable Snapped Tape Alert Information | | | | Unrecoverable Snapped Tape Alert Information | | | | Memory Chip In Cartridge Failure Alert Information | | | | Read Only Format Alert Information | | | | | | | | Directory Corrupted On Load Alert Information | | | | Clean Now Alert Information | | | | Clean Periodic Alert Information | | | | | | | | Expired Cleaning Media Alert Information | | | | Invalid Cleaning Media Alert Information | | | | Retention Requested Alert Information | | | | Dual-Port Interface Error Alert Information | | | | Drive Maintenance Alert Information | | | | Hardware A Alert Information | | | | Hardware B Alert Information | | | | Interface Alert Information | | | | Eject Media Alert Information | | | | Download Failure Alert Information | 188
199 | | 1 2010 7/14 | LOSOBLESIONSIE & BIET INTOTON | אאו | | Table 244. | Loader Stray Media Alert Information | 188 | |------------|--|-----| | Table 245. | Loader Hardware B Alert Information | 189 | | Table 246. | Loader Door Alert Information | 189 | | | Loader Hardware C Alert Information | | | Table 248. | Loader Magazine Alert Information | 190 | | Table 249. | Loader Predictive Failure Alert Information | 190 | | | Load Statistics Alert Information | | | Table 251. | Media Directory Invalid at Unload Alert Information | 191 | | Table 252. | Media System area Write Failure Alert Information | 191 | | | Media System Area Read Failure Alert Information | | | Table 254. | No Start of Data Alert Information | 192 | | Table 255. | Loading Failure Alert Information | 192 | | Table 256. | Library Hardware A Alert Information | 193 | | | Library Hardware B Alert Information | | | Table 258. | Library Hardware C Alert Information | 193 | | Table 259. | Library Hardware D Alert Information | 194 | | | Library Diagnostic Required Alert Information | | | Table 261. | Library Interface Alert Information | 195 | | Table 262. | Failure Prediction Alert Information | 195 | | | Library Maintenance Alert
Information | | | | Library Humidity Limits Alert Information | | | Table 265. | Library Voltage Limits Alert Information | 196 | | Table 266. | Library Stray Media Alert Information | 196 | | Table 267. | Library Pick Retry Alert Information | 197 | | Table 268. | Library Place Retry Alert Information | 197 | | | Library Load Retry Alert Information | | | Table 270. | Library Door Alert Information | 198 | | | Library Mailslot Alert Information | | | Table 272. | Library Magazine Alert Information | 199 | | | Library Security Alert Information | | | | Library Security Mode Alert Information | | | Table 275. | Library Offline Alert Information | 200 | | | Library Drive Offline Alert Information | | | Table 277. | Library Scan Retry Alert Information | 201 | | Table 278. | Library Inventory Alert Information | 201 | | Table 279. | Library Illegal Operation Alert Information | 201 | | Table 280. | Pass Through Mechanism Failure Alert Information | 202 | | | Cartridge in Pass-through Mechanism Alert Information | | | | Unreadable barcode Labels Alert Information | | | Table 283. | Throughput Threshold Warning Alert Message Arguments | 203 | | | Throughput Threshold Warning Alert Alert Information | | | Table 285. | Throughput Threshold Critical Alert Message Arguments | 204 | | | Throughput Threshold Critical Alert Alert Information | | | | Physical Capacity Threshold Warning Alert Message Arguments | | | | Physical Capacity Threshold Warning Alert Alert Information | | | | Physical Capacity Threshold Critical Alert Message Arguments | | | | Physical Capacity Threshold Critical Alert Alert Information | | | | Logical Capacity Threshold Warning Alert Message Arguments | | | Table 292. | Logical Capacity Threshold Warning Alert Alert Information | 207 | | Table 293. | Logical Capacity Threshold Critical Alert Message Arguments | 208 | |------------|--|-----| | Table 294. | Logical Capacity Threshold Critical Alert Alert Information | 208 | | Table 295. | System Ratio Threshold Warning Alert Message Arguments | 209 | | Table 296. | System Ratio Threshold Warning Alert Alert Information | 209 | | Table 297. | System Ratio Threshold Critical Alert Message Arguments | 210 | | Table 298. | System Ratio Threshold Critical Alert Alert Information | 210 | | Table 299. | Deduplication Ratio Threshold Warning Alert Message Arguments | 211 | | Table 300. | Deduplication Ratio Threshold Warning Alert Alert Information | 211 | | Table 301. | Deduplication Ratio Threshold Critical Alert Message Arguments | 212 | | Table 302. | Deduplication Ratio Threshold Critical Alert Alert Information | 212 | | Table 303. | Replication Traffic Threshold Warning Alert Message Arguments | 213 | | Table 304. | Replication Traffic Threshold Warning Alert Alert Information | 213 | | Table 305. | Replication Traffic Threshold Critical Alert Message Arguments | 214 | | | Replication Traffic Threshold Critical Alert Alert Information | | | Table 307. | Message Types | 218 | | | Required Configuration Properties for SA as DA | | | Table 309. | Required Configuration Properties for SA | 224 | | Table 310. | ACL for File "XYZ" | 261 | # **List of Figures** | Figure 1. | Experimental Maturity Level Tag | vi | |------------|--------------------------------------|------| | Figure 2. | Implemented Maturity Level Tag | vi | | Figure 3. | Stable Maturity Level Tag | vii | | Figure 4. | Deprecated Tag | viii | | Figure 5. | Reference Model | 17 | | Figure 6. | Basic Fault Detection | 20 | | Figure 7. | Health Lifecycle | 23 | | Figure 8. | Continuum | 24 | | Figure 9. | Application Fault Region | 25 | | Figure 10. | Array Instance | 26 | | Figure 11. | Switch Example | 28 | | Figure 12. | Lines that Connect Classes | 31 | | Figure 13. | iSCSI Qualified Names (iqn) Examples | 46 | | Figure 14. | iSCSI EUI Name Example | 47 | | Figure 15. | iSCSI 64-bit NAA Name Example | 47 | | Figure 16. | iSCSI 128-bit NAA Name Example | 47 | | Figure 17. | SA Server Configuration | 225 | | Figure 18. | Multicast Configuration | 226 | | Figure 19. | No Multicast configuration | 227 | | Figure 20. | Multicast Islands | 228 | | Figure 21. | SMI-S Roles | 233 | | Figure B 1 | Provider Migration | 269 | # **Foreword** Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4 defines the core architecture of SMI-S. This includes the protocols (WBEM, SLP,...); the model is defined in the other specification parts. #### Parts of this Standard This standard is subdivided in the following parts: - Storage Management Technical Specification, Overview, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 4 Filesystems, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 5 Fabric, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 6 Host Elements, 1.6.0 Rev 4 - Storage Management Technical Specification, Part 7 Media Libraries, 1.6.0 Rev 4 # **Acknowledgments** The SNIA SMI Technical Steering Group, which developed and reviewed this standard, would like to recognize the significant contributions made by the following members: | Organization Represented | Name of Representative | |--------------------------------|------------------------| | Brocade Communications Systems | John Crandall | | EMC Corporation | Tony Fiorentino | | | Mike Hadavi | | Hitachi Data Systems | Steve Quinn | | IBM | Jun Wei Zhang | | Individual Contributor | Mike Walker | | Individual Contributor | Paul von Behren | | WBEM Solutions, Inc | Jim Davis | | | | #### **SNIA Web Site** Current SNIA practice is to make updates and other information available through their web site at http://www.snia.org #### **SNIA Address** Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome. They should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the Storage Networking Industry Association, 425 Market Street, Suite 1020, San Francisco, CA 94105, U.S.A. # Clause 1: Scope Storage Management Technical Specification, Part 1 Common Architecture, 1.6.0 Rev 4 defines the core architecture and protocols in SMI-S. The components of SMI-S architecture include: - Transport communicating management information between constituents of the management system - Health and fault management detecting failures through monitoring the state of storage components - · General information about the object model - Names how SMI-S uses names to allow applications to correlate across SMI-S and to other standards - Standard messages how exceptions are presented to client applications - Service discovery techniques clients use to discover SMI-S services - Installation and upgrade recommendations for implementations - Compliance requirement for compliance to the standard # Clause 2: Normative references # 2.1 General The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. # 2.2 Approved references ISO/IEC 14776-413, SCSI Architecture Model - 3 (SAM-3) [ANSI INCITS 402-200x] ISO/IEC 14776-452, SCSI Primary Commands - 3 (SPC-3) [ANSI INCITS.351-2005] ANSI/INCITS 374:2003, Information technology - Fibre Channel Single - Byte Command Set-3 (FC-SB-3) # 2.3 DMTF references (Final) DMTF Final documents are accepted as standards. For DMTF Draft or Preliminary documents, see 2.5. DMTF DSP0004 CIM Infrastructure Specification 2.3.0 http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf DMTF DSP0200, CIM Operations over HTTP 1.3 http://www.dmtf.org/standards/published_documents/DSP0200_1.3.0.pdf DMTF DSP0201 Representation of CIM in XML 2.3.0 http://www.dmtf.org/standards/published_documents/DSP0201_2.3.0.pdf DMTF DSP0202 CIM Query Language Specification 1.0 http://www.dmtf.org/standards/published_documents/DSP0202_1.0.0.pdf DMTF DSP0223 Generic Operations 1.0.0 http://www.dmtf.org/standards/published_documents/DSP0223_1.0.0.pdf DMTF DSP0226, WS-Management Protocol Specification 1.1.0 http://www.dmtf.org/standards/published_documents/DSP0226_1.1.0.pdf DMTF DSP8016 WBEM Operations Message Registry http://schemas.dmtf.org/wbem/messageregistry/1/dsp8016.xml #### 2.4 IETF references For IETF Informational documents and proposed standards, see 2.5. IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies http://www.ietf.org/rfc/rfc2045.txt IETF RFC 2246, The TLS Protocol Version 1.0 http://www.ietf.org/rfc/rfc2246.txt IETF RFC 4291, IP Version 6 Addressing Architecture IETF RFC 2396, Uniform Resource Identifiers (URI) http://www.ietf.org/rfc/rfc2396.txt IETF RFC 2608, Service Location Protocol, Version 2 http://www.ietf.org/rfc/rfc2608.txt IETF RFC 2609, Service Templates and Service: Schemes http://www.ietf.org/rfc/rfc2609.txt IETF RFC 2610, DHCP Options for Service Location Protocol http://www.ietf.org/rfc/rfc2610.txt IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1 http://www.ietf.org/rfc/rfc2616.txt IETF RFC 2617, HTTP Authentication: Basic ad Digest Access Authentication http://www.ietf.org/rfc/rfc2617.txt IETF RFC 2445, Internet Calendaring and Scheduling Core Object Specification (iCalendar) http://www.ietf.org/rfc/rfc2445.txt IETF RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile http://www.ietf.org/rfc/rfc3280.txt IETF RFC 3723, Securing Block Storage Protocols over IP http://www.ietf.org/rfc/rfc3723.txt IETF RFC 3986, Definitions of Managed Objects for the DS3/E3 Interface Type
http://www.ietf.org/rfc/rfc3986.txt IETF RFC 4291, IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291.txt IETF RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1 http://www.ietf.org/rfc/rfc4346.txt IETF RFC 4514, Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished Names http://www.ietf.org/rfc/rfc4514.txt IETF RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2 http://tools.ietf.org/rfc/rfc5246.txt # 2.5 References under development The following documents (and their web addresses) are subject to change. DMTF DSP0225, URI Format for DMTF Published XML Schema http://www.dmtf.org/standards/published_documents/DSP0225.pdf DMTF DSP0230, WS-CIM Mapping Specification Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4 # 2.6 Other references IETF RFC 1945 Hypertext Transfer Protocol -- HTTP/1.0 http://www.ietf.org/rfc/rfc1945.txt IETF RFC 2614 An API for Service Location http://www.ietf.org/rfc/rfc2614.txt The SSL Protocol Version 3.0 http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00 #### Normative references UML (Universal Modeling Language) Specifications http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML ITU-T Recommendation X.509 (1997 E): Information Technology - Open Systems Interconnection - The Directory: Authentication Framework PKCS #12, Personal Information Exchange Syntax http://www.rsasecurity.com/rsalabs/node.asp?id=2138 Normative references # Clause 3: Definitions, symbols, abbreviations, and conventions For the purposes of this document, the following definitions, symbols, abbreviations, and conventions apply. #### 3.1 Definitions #### 3.1.1 access control means to ensure authorized access and to prevent unauthorized access to resources relevant to information security based on the business and security requirements #### 3.1.2 account an established relationship between a user and a computer, network or information service # 3.1.3 accountability Information Security property that establishes responsibility for the effects of action taken by individuals, organizations or communities with an explanation as to how and why the action took place. [ISO/IEC 27000] # 3.1.4 administrator a person charged with the installation, configuration, and management of a computer system, network, storage subsystem, database, or application # 3.1.5 agent an Object Manager that includes the provider service for a limited set of resources #### 3.1.6 aggregation a strong form of an association # 3.1.7 audit Log logs collecting the evidence of selected user activities, exceptions, and information security events #### 3.1.8 authentication the act of verifying the identity claimed by a party to a communication #### 3.1.9 authentication mechanism process for determining and validating a user (or device) identity #### 3.1.10 authorization the process of granting a right or permission to access a system resource #### 3.1.11 bidirectional authentication see 3.1.40 "mutual authentication" # 3.1.12 CIM Server a server that provides support for CIM requests and provides CIM responses. #### 3.1.13 client a process that issues requests for service #### 3.1.14 Common Information Model an object-oriented description of the entities and relationships in a business' management environment maintained by the Distributed Management Task Force #### 3.1.15 dedicated SMI-S Server a CIM Server that is dedicated to supporting a single device or subsystem # 3.1.16 digested password the hashed form of a cleartext password # 3.1.17 discovery a process which provides information about what physical and logical storage entities have been found within the management domain # 3.1.18 Distributed Management Task Force (DMTF) an industry organization that develops management standards for computer system and enterprise environments # 3.1.19 dynamic host control protocol (DHCP) an Internet protocol that allows nodes to dynamically acquire ("lease") network addresses for periods of time rather than having to pre-configure them #### 3.1.20 embedded SMI-S Server a CIM Server that is embedded in the device or subsystem for which it provides management #### 3.1.21 enclosure a box or cabinet # 3.1.22 entity authentication corroboration that an entity is the one claimed. [ISO/IEC 9798] #### 3.1.23 enumerate an operation used to enumerate subclasses, subclass names, instances and instance names #### 3.1.24 event an occurrence of a phenomenon of interest. # 3.1.25 eXtensible Markup Language a universal format for structured documents and data on the World Wide Web #### 3.1.26 extent a set of consecutively addressed disk blocks. # 3.1.27 external authentication authentication which relies on an authentication service separate from (or external to) an entity #### 3.1.28 extrinsic method A method defined as part of CIM Schema #### 3.1.29 fabric Any interconnect between two or more Fibre Channel N Ports, including point-to-point, loop, and Switched Fabric. # 3.1.30 FICON™1 Fibre Channel storage protocol used in IBM mainframe computers and peripheral devices such as ECKD storage arrays and tape drives #### 3.1.31 general purpose SMI-S Server an SMI-S Server that is not dedicated to supporting a single device or subsystem, and may support multiple devices or subsystems. #### 3.1.32 grammar a formal definition of the syntactic structure of a language (see 3.1.66 "syntax"), normally given in terms of production rules that specify the order of constituents and their sub-constituents in a sentence (a well-formed string in the language) #### 3.1.33 host bus adapter (HBA) card that contains ports for host systems # 3.1.34 Hypertext Transfer Protocol (HTTP) request-reply protocol used for internet communications #### 3.1.35 identity representation of an actual user (or application or service or device) #### 3.1.36 interconnect element non-terminal network elements (Switches, hubs, routers, directors). #### 3.1.37 interface definition language (IDL) high-level declarative language that provides the syntax for interface declarations #### 3.1.38 intrinsic method operations made against a CIM server and a CIM namespace independent of the implementation of the schema defined in the server #### 3.1.39 logical unit number a SCSI logical unit or logical unit number. # 3.1.40 mutual authentication authentication that provides both parties (users or entities) with assurance of each other's identity. #### 3.1.41 Network Address Authority (NAA) a four bit identifier to denote a network address authority (i.e., an organization such as CCITT or IEEE that administers network addresses) # 3.1.42 non-repudiation the ability to prove an action or event has taken place, so that this event or action cannot be repudiated later. [ISO/IEC 27000] ^{1.}FICON™ is an example of a suitable product available commercially. This information is given for the convenience of users of this standard and does not constitute an endorsement of this product by SNIA or any standards organization. #### 3.1.43 out-of-band transmission of management information for storage components outside of the data path, typically over Ethernet. Also: use of mechanisms other than the ones required on a communications channel to transmit information. [ISO/IEC 24767] # 3.1.44 partition collection of contiguous block on a disk or virtual disk ## **3.1.45** password a secret sequence of characters or a word that a user submits to a system for purposes of authentication, validation, or verification. # 3.1.46 path combination of initiator and target ports and logical unit # 3.1.47 privacy the right of an entity (normally an individual or an organization), acting on its own behalf, to determine the degree to which the confidentiality of their private information is maintained. # 3.1.48 privileged user a user who, by virtue of function, and/or seniority, has been allocated powers within a system, which are significantly greater than those available to the majority of users # 3.1.49 protocol a set of rules that define and constrain data, operations, or both #### 3.1.50 proxy SMI-S Server an SMI-S Server that does not run on the device or subsystem which it supports # 3.1.51 public key infrastructure (PKI) a framework established to issue, maintain, and revoke public key certificates accommodating a variety of security technologies. #### 3.1.52 SAN a group of fabrics that have common leaf elements. # 3.1.53 SCSI Parallel Interface (SPI) The family of SCSI standards that define the characteristics of the parallel version of the SCSI interface. # 3.1.54 Secure Sockets Layer (SSL) A suite of cryptographic algorithms, protocols and procedures used to provide security for communications used to access the world wide web. More recent versions of SSL are known as TLS (Transport Level Security) and are standardized by the Internet Engineering Task Force (IETF) # 3.1.55 Service Access Point the network address of a process offering a service. #### 3.1.56 shared secret a pre-shared key that has been allocated to communicating parties prior to the communication process starting. # 3.1.57 Simple Network Management Protocol (SNMP) an IETF protocol for monitoring and managing systems and devices in a network #### 3.1.58 SMI-S server a CIM Server that supports SMI-S (Storage Management Initiative Specification) Profiles for management of a device or subsystem # 3.1.59 SNMP trap a type of SNMP message used to signal that an event has occurred #### 3.1.60 soft zone a zone consisting of zone Members that are made visible to each other through Client Service requests # 3.1.61 Storage Management Initiative Specification (SMI-S) an interface between WBEM-capable clients and servers for the secure, extensible, and interoperable management of networked storage (this standard) # 3.1.62 Storage Networking Industry Association (SNIA) an association of producers and consumers of storage networking products whose goal is to further
storage networking technology and applications # 3.1.63 storage resource management (SRM) management of physical and logical storage resources, including storage elements, storage devices, appliances, virtual devices, disk volume and file resources. #### 3.1.64 switch Fibre channel interconnect element that supports a mesh topology. ## 3.1.65 switched fabric A fabric comprised of one or more Switches # 3.1.66 syntax The structure of strings in some language. A language's syntax is described by a grammar. # 3.1.67 threat A potential source of an incident that may result in adverse changes to an asset, a group of assets or an organization. [ISO/IEC 27000] #### 3.1.68 unidirectional authentication Authentication that provides one party (user or entity) with assurance of the other's identity. #### 3.1.69 User Datagram Protocol An Internet protocol that provides connectionless datagram delivery service to applications # 3.1.70 vulnerability Weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat. [ISO/IEC 27000] # 3.1.71 Web Based Enterprise Management a set of management and Internet standard technologies from DMTF developed to unify the management of distributed computing environments #### 3.1.72 web service a software system designed to support interoperable machine-to-machine interaction over a network #### 3.1.73 zone a group of ports and switches that allow access. Defined by a zone definition. #### 3.1.74 zone set one or more zones that may be activated or deactivated as a group # 3.2 Acronyms and abbreviations AAA Authentication, Authorization, and Accounting ACL Access Control List API application programming interface CA Certificate Authority CIM Common Information Model CRL Certificate Revocation List DHCP dynamic host control protocol FC Fibre Channel HBA host bus adapter HMAC keyed-Hash Message Authentication Code HTTPS Hypertext Transfer Protocol Secure IDL interface definition language IETF Internet Engineering Task Force IMA iSCSI Management API IP Internet Protocol IPsec Internet Protocol Security iSCSI Internet SCSI LDAP Lightweight Directory Access Protocol MAC Message Authentication Code OS operating system PKI Public Key Infrastructure RADIUS Remote Authentication Dial In User Service RBAC Role-base Access Control RFC Request for Comments SAM-3 SCSI Architecture Model SAN storage area network SB Single Byte (command set) SCSI Small Computer System Interface ocoi oniali computer oystem inte SES SCSI Enclosure Services SLP Service Location Protocol SMI-S Storage Management Initiative - Specification SNIA Storage Networking Industry Association SPC-3 SCSI Primary Commands-3 SSL Secure Socket Layer SSO Single Sign-on SSP Storage Service Provider TC Technical Committee TCP Transmission Control Protocol TLS Transport Layer Security UDP User Datagram Protocol URL Uniform Resource Locator WBEM Web-Based Enterprise Management XML Extensible Markup Language # 3.3 Keywords ## 3.3.1 expected A keyword used to describe the behavior of the hardware or software in the design models presumed by this standard. Other hardware and software design models may also be implemented. #### 3.3.2 invalid A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt of an invalid bit, byte, word, field or code value shall be reported as an error. #### 3.3.3 mandatory A keyword indicating an item that is required to be implemented as defined in this standard to claim compliance with this standard. # 3.3.4 may A keyword that indicates flexibility of choice with no implied preference. # 3.3.5 may not Keywords that indicates flexibility of choice with no implied preference. #### 3.3.6 obsolete A keyword indicating that an item was defined in prior standards but has been removed from this standard. #### 3.3.7 opaque: A keyword indicating that value has no semantics or internal structure. # 3.3.8 optional A keyword that describes features that are not required to be implemented by this standard. However, if any optional feature defined by this standard is implemented, it shall be implemented as defined in this standard. ## 3.3.9 reserved A keyword referring to bits, bytes, words, fields and code values that are set aside for future standardization. Their use and interpretation may be specified by future extensions to this or other standards. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero values. Receipt of reserved code values in defined fields shall be reported as an error. #### 3.3.10 shall A keyword indicating a mandatory requirement. Designers are required to implement all such requirements to ensure interoperability with other products that conform to this standard. # 3.3.11 should A keyword indicating flexibility of choice with a preferred alternative; equivalent to the phrase "it is recommended". #### 3.4 Conventions Certain words and terms used in this American National Standard have a specific meaning beyond the normal English meaning. These words and terms are defined either in Clause 3: Definitions, symbols, abbreviations, and conventions or in the text where they first appear. Numbers that are not immediately followed by lower-case b or h are decimal values. Numbers immediately followed by lower-case b (xxb) are binary values. Numbers immediately followed by lower-case h (xxh) are hexadecimal values. Hexadecimal digits that are alphabetic characters are upper case (i.e., ABCDEF, not abcdef). Hexadecimal numbers may be separated into groups of four digits by spaces. If the number is not a multiple of four digits, the first group may have fewer than four digits (e.g., AB CDEF 1234 5678h) Decimal fractions are initiated with a comma (e.g., two and one half is represented as 2,5). Decimal numbers having a value exceeding 999 are separated with a space(s) (e.g., 24 255). See also "Typographical Conventions" (in front matter) for typographical conventions. # Clause 4: Transport and Reference Model ### 4.1 Introduction #### 4.1.1 Overview The interoperable management of storage devices and network elements in a distributed storage network requires a common transport for communicating management information between constituents of the management system. This section of the specification details the design of this transport, as well as the roles and responsibilities of constituents that use the common transport (i.e., a reference model). ### 4.1.2 Language Requirements To express management information across the interface, a language is needed that: - · Can contain platform independent data structures, - · Is self describing and easy to debug, - · Can be extended easily for future needs. ### 4.1.3 Communications Requirements Communications protocols to carry the XML based management information are needed that: - Can take advantage of the existing ubiquitous IP protocol infrastructures, - · Can be made to traverse inter- and intra-organizational firewalls, - Can easily be embedded in low cost devices. The Hyper Text Transport Protocol (HTTP) was chosen for the messaging protocol and TCP was chosen for the base transfer protocol to carry the XML management information for this interface as they meet the requirements in 4.1.3. ### 4.1.4 XML Message Syntax and Semantics In order to be successful, the expression of XML management information (messages) across this interface needs to follow consistent rules for semantics and syntax. These rules are detailed in this specification. They are of sufficient quality, extensibility, and completeness to allow their wide adoption by storage vendors and management software vendors in the industry. In addition, to facilitate rapid adoption, existing software that can parse, marshal, un-marshal, and interpret these XML messages should be widely available in the market such that vendor implementations of the interface are accelerated. The message syntax and semantics selected should: - · Be available on multiple platforms, - Have software implementations that are Open source (i.e., collaborative code base), - Have software implementations available in Java and C++, - Leverage industry standards where applicable, - Conform with W3C standards for XML use. - Be object model independent (i.e., be able to express any object model). Virtually the only existing industry standard in this area is the WBEM standards as developed and maintained by the DMTF. # 4.2 Transport Stack It is the primary objective of this interface to drive seamless interoperability across vendors as communications technology and the object model underlying this interface evolves. Accordingly, the transport stack has been layered such that (if required) other protocols can be added as technology evolves. For example, should SOAP or IIOP become prominent, the content in the stack could be expanded with minimal changes to existing product implementations in the market. Editor's Note 1: May need more specific ref in next paragraph. mbf 7/19/10 This specification relies on the DMTF WBEM Protocol Specifications. Please refer to the DMTF WBEM Specification page for details on these specifications. To be compliant with this specification, CIM-XML shall be supported. Optionally, other protocols, such as WS-Management, may also be supported. It should be noted that this specification places no restriction on the physical network selected to carry this transport stack. For example, a vendor can choose to use in-band communication over Fibre-channel as the backbone for this interface. Another vendor could exclusively (and wisely) choose out-of-band communication over Ethernet to implement this management interface. Additionally, select vendors could choose a mix of in-band and out-of-band physical network to carry this transport stack. ### 4.3 Reference
Model #### 4.3.1 Overview As shown in Figure 5, the Reference Model shows all possible constituents of the management environment in the presence of the transport stack for this interface. Figure 5 - Reference Model. Figure 5 illustrates that the transport for this interface uses a WBEM Protocol and HTTP/TCP/IP to execute intrinsic and extrinsic methods against the schema for this interface. **Note:** It is envisioned that a more complete version of this reference model would include a Lock Manager. However, in this version of SMI-S, a Lock Manager is not specified. As a result, it is shown as a dotted box to illustrate where the role would fit. #### 4.3.2 Roles for Interface Constituents ### 4.3.2.1 Client A Client is the consumer of the management information in the environment. It provides an API (language binding in Java or C++ for example) for overlying management applications (like backup engines, graphical presentation frameworks, and volume managers) to use. #### 4.3.2.2 SMI-S Server An SMI-S Server is a CIM Server. It shall implement those functional profiles, as defined in the DMTF specifications, necessary to satisfy the SMI-S profile with which it conforms. Often, an SMI-S Server controls only one device or subsystem, and is incapable of providing support for complex intrinsic methods like schema traversal. An SMI-S Server can be embedded in a device (like a Fibre Channel Switch) or provide a proxy on a host that communicates to a device over a legacy or proprietary interconnect (like a SCSI based array controller). Embedding an SMI-S Server directly in a device or subsystem reduces the management overhead seen by a customer and eliminates the requirement for a stand-alone host (running the proxy agent) to support the device. Embedded SMI-S Servers are the desired implementation for "plug and play" support in an SMI-S managed environment. However, proxy SMI-S Servers are a practical concession to the legacy devices that are already deployed in storage networked environments. In either case, the minimum CIM support for SMI-S Servers applies to either SMI-S Server deployments. ### 4.3.2.3 General Purpose SMI-S Server A General Purpose SMI-S Server is CIM Server that serves management information from one or more devices or underlying subsystems through providers. As such a General Purpose SMI-S Server is an aggregator that enables proxy access to devices/subsystems and can perform more complex operations like schema traversals. A General Purpose SMI-S Server typically includes a standard provider interface to which device vendors adapt legacy or proprietary product implementations. #### 4.3.2.4 Provider A provider expresses management information for a given resource such as a storage device or subsystem exclusively to a CIM Server. The resource may be local to the host that runs the Object Manager or may be remotely accessed through a distributed systems interconnect. ### 4.3.2.5 Lock Manager This version of the specification does not support a lock manager. ### 4.3.2.6 Directory Server (SLP Directory Agent) A directory server provides a common service for use by clients for locating services in the management environment. ### 4.3.3 Cascaded Agents This specification discusses constituents in the SMI-S environment in the context of Clients and Servers. This version of the specification also allows constituents in a SMI-S management environment to function as both client and server. # **Clause 5: Health and Fault Management** # 5.1 Objectives Health and Fault Management is the activity of anticipating or detecting failures through monitoring the state of the storage network and its components and intervening before services can be interrupted. A service in this case is the realization of storage through several interconnected devices connected, configured for a dedicated purpose. The purpose is the delivery of software application functionality in support of some business function. #### 5.2 Overview - Express states and statuses with standard meanings. - Define the use of comprehensive error reporting in determining the type, category, and source of failures. - Define the quality associated with errors rather than qualities. - Define explicit failure scopes rather than requiring HFM enabled application to construct them. ### 5.3 Terms #### 5.3.1 error An unexpected condition, result, signal or datum. An error is usually caused by an underlying problem in the system such as a hardware fault or software defect. Errors can be classified as correctable (recoverable) or uncorrectable, detectable or undetectable. ### 5.3.2 fault A problem that occurs when something is broken and therefore not functioning in the manner it was intended to function. A fault may cause an error to occur. #### 5.3.3 fault region Many devices or applications can attempt to fix themselves upon encountering some adverse condition. The set of components which the device or application can attempt to fix is called the Fault Region. The set may include part or all of other devices or applications. Having the Fault Regions declared helps a HFM application, acting as a doctor, to do no harm by attempting to interfere and thereby adversely affect the corrective action being attempted. ### 5.3.4 Health and Fault Management (HFM) Health and Fault Management is the activity of anticipating or detecting debilitating failures through monitoring the state of the storage network and its components and intervening in before services can be interrupted. A service in this case is the realization of storage utilization through several interconnected devices connected, configured for a dedicated purpose. The purpose is the delivery of software application functionality in support of some business function. # 5.3.5 operational status These values indicate the current status(es) of the element. Various operational statuses are defined (e.g., OK, starting, stopping, stopped, In Service, No Contact). #### 5.3.6 health state These values indicate the current health of the element. This attribute expresses the health of this element but not necessarily that of its subcomponents. # 5.4 Description of Health and Fault Management The goal of effective administration requires devices and applications that comprise storage services to report their status and the nature of their errors in standard terms. These terms need to be understandable by a client without device-specific knowledge. Figure 6 - Basic Fault Detection There are four basic ways for a SMI-S client to detect an error or fault condition. Figure 6 lists the four basic methods for fault detection. These are: - Health state and Operational status Polling. - Error Standard errors returned from CIM operations. - Indications Subscribe for and receive asynchronous Indications. - Fault Regions (experimental) Walk the CIM model looking for RelatedElementCausingError associations. #### 5.4.1 Operational Status and Health State (Polling) Operational Status and Health State are the two properties that will be used to monitor health. These two properties could convey very different statuses and may at times be related or independent of each other. For example, you may have a disk drive with the Operational Status of "Stopped" and the HealthState of 30 (Non-recoverable error) or 5 (OK). Now the reason the disk drive is stopped could vary from the fact that it had a head crash (HealthState = 30) to the situation where it was stopped for the routine maintenance (HealthState = 5). Table 1 is an example of how HealthState can disambiguate health for a disk drive, various values for OperationalStatus and HealthState: Table 1 shows, for a disk drive, various possible values for OperationalStatus and HealthState. Note that there are many cases not shown.: | OperationalStatus | Description | HealthState | Description | Comment | |-------------------|-------------------------------------|-------------|------------------|--------------------| | 2 | ОК | 5 | ОК | Everything is fine | | 2 | ОК | 10 | Degraded/Warning | Some soft errors | | 3 or 2 | Degraded or
Predicted
Failure | 15 | Minor Failure | Many soft errors | | 3 or 2 | Degraded or
Predicted
Failure | 20 | Major Failure | Some hard errors | Table 1 - OperationalStatus for Disk Drive Table 1 - OperationalStatus for Disk Drive (Continued) | OperationalStatus | Description | HealthState | Description | Comment | |-------------------|-------------|-------------|--------------------------|--| | 3 | Degraded | 10 | Good | A subcomponent has failed (no data loss) | | 10 | Stopped | 5 | ОК | Drive spun down normally | | 10 | Stopped | 30 | Non-recoverable
Error | Head crash | | 8 | Starting | 10 | Degraded/Warning | Will update HealthState once fully started | | 4 | Stressed | 5 | ОК | Too many I/O in progress, but the drive is fine. | | 15 | Dormant | 5 | ОК | The drive is not needed currently | The property OperationalStatus is multi-valued and more dynamic. It tends to emphasize the current status and potentially the immediate status leading to the current status; whereas, the property HealthState is less dynamic and tends to imply the health over a longer period of time. Again, in the disk drive example, the disk drive's operational status may change many times in a given time period. However, in the same time period, the health of the same drive may not change at all. #### 5.4.2 Standard Errors and Events Standardization of error and events are required so that the meaning is unambiguous and is given to comparisons. ### **Error and Alert indications** HFM clients shall not be required to be embodied with specific knowledge of the devices and applications in order to derive the quality of the error from the datum. The device and application shall express the quality of the error rather than the quantity interpreted with *a priori* knowledge to determine that error condition is present. For example, a
device needs to express that it is too hot rather than requiring the HFM enabled application to determine this from the temperature datum and device specific knowledge of acceptable operating conditions. Standard errors are defined for each Profile/Subprofile. The definitions will be contained in the profiles/subprofiles. Standard errors are not the only error codes that can be returned, but are the only codes that a generic client will understand. #### 5.4.3 Indications Indications are asynchronous messages from CIM servers to clients. A client must register for them. Each SMI-S profile/subprofile contains lists of indication filters that clients use to indicate the information it is interested in. The message itself is defined in the SMI-S indication subprofile. ### **EXPERIMENTAL** #### 5.4.4 Event Correlation and Fault Containment Automation will require that an error arising through control and configuration activities, as a side effect of them, or by failures caused by defects can be directly correlatable. Error categories like network cabling failures or network transmission errors will help organize the types of error that can be produced. Standard errors, like impending disk media failure, will be required as well. Once the errors have been collected and correlated, the HFM enabled application can produce an impact list sorted by likelihood. Some of the error correlation can be determined by the common affect through the manifestation of the RelatedElementCausingError association to be described later. The alerts themselves can report its correlation with other alerts. Potential faults can then be derived from errors for each component. Deriving such a list may require a dialog between the HFM enabled application and the device or application in question such that the HFM enabled application is assisted in the production of the list. If permitted, then control and configuration operations may be executed to contain the fault. The pallet of these operations will be those operations already available through SMI-S. However, special operations may arise from the HFM design work as well. Fault containment will include the reconfiguration of the storage service with alternative components, leaving failing components or interconnections isolated. Much like a physician, the HFM enabled application is notified or consulted when symptoms appear. The HFM enabled application then develops a prognosis based on the manifestation of the ailment. At times, the HFM enabled application will perform diagnostic procedures. The end result of the process is to produce a list of possible causes, ranked by probability, and associated recommended procedures. Also like a doctor, the HFM enabled application will settle for enabling the patients to heal themselves. That is the HFM enabled applications cannot be expected to heal the device in all cases. A significant portion of all possible corrective actions will require the intervention of people or device unique knowledge. The simplified state diagram shown in Figure 7 follows the fault mitigation life cycle for HFM. The device or application manifests an event, either by a state change, error returned from a WBEM operation, or an alert indication. The event is recognized by the HFM enabled application and accessed by the HFM enabled application. It may be that the event indication does the represent the existence of an error. An error condition may be heralded by a single or multiple events occurring in some order. The process of examining and characterizing event as errors is called error handling. Once it is determined that an error condition is present, then possible causes are sought and ranked by likelihood. The causes themselves describe a potential problem or fault with the component in question. Alternatively, the device or application may report the fault directly, through an alert indication, optionally with recommended actions. Figure 7 - Health Lifecycle Fault resolution may not require the intervention of an operator or field technician. It is these faults that can be handled entirely by the HFM enabled application. Otherwise, the HFM enabled application can not actively participate in whole fault resolution life cycle. In this case, the HFM enabled application would wait for the end state of fault resolution to come to being before ending its fault mitigation exercise. Faults are contained and components repaired or replaced. The instructions to the HFM enabled application for what can be done to repair the fault are the recommended actions. Fault Containment includes fencing off the faulty component and maintaining the service. To be minimally effective, the HFM enabled application contains the fault. The repair may or may not be done with human intervention. The devices and application that comprise a storage system have themselves some level of self diagnostics and report functionality. Figure 8 - Continuum There is a range of ability of devices and applications to recover from failures and to report on the error recovery actions taken. See Figure 8. The variance of capabilities for device and applications can be plotted on a continuum. At one end of continuum, the device or application recognizes a fault condition and takes action, reporting on the action taken and any further action required to service it. At the other end of the continuum, the device can only report on that states and requires intervention both in the detection of fault conditions and taking corrective action. There are limits to what an HFM enabled application can do. Obviously, if the device or application can not report states, errors and alerts in a standard way or can not report this data at all, then there is little an external implementation can do. However, few, if any, of these devices and applications can monitor and correct the service as a whole. It is for this reason, the HFM implementation is needed to augment the effectiveness of the administrator. ### 5.4.5 Fault Regions A scope can be applied to the effect of errors and the associated fault. A fault may affect a component, a device or application, storage service, or all the above. This scope defines the area of influence for fault containment. For example, the device itself may monitor its components and perform fault mitigation on its own. The plot of components whose errors are handled by a given fault mitigation entity is the fault region. The scope of effect of this fault region shall be defined. Figure 9 illustrates the scope of fault regions in a simplified SAN example and how the may be recursive in nature. AN HFM application has the widest scope of concern in this example. Figure 9 - Application Fault Region Error handling is initiated by the interception of error events. For example, a switch may recognize the failure of one it ports and reroute traffic to a working port. In this case, the fault region is defined as the switch itself. If the failure event is publicly consumable, other fault mitigation entities can also handle the error as well. The failure of a drive may be mitigated one way in the array fault region and mitigated differently in the HFM enabled application fault region. For example, the array fault mitigation entity can bring a volume off line if the failure of the disk brings the set of disks below the minimum required for quorum. At the same time, the HFM enabled application can reconfigure the storage service to create a replacement volume and then restore the failed volume's data from backup. The HFM enabled application is one of the several possible storage network scope fault mitigation entities. As discussed previously, this broad scope is necessary to mitigate faults where the faults cannot be entirely mitigated by the storage device or application alone. It is necessary that fault mitigation entities like the HFM enabled application can observe the activities of the fault mitigation entities contained within their fault regions such that they do no harm. Device or application should express what error conditions are to be handled inside their own fault domain and how an HFM enabled application can detect that such fault containment is occurring. State changes on components may BE sufficient representation of these activities. In general, the HFM enabled application fault region mitigation may not necessarily include the same actions that the host, switch, or array may take to fix them. #### **EXPERIMENTAL** #### 5.4.6 Examples ### 5.4.6.1 Array Example The scenario presented is related to a storage array that contains one or many ports. See Figure 10. A port is off-line. This port effects the serving of a volume to a host. Figure 10 - Array Instance ### 5.4.6.1.1 Indication An AlertIndication is produced by the array notifying the HFM enabled application of the failure. The indication reports the Object Name of the ProtocolController that has failed through its AlertingManagedElement property. When storage capacity configuration operations are attempted on storage related to the failed ProtocolController, an Error is reported. The error reports the Object Name of the ProtocolController that has failed through the ErrorSource property. Error is a class introduced in CIM 2.9 that provides a mechanism to express error number, category, recommended actions and the like. ### 5.4.6.1.2 Standard Errors It is mandatory to report error conditions through both AlertIndication and Error in those cases where Error is returned when the method call failed for reasons other than the method call itself. For example, if the device port is down then a method call can fail because of this condition. It is expected that the device will report a port error AlertIndication to listening clients as well. #### 5.4.6.1.3 Operational status and Health State (Polling) A client that gets the top Computer system instance should see an operational status of degraded and a health state of good if the data wasn't
lost. At the same time, reading the instance of Computer system for the broken controller would see an operational status of "stopped" and a health state of "non-recoverable Error". #### **EXPERIMENTAL** ### 5.4.6.1.4 Fault Region The RelatedElementCausingError association defines the relationship between a CIM Instance that is reporting an error status and the component that is the cause of the reported status. The Port and a Volume using the port both report error status and the_RelatedElementCausingError association reports that the ProtocolController through which the Volume is exposed has failed and at least some of the volumes are no longer visible externally to the array. The array itself would be thereby degraded. The_RelatedElementCausingError association is independent of all other associations. It is only use to report error associations and comes into existence only when necessary. Once the error has been handled, the association is removed from the model. ### **EXPERIMENTAL** ### 5.4.6.2 Switch Example The scenario presented is related to a FC Switch that contains many ports. See Figure 11. One of the ports is off-line. Figure 11 - Switch Example #### 5.4.6.2.1 Indication An AlertIndication is produced by the switch notifying the HFM enabled client of the failure. The indication reports the Object Name of the FC port (FCPort) that has failed through its AlertingManagedElement property. #### 5.4.6.2.2 Standard Errors A call to Port settings, port capabilities, or statistics cause an Error to be reported. The error reports the Object Name of the FCPort that has failed through the ErrorSource property. It is mandatory to report error conditions through both AlertIndication and Error in those cases where Error is returned when the method call failed for reasons other than the method call itself. For example, if the device is over heat, then a method call can fail because of this condition. It is expected that the device will report an over heat AlertIndication to listening clients as well. #### **EXPERIMENTAL** ### 5.4.6.2.3 Fault Region The RelatedElementCausingError association defines the relationship between a CIM Instance that is reporting an error status and the component that is the cause of the reported status. The failed port would report error status and the RelatedElementCausingError association reports that the PortStatistics and PortSettings are effected. The switch itself would be thereby degraded. The_RelatedElementCausingError association is independent of all other associations. It is only use to report error associations and comes into existence only when necessary. Once the error has been handled, the association is removed from the model. ### **EXPERIMENTAL** Health and Fault Management # **Clause 6: Object Model General Information** # 6.1 Model Overview (Key Resources) #### 6.1.1 Overview The SMI-S object model is based on the Common Information Model (CIM), developed by the DMTF. For a more complete discussion of the full functionality of CIM and its modeling approach, see http://www.dmtf.org/standards/standard_cim.php. Readers seeking a more complete understanding of the assumptions, standards and tools that assisted in the creation of the SMI-S object model are encouraged to review the following: - CIM Tutorial (http://www.wbemsolutions.com/tutorials/CIM/index.html) - CIM UML Diagrams and MOFs (http://www.dmtf.org/standards/standard cim.php) Managed Object File (MOF) is a way to describe CIM object definitions in a textual form. A MOF can be encoded in either Unicode of UTF-8. A MOF can be used as input into an MOF editor, parser or compiler for use in an application. The SMI-S model is divided into several *profiles*, each of which describes a particular class of SAN entity (such as disk arrays or FibreChannel Switches). These profiles allow for differences in implementations but provide a consistent approach for clients to discover and manage SAN resources. IN DMTF parlance, a *provider* is the instrumentation logic for a profile. In many implementations, providers operate in the context of a *CIM Server* that is the infrastructure for a collection of providers. A WBEM *client* interacts with one or more WBEM Servers. #### 6.1.2 Introduction to CIM UML Notation CIM diagrams use a subset of Unified Modeling Language (UML) notation. Most classes are depicted in rectangles. The class name is in the upper part and *properties* (also known as *attributes* or *fields*) are listed in the lower part. A third subdivision added for *methods, if they are included*. A special type of class, called an *association*, is used to describe the relationship between two or more CIM classes PhysicalPackage Three types of lines connect classes, as shown in Figure 12. Figure 12 - Lines that Connect Classes The CIM documents generally follow the convention of using blue arrows for inheritance, red lines for associations and green lines for aggregation. The color-coding makes large diagrams much easier to read but is not a part of the UML standard. The ends of some associations have numbers (cardinality) indicating the valid count of object instances. Cardinality is expressed either as a single value (such as 1), or a range of values (0..1 or 1..4); "*" is shorthand for 0..n. Some associations and aggregations are marked with a "W" at one end indicating that the identity of this class depends on the class at the other end of the association. For example, fans may not have worldwide unique identifiers; they are typically identified relative to a chassis. This document uses two other UML conventions. The UML Package symbol is used as a shortcut representing a group of classes that work together as an entity. For example, several classes model different aspects of a disk drive. After the initial explanation of these objects, a single disk package symbol is used to represent the entire group of objects. Schema diagrams include all of a profile's classes and associations; the class hierarchy is included and each class is depicted one time in the schema diagram. Instance diagrams also contain classes and associations but represent a particular configuration; multiple instances of an object may be depicted in an instance diagram. An instance may be named with an instance name followed by a colon and a class name (underlined). For example, represents an array and a switch - two instances of <COMPUTER SYSTEM> objects. ### 6.2 Techniques ### 6.2.1 CIM Fundamentals This section provides a rudimentary introduction to some of the modeling techniques used in CIM, and is intended to speed understanding of the SMI-S object model. #### 6.2.1.1 Associations as Classes CIM presents relationships between objects with specialized classes called associations and aggregations. In addition to references to the related objects, the association or aggregations may also contain domain-related properties. For example, ControlledBy associates a controller and a device. There is a many-to-many cardinality between controllers and devices (i.e., a controller may control multiple devices and multi-path devices connect to multiple controllers); each controller/device connection has a separate activity state. This state corresponds to the AcccessState property of ControlledBy association linking the device and the controller. ### 6.2.1.2 Logical and Physical Views CIM separates physical and logical views of a system component, and represents them as different objects – the "realizes" association ties these logical and physical objects together. ### **6.2.1.3** Identity Different agents may each have information about the same organic object and may need to instantiate different model objects representing the same thing. Access control is one example: a switch zone defines which host device ports may access a device port. The switch agent creates partially populated port objects that are also created by the HBA and storage system agents. The Concreteldentity association is used to indicate the associated object instances are the same thing. Concreteldentity is also used as a language-independent alternative to multiple inheritance. For example, a FibreChannel port inherits from a generic port and also has properties of a SCSI controller. CIM models this as FCPort and ProtocolController objects associated by Concreteldentity. ### 6.2.1.4 Extensibility CIM makes allowances for additional values in enumerations that were not specified in the class Derivation by adding a property to hold arbitrary additional values for an enumeration. This property is usually named OtherXXXX (where XXXX is the name of the enumeration property) and specifying "other" as the value in the enumeration property indicates its use. For an example see the ConnectorType and OtherTypeDescription properties of Slot object in the CIM_Physical MOF. #### 6.2.1.5 Value/ValueMap Arrays CIM uses a pair of arrays to represent enumerated types. ValueMap is an array of integers; Values is an array of strings that map to the equivalent entry in ValueMap. For example, PrinterStatus (in the CIM_Device MOF) is defined as follows: ``` ValueMap {"1", "2", "3", "4", "5", "6", "7"}, Values {"Other", "Unknown", "Idle", "Printing", "Warm-up, "Stopped Printing", "Offline"}, ``` A status value of 6 means "Stopped Printing". A client application can automatically convert the integer status value to a human-readable message using this information from the MOF. #### 6.2.1.6 Return Codes When a class definition includes a method, the MOF includes Value/ValueMap arrays representing the possible return codes. These values are partitioned into ranges of values; values from 0 to 0x1000 are used for return codes that may be common to various methods. Interoperable values that are specific to a method start at 0x1001; and vendor-specific values may be defined
starting at 0x8000. Here's an example of return codes for starting a storage volume. ``` ValueMap {"0", "1", "2", "4", "5", ".", "0x1000", "0x1001", "...", "0x8000.."}, Values {"Success", "Not Supported", "Unknown", "Time-out, "Failed", "Invalid Parameter", "DMTF_Reserved", "Method parameters checked - job started", "Size not supported", "Method_Reserved", "Vendor_Specific"}] ``` ### 6.2.1.7 Model Conventions This is a summary of objects and associations that are common to multiple profiles. **PhysicalPackage** represents the physical storage product. PhysicalPackage may be sub-classed to ChangerDevice, but PhysicalPackage accommodates products deployed in multiple chassis. **Product** models asset information including vendor and product names. Product is associated with PhysicalPackage. **SoftwareIdentity** models firmware and optional software packages. InstalledSoftwareIdentity associates SoftwareIdentity and ComputerSystem, ElementSoftwareIdentity associates SoftwareIdentity and LogicalDevices (a superclass of devices and ports). **Service** models a configuration interface (for example, a switch zoning service or an array access control service). Services typically have methods and properties describing the capabilities of the service. A storage system may have multiple services; for example, an array may have separate services for LUN Masking and LUN creation. A client can test for the existence of a named service to see if the agent is providing this capability. **LogicalDevice** (for example, FCPort) is a superclass with device subclasses (like and DiskDrive and TapeDrive) and also intermediate nodes like Controller and FCPort. Each LogicalDevice subclass shall be associated to a ComputerSystem with a SystemDevice aggregation. Due to the large number of LogicalDevice subclasses, SystemDevice aggregations are often omitted in instance diagrams in this specification. This specification covers many common storage models and management interfaces, but some implementations include other objects and associations not detailed in the specification. In some cases, these are modeled by CIM schema elements not covered by this document. When vendor-specific capabilities are needed, they should be modeled in subclasses of CIM objects. These subclasses may contain vendor-specific properties and methods and vendor-specific associations to other classes. ### 6.2.2 Modeling Profiles In addition to modeling SAN components, SMI-S servers shall model the profiles they provide. This information is used two ways: - Clients can guickly determine which profiles are available. - An SLP component can query the SMI-S Server and automatically determine the appropriate SLP Service Template information (see Clause 9: Service Discovery). A client can traverse the Server Profile in each SMI-S server to see which profiles (and objects) claim SMI-S compliance. RegisteredProfile describes the profiles that a CIM server claims are supported. The RegisteredSubprofile is used to define the optional features supported by the system being modeled. A client can traverse the associations in the Server Profile to see which profiles claim SMI-S compliance. ### 6.2.3 CIM Naming There may be multiple SMI-S servers in any given storage network environment. It is not sufficient to think of the name of an object as just the combination of its key values. The name also serves to identify the Server that is responsible for the object. The name of an object (instance) consists of the namespace and the model. The namespace provides access to a specific SMI-S server implementation and is used to locate a particular namespace within a server. The model provides full navigation within the CIM Schema and is the concatenation of the class name and key-qualified properties and values. The namespace has special rules. It should uniquely identify a SMI-S server. However, a SMI-S server may support multiple namespaces. How an implementation defines Namespaces within a SMI-S server is not restricted. However, to ease interoperability, SMI-S implementations should manage all objects within a profile in one namespace. ## Clause 7: Correlatable and Durable Names ### 7.1 Overview Management applications often read and write information about managed objects in multiple CIM namespaces or between CIM and some other storage management namespace. When an object in one namespace is associated with an object in another namespace, each namespace may represent some amount of information about the same managed resource using different objects. A management application understands when objects in different namespaces represent the same managed resource by the use of a unique common identifier, referred to as a "correlatable name". A correlatable name is designated as a mandatory property for any objects representing managed resources that may be seen from multiple points of view. These durable names are used by management applications for object coordination. A related concept is referred to as "durability". Some names may be correlatable at a particular point in time, but may change over time (e.g., a durable name is a hardware-assigned port or volume name and a correlatable, non-durable ID is a DHCP IP address). No name is permanently durable (e.g., even a name derived from hardware may change due to FRU replacement). A client application should assume that a stored durable name remains valid over time where a non-durable may not remain valid over time. Correlatable names are unique within a defined namespace. In some cases, that namespace is world-wide; requiring compliance to standards defined by a naming authority. In other cases, the namespace is the hosting system or some set of connected systems (e.g., operating system device names are unique to the containing host). A name may be expressed in different formats (e.g., numeric value are sometimes displayed as decimal or hexadecimal, the hexadecimal value sometimes has a leading "0x" or a trailing "h"). To assure interoperability, mandatory formats are specified by this standard. A necessary technique associated with correlatable names involves the use of CIM properties that describe the format or namespace from which the name is derived. CIM key-value combinations are unique across instances of a class, but CIM does not fully address cases where different types of identifiers are possible on different instances of an object. It is therefore necessary to ensure that multiple sources of information about managed resources use the same approach for forming correlatable names whenever different types of identifiers are possible. When different types of identifiers are possible, the profile specifies the possible name formats and namespaces for durable and correlatable IDS, the preferred order that each implementation should use if multiple namespaces are available, and the related properties that a client uses to determine the namespace. Correlatable, durable names are mandatory for these objects: - SCSI logical units or (such as storage volumes or tape drives) that are exported from storage systems; also SB (Single Byte Command Code Sets) - SB control unit issues - External Ports on hosts and storage devices - Fibre Channel ports on interconnect elements - Fibre Channel fabric (modeled as AdminDomain) - ComputerSystem objects that server as top-level systems for all SMI-S profiles - Operating System Device Names CIM keys and correlatable names are not tightly coupled. For some classes, they may be the same, but this is not mandatory as long as all correlatable names are unique and management applications are able to determine when objects in different namespaces are providing information about the same managed resource. The common types of information used for names include the SCSI Device Identifiers from the Identification Vital Product Data page (i.e., VPD page 83h), SB Node Element Descriptors from Read-Configuration Data, the response form ATA IDENTIFY commands, Fibre Channel Name_Identifiers (i.e., World Wide Names), Fully Qualified Domain Names, and IP Address information. See 7.2, 7.3, 7.4, and 7.5 for general information on the advantages and disadvantages of certain types of names. The details for each class requiring durable correlatable names are provided in the profiles subclauses of this document. If the name used in the instrumentation in binary, the CIM representation is an upper case hexadecimal-encoded representation of the value returned. For example, decimal 27 is hexadecimal 1b and will be represented by the string "1B". Note that each binary byte requires two ASCII characters using this representation. If the name used in the instrumentation is ASCII text, the case of the characters is preserved in the CIM property. # 7.2 Guidelines for SCSI Logical Unit Names The preferred logical unit identifier is returned from a SCSI INQUIRY command in VPD page 83h. **Note:** Legacy systems may lack correlatable names as SCSI standards prior to SAM-3 and SPC-3 did not clearly define logical unit names, however this has been clarified to be logical unit names and recent systems have converged in compliance. The Unit Serial Number VPD page (i.e., SCSI Inquiry VPD Page 80h) returns a serial number, but the SPC-3 standard allows this either be a serial number for a single logical unit or a serial number of the target device. There's no mechanism to discover which approach the device is using. If a client is not coded to understand which products provide per-logical unit or per-target serial numbers, then it should not use the Unit Serial Number VPD page as a logical unit name. The Identification Vital Product Data page (i.e., VPD page 83h) returns a list of identifiers with metadata describing each identifier. The metadata includes: - Code Set (binary versus ASCII) - Association (indicates the SCSI object to which the identifier applies, e.g., for a logical unit, port, or target device) - Type (the naming authority
for identifiers of the structure of information about target ports) - Protocol Identifier (indicates the SCSI transport protocol to which the identifier applies) To identify a logical unit name the Association shall be set to zero. The preferred Types for logical units are 3 (NAA), 2 (EUI), and 8 (SCSI Name). However type 1 (T10) is allowed. If the code set in the inquiry response indicates the identifier is binary, the CIM representation is hexadecimal-encoded. ### 7.3 Guidelines for FC-SB-2 Device Names FC-SB-2 devices and control unit images use the node-element descriptor (NED) name format. NEDs are retrieved within a configuration record retrieved by the READ-CONFIGURATION DATA command. A configuration record contains information describes the internal configuration of the device, where the information retrieved describes the corresponding node elements that are accessed when an I/O operation is performed. NEDs are 32 bytes and contain these fields: - 4 bytes (flags, type, class, reserved) binary - 6 byte "type number" string - 3 byte "model number" string - · 3 byte "manufacturer" string - 2 byte "plant of manufacture"- string - 12 byte sequence number" string - 2 byte tag binary The I/O-Device NED is used for identifying devices. The Token NED is used for identifying control-unit images. The Name property for LogicalDevices representing SB devices is world-wide unique value formed by composing these fields. ### 7.4 Guidelines for Port Names The following is a list of optimal names for ports based on the transport type: - 1) Fibre Channel ports use Port World Wide Names (i.e., FC Name_Identifier) - 2) iSCSI has three types of ports - the combination of IP address and TCP port number serve as the primary correlatable name for iSCSI target ports. Note that this information is stored in two separate properties and hence there is no single correlatable name. - the logical element (iSCSIProrotolEndpoint) that represents the SCSI port The SCSI logical port shall be named with an iSCSI name. - the underlying physical ports (typically Ethernet ports). Ethernet ports names shall use the MAC address. - 3) Parallel SCSI (SPI) and ATA ports typically do not have names, they are identified by a bus-relative address typically set with jumpers. In configurations where these drives are not shared by multiple hosts, the host-relative name acts as the name. - 4) CIM port classes do no include NameFormat; the appropriate format is determined by the transport implied by the port subclass. SCSIProtocolEndpoint represents SCSI protocol running through a port. In many cases, there is one-to-one mapping between SCSIProtocolEndpoint and some subclass of LogicalPort and the name requirements are identical. For iSCSI, there many be multiple Ethernet ports per SCSIProtocolEndpoint instance. The IP address and TCP port number are modeled in IPProtocolEndpoint and TCPProtocolEndpoint. iSCSIProtocolEndpoint Name holds the iSCSI initiator or target name. SBProtocolEndpoint represents SB protocol running through a port. In many cases, there is a one to-one mapping between SBProtocolEndpoint and some subclass of LogicalPort and the name requirements are identical. # 7.5 Guidelines for Storage System Names Each profile has a ComputerSystem or AdminDomain instance that represents the entire system. There are a variety of standard and proprietary names used to name storage systems. Unlike SCSI logical units and ports, there is no particular name format in common use. There are advantages and disadvantages to certain types of names. **IP** addresses have an advantage in human recognition; (e.g., administrators are accustomed to referring to systems by their IP addresses). The downsides are that IP addresses are not necessarily durable (e.g., DHCP) are not necessarily system-wide (e.g., some storage systems have multiple network interfaces), and are not necessarily unique (e.g., NAT allows the same IP address to be used in multiple network zones). **Full Qualified Domain Names** are friendlier than IP addresses and may fix the durability issue of IP addresses (e.g., a host name may be constant even when the IP address changes). But storage systems do not necessarily have access to their network names. Network names are typically handled through a central service such as DNS. When a client application opens a connection to a remote system, it asks the local system to resolve the name to an IP address, the local system redirects the request to the DNS server, the IP address is returned and the client application opens the connection. If the remote system is the storage system, this sequence requires the DNS server to know about the storage system, but not vice-versa. A storage system is only required to know about DNS if software on the storage system acts as a network client using host names. And, like IP addresses, a storage system may have several network interfaces with different FQDNs. **Transport-specific names** are specific to a particular storage transport (e.g., Fibre Channel or iSCSI). There are some good standard names (e.g., FC platform names or iSCSI Network Entity names). The disadvantage of transport-specific names is that they are not able to be consistently used on storage systems supporting multiple transports or in configurations with transport bridges (e.g., a client may have no mechanism to issue FC commands to an FC device behind an FC/iSCSI bridge). **SCSI target names** solve the transport-specific issue. Before the SAM-3 and SPC-3 standards there was not a standard SCSI system name, however with SPC-3, the Identification Vital Product Data page association value 2 was defined for a target name. At this time, the SPC-3 standard is too new to be in common use. Most storage systems include some vendor-specific way to get a target name, but client is not able to use these names without specific knowledge of the vendor-specific interface. At this time, no single storage system name format is in common use. The best approach is for implementations to expose several names, along with information that tells the client how to interpret the name. The OtherIdentifyingInfo and IdentifyingDescriptions array properties of ComputerSystem provide the list of names and interpretations. However, IdentifyingDescriptions is not an enumerated type; and as a result, any string is valid from a CIM perspective. ### 7.6 Standard Formats for Correlatable Names #### 7.6.1 General Correlatable names shall be used and formatted consistently. Storage volume names are more complex that other element names (i.e., the same format may be used in different namespaces). For example several common INQUIRY Vital Product Data page names use the IEEE NAA format and as a result a client is not able to correlate names from different namespaces. #### 7.6.2 Standard Formats for Logical Unit Names For disks and arrays, multiple name formats are in common use. Table 2 specifies standard formats for storage volume names. | Description | Format property and value(valuemap) | Format of Name | |---|--|--| | SCSI VPD
page 83 type 3,
Association 0,
NAA 0101b | NameFormat = NAA(9),
NameNamespace =
VPD83Type3(1) | NAA name with first nibble of 5. Recommended format (8 bytes long) when the ID is directly associated with a hardware component. Formatted as 16 un-separated upper case hex digits (e.g., '21000020372D3C73') | | SCSI VPD
page 83, type
3h,
Association=0,
NAA 0110b | NameFormat = NAA(9),
NameNamespace=
VPD83Type3(1) | NAA name with first nibble of 6. Recommended format (16 bytes long) when IDs are generated dynamically. Formatted as 32 unseparated upper case hex digits. | Table 2 - Standard Formats for StorageVolume Names **Table 2 - Standard Formats for StorageVolume Names** | Description | Format property and value(valuemap) | Format of Name | |---|---|---| | SCSI VPD
page 83, type
3h,
Association=0,
NAA 0010b | NameFormat = NAA(9),
NameNamespace =
VPD83Type3(1) | NAA name with first nibble of 2. Formatted as 16 un-separated upper case hex digits | | SCSI VPD
page 83, type
3h,
Association=0,
NAA 0001b | NameFormat = NAA(9),
NameNamespace =
VPD83Type3(2) | NAA name with first nibble of 1. Formatted as 16 un-separated upper case hex digits | | SCSI VPD
page 83, type
2h,
Association=0 | NameFormat =
EUI64(10),
NameNamespace =
VPD83Type2(3) | Formatted as 16, 24, or 32 un-separated upper case hex digits | | SCSI VPD
page 83, type
1h,
Association=0 | NameFormat =
T10VID(11),
NameNamespace =
VPD83Type1(4) | Formatted as 1 to 252 bytes of ASCII. | | SCSI VPD
page 80, serial
number | NameFormat = Other(1),
NameNamespace =
VPD80(5) | Only if serial number refers to logical units rather than the enclosure. 1-252 ASCII characters | | SB I/O Device
NED | NameFormat=SBDevice (13),
NameNamespace=SB | 64 un-separated upper
case hex digits. The tag subfield contains CU_image+device_address | | SB Token NED | NameFormat=SBToken(
14),
NameNamespace=SB | 64 un-separated upper case hex digits. The tag sub-field contains the CU_image | | SCSI
Concatenation
of
Vendor,Product
, SerialNumber | NameFormat =
SNVM(7),
NameNamespace =
SNVM(7) | A concatenation of three strings representing the vendor name, product name within the vendor namespace, and serial number within the model namespace. These strings come from SCSI standard INQUIRY response data. Strings are delimited with a '+' and spaces are included. Vendor and Product are fixed length: Vendor ID is 8 bytes, Product is 16 bytes. SerialNumber is variable length and may be up to 252 bytes in length. If one of these fields contains a plus sign, it shall be escaped with a backslash ('\+'). The concatenation is done to provide world-wide uniqueness; clients should not parse this name. | **Table 2 - Standard Formats for StorageVolume Names** | Description | Format property and value(valuemap) | Format of Name | |--|---|---| | ATA
Concatenation
of, Model,
SerialNumber | NameFormat=ATA,
NameNamespace=ATA | A concatenation of three strings representing the vendor and model names and serial number within the model namespace. The manufacturer name is not based on a specific standard. The model name and serial number strings come from ATA IDENTIFY DEVICE response data. Strings are delimited with a '+' and spaces are included. The vendor is 20 characters, model is 40 characters, and serial number is 20 characters. If one of these fields contains a plus sign, it shall be escaped with a backslash ('\+'). The concatenation is done to provide uniqueness; clients should not parse this name. Note that ATA standards do not require any interface to return a manufacturer ID; many implementations put a manufacturer name in the model string. | | FC Node WWN | NameFormat =
NodeWWN(8)
NameNamespace =
NodeWWN(6) | 16 un-separated upper case hex digits (e.g., '21000020372D3C73') | Storage volumes may have multiple standard names. A page 83 logical unit identifier shall be placed in the Name property with NameFormat and Namespace set as specified in Table 2. Each additional name should be placed in an element of OtherIdentifyingInfo. The corresponding element in IdentifyingDescriptions shall contain a string from the Values lists from NameFormat and NameNamespace, separated by a semi-colon. For example, an identifier from SCSI VPD page 83 with type 3, association 0, and NAA 0101b - the corresponding entry in IdentifyingDescriptions[] shall be "NAA;VPD83Type3". For other types of devices, the logical unit name shall be in the Name property; NameFormat and NameNamespace are not valid properties of these other device classes. #### 7.6.3 Standard Formats for Port Names Table 3 specifies standard formats for port names. **Table 3 - Standard Formats for Port Names** | An IP
interface's
MAC | Network Port Permanent Address property; no corresponding format property | Six upper case hex bytes, bytes are delimited by colons ':' | |--|--|--| | World Wide
Name (i.e., FC
Name_Identifier
) | FCPort Permanent
Address property; no
corresponding format
property | 16 un-separated upper case hex digits (e.g., '21000020372D3C73') | | | ProtocolEndpoint Name property; ConnectionType = 2 (Fibre Channel) | 16 un-separated upper case hex digits (e.g., '21000020372D3C73') | **Table 3 - Standard Formats for Port Names** | An IP
interface's
MAC | Network Port Permanent Address property; no corresponding format property | Six upper case hex bytes, bytes are delimited by colons ':' | |-----------------------------|--|--| | Parallel SCSI
Name | SPI Port Name property;
no corresponding format
property | String - platform-specific name representing the name. Note that this name is only correlatable relative to the system containing the port. | | | SCSIProtocolEndpoint Name property; ConnectionType = 3 (Parallel SCSI) | String - platform-specific name representing the name. | | iSCSI Port
Name | iSCSIProtocolEndpoint
Name | < iSCSI node name > + ' i, ' + ISID for initiators, < iSCSI node name > + ' t, ' + TPGT for target ports, where < iSCSI node name> may be any of the standard iSCSI name namespaces (e.g., iqn, eui); and includes the namespace prefix. | | SAS Port
Names | SASPort Name property;
no corresponding format
property | SAS Address, 16 un-separated upper case hex digits | | | SCSIProtocolEndpoint Name property; ConnectionType = 8 (SAS) | SAS Address, 16 un-separated upper case hex digits | | ATA Port Name | ATAPort or
SASSATAPort Name
property; no
corresponding format
property | String - platform-specific name representing the name. Note that this name is only correlatable relative to the system containing the port. | | | ATAProtocolEndpoint
Nameproperty | String - platform-specific name representing the name. | Note that iSCSI Network Portals do not have a single correlatable name. The combination of IPProtocolEndpoint IPv4Address or IPv6Address and TCPProtocolEndpoint PortNumber uniquely identifies the network portal, but since these are two properties, they do not form a correlatable name. #### 7.6.4 Standard Formats for Fabric Names A fabric is modeled as AdminDomain. AdminDomain. Name shall hold the fabric name (i.e., WWN) and AdminDomain. NameFormat shall be set to "WWN". AdminDomain. Name shall be formatted as 16 unseparated upper case hex digits. ### 7.6.5 Standard Formats for Storage System Names Due to the limited list of possible formats, the Name property is not considered an essential identifier for SMI-S. SMI-S clients should use OtherIdenfyiingInfo property as described in Table 4. Providers shall supply at least one Durable or Correlatable Name as an element in the IdentifyingDescriptions[] array. The corresponding array elements of OtherIdentifyingInfo[] shall include a value from Table 4 for all elements of IdentifyingDescriptions[]. The elements in the IdentifyingDescriptions array are strings and may contain white space between words. Whenever white-space appears, it shall consist of a single blank; other white-space characters and multiple consecutive blanks shall not be used. At least one of the values in IdentifyingDescriptions[] shall be something other than "SCSI Vendor Specific Name" or "Other Vendor Specific Name". OtherIdentifyingInfo[0] should be assigned the most preferable name by the instrumentation. In all cases, if the name is returned to the instrumentation in binary, the corresponding entry in OtherIdentifyingInfo holds an upper-case hexadecimal-encoded representation of the value returned. Standard names defined in binary are called out in Table 4. Other ComputerSystem properties should be set as follows: **Name** is a CIM key and shall be unique for ComputerSystem instances within the CIM namespace. SMI-S clients should not assume Name is either durable or correlatable. **NameFormat** is an enumerated type describing the Name property. Only a few of the defined values are appropriate for storage systems. Use "IP" if Name is derived from an IP address of Fully Qualified Domain Name. Use "HID" if Name is derived from a hardware ID. Use "OID" if Name is a unique ID determined by some unique ID generating logic. **ElementName** is a friendly name; SMI-S clients should not assume that ElementName is unique, correlatable, or durable since a customer may provide the same info for multiple systems. **Table 4 - Standard Formats for Storage System Names** | IdentifyingDescript ions [x] value | Description | | Format of OtherIdentifyinginfo[x] | |------------------------------------|---|---------------------|--| | T10 Target Name
Type 1 | An identifier from a Identification Vital | Type 1 (T10) | 1 to 252 bytes of ASCII | | T10 Target Name
Type 2 | Product Data page response with Association equal to 2 | Type 2 (EUI) | 16, 24, or 32 un-separated upper case hex digits (e.g., '21000020372D3C73') | | T10 Target Name
Type 3 | | Type 3 (NAA) | 16 or 32 un-separated upper case hex digits (e.g.,
'21000020372D3C73') | | T10 Target Name
Type 8 | | Type 8 (SCSI Names) | iSCSI Names (see 7.8) | | T11 FC-GS-4
Platform Name | A platform name as defined in T11 FC-GS-4 standard | | Up to 508 hex digits (254 bytes) as specified by T11 FC-GS-4 subclause on Platform Name. Format as unseparated as hex digits. Platform Name Format Byte shall be included. | | T11 RNID Name | The sixteen byte Vendor Unique name from the General Topology Discovery format RNID response as defined in T11 FC LS standard. This name format should only be used if the storage system supports RNID General Topology Discovery and provides a meaning system identifier in the Vendor Unique field. | | 32 unseparated hex digits. | Table 4 - Standard Formats for Storage System Names (Continued) | IdentifyingDescript ions [x] value | Description | Format of OtherIdentifyinginfo[x] | |------------------------------------|---|--| | iSCSI Network Entity
Name | An iSCSI Network Entity name. | iSCSI Names (see 7.8) | | lpv4 Address | An IP V4 name | Four decimal bytes delimited with dots ('.') | | Ipv6 Address | An IP V6 name | 'x:x:x:x:x:x:x', where the 'x's are the uppercase hexadecimal values of the eight 16-bit pieces of the address. | | | | Examples: 'FEDC:BA98:7654:3210:FEDC: BA98:7654:3210', '1080:0:0:0:8:800:200C:417A' | | | | Leading zeros in individual fields should not be included and there shall be at least one numeral in every field. (This format is compliant with RFC 4291.) In addition, omitting groups of zeros or using dotted decimal format for an embedded IPv4 address is prohibited. | | Fully Qualified
Domain Name | A fully qualified domain name. | A legal DNS name (fully qualified) consisting of strings delimited by periods. | | Node WWN | The Fibre Channel Node WWN. The provider shall assure that the same Node WWN shall be available through all FC ports within a target device. | 16 un-separated upper case hex digits (e.g., '21000020372D3C73') | | T10 Unit Serial
Number VPD page | SCSI Inquiry VPD page 80 response is a serial number This name may be unique for a specific logical unit or for the target (e.g., storage system). These names are only valid if the instrumentation is certain that all logical units in a system return the same value. Since there is no mechanism to test whether the value is unique per target or per logical unit, this value is not interoperably correlatable and should not be used | 1-252 ASCII characters | **Table 4 - Standard Formats for Storage System Names (Continued)** | IdentifyingDescript
ions [x] value | Description | | Format of OtherIdentifyinginfo[x] | |---------------------------------------|--|--|-----------------------------------| | SCSI Vendor Specific
Name | This is a name accessible through a vendor-specific SCSI command | A client with a priori knowledge may be able to correlate this based on vendor and | unknown | | Other Vendor
Specific Name | This is a name accessible through some non-SCSI vendor-specific interface. | Product IDs. | unknown | ### 7.6.6 Operating System Device Names Each operating system has different conventions for naming devices. Many operating systems provide multiple names for the same device instance. In this version of the specification, operating system device name formats are recommended. The case of names specified by operating system interfaces shall be preserved. Operating system device names are unique within the namespace of the scoping system and are not unique between systems. Table 5 specifies the format for names of tape devices. **Table 5 - Standard Operating System Names for Tape Devices** | Operating
System | Format | Notes | |---------------------|-------------|--| | AIX | /dev/rmtX | X represents a hexadecimal number and may be more than one character | | HP-UX | /dev/rmn/Xm | X represents a hexadecimal number and may be more than one character | | Linux | /dev/stX | X represents one or two lower case alphabetic characters | | Solaris | /dev/rmt/Xn | X represents a hexadecimal number and may be more than one character | | WIndows | \\.\\TAPEX | X represents a decimal number | Some operating systems treat disk partitions as virtual devices; applications operate on partitions as if they were disks. The model requires two classes for each partition, LogicalDisk and GenericDiskPartition. Other operating systems allow applications to operate on the entire disk without partitions. Linux allows both. Table 6 specifies the format for LogicalDisk.Name of disk partitions Table 6 - LogicalDisk.Name for disk partitions | Operating
System | Format | Notes | |---------------------|------------------------------------|---| | Linux | dev/sdXY or /dev/hdXY | where X represents one or two lower case alphabetic characters and Y represents an integer between 1 and 15 | | Solaris | /dev/dsk/cXtXdXsX | X represents one or two lower case alphabetic characters | | WIndows | C: or the file name of mount point | C represents an uppercase letter | | zSeries | CC:SS:DDDD or CC:DDDD | CC represents a Channel Subsystem Identifier, SS is a subchannel set (within the channel subsystem), and DDDD is the device number. SS is optional for subchannel set zero. | Table 7 specifies the format for GernericDiskParition.Name and DeviceId properties for disk partitions Table 7 - GenericDiskParittion.Name for disk partitions | Operating
System | Format | Notes | |---------------------|-----------------------|---| | Linux | sdXY or hdXY | X represents one or two lower case alphabetic characters | | Solaris | /dev/dsk/cXtXdXsX | where X represents one or two lower case alphabetic characters and Y represents an integer between 1 and 15 | | WIndows | Disk #X, Partition #X | X represents a decimal digit | Table 8 specifies the format for LogicalDisk.Name for unpartitioned disks. Table 8 - Standard Operating System Names for Unpartitioned DIsks | Operating
System | Format | Notes | |---------------------|----------------------|--| | AIX | /dev/hdiskX | X represents a hexadecimal number and may be more than one character | | HP-UX | /dev/dsk/cXtYdZ | X, Y, and Z represents hexadecimal number and may be more than one character in length | | Linux | /dev/sdX or /dev/hdX | X represents one or two lower case alphabetic characters | | Windows | \.\PHYSICALDRIVEx | x represents a a decimal number and may be more than one character | ### 7.6.7 Case Sensitivity Names and NameFormats are case sensitive and the cases provided in Table 8 shall be used If not otherwise specified, uppercase should be used. # 7.7 Testing Equality of correlatable Names The implementation shall only compare objects of the same class or parent class. For objects that do not require the use of additional properties, a simple direct comparison is sufficient, providing the format for the mandatory correlatable name as identified in this section or the specific profile is adhered to. For objects that do require the use of additional properties (e.g., NameFormat), the correlatable names of objects representing the same entity should compare positively, negatively, or indicate clearly when a comparison is ambiguous: - If the two objects have the same NameFormat and Name, then they refer to the same resource. - If the two objects have the same NameFormat and different Names, then they refer to different resources. - If the two objects have different NameFormats, whether the Names are the same or different, then it is unknown whether they refer to the same resource. This reduces the possibility that a match is missed by a string equals comparison simply because of an incompatibility of formats rather than non-equality of the data. ### 7.8 iSCSI Names The iSCSI standards define three text formats for names that apply to various iSCSI elements. The three formats are: iSCSI qualified name (iqn), IEEE Extended Unique Identifier (eui), and ANSI T10 NAA. The format is included in the name as a three-letter prefix. The three formats are explained in more detail. The iSCSI qualified name (ign) format is defined in [iSCSI] and contains (in order): - 1) 1 The string "iqn." - 2) 2 A date code specifying the year and month in which the organization registered the domain or sub-domain name used as the naming authority string. - 3) 3 The organizational naming authority string, which consists of a valid, reversed domain or subdomain name. Optionally, a ':', followed by a string of the assigning organization's choosing, which shall make each assigned iSCSI name unique. Figure 13 contains examples of iSCSI-qualified names that may be generated by "EXAMPLE Storage, Inc." Figure 13 - iSCSI Qualified Names (ign) Examples The IEEE Registration Authority provides a service
for assigning globally unique identifiers [EUI]. The EUI-64 format is used to build a global identifier in other network protocols. The format is "eui." followed by an EUI-64 identifier. Figure 14 contains an example. Figure 14 - iSCSI EUI Name Example Type "naa." - Network Address Authority The ANSI T10 FC-FS standard defines a format for constructing globally unique identifiers [FC-FS] referred to as an Network Address Authority (NAA) format. The iSCSI name format is "naa." followed by an NAA identifier (ASCII-encoded hexadecimal digits). Figure 15 contains an example of an iSCSI name with a 64-bit NAA value: type NAA identifier (ASCII-encoded hexadecimal). Figure 15 - iSCSI 64-bit NAA Name Example Figure 16 contains an example of an iSCSI name with a 128-bit NAA value: type NAA identifier (ASCII-encoded hexadecimal). Figure 16 - iSCSI 128-bit NAA Name Example iSCSI names are composed only of displayable characters. iSCSI names allow the use of international character sets but are not case sensitive. No whitespace characters are used in iSCSI names. Correlatable and Durable Names # **Clause 8: Standard Messages** ### 8.1 Overview Management of computer resources is, at times, fraught with exceptional conditions. SMI-S provides the means by which storage related computing resources can be controlled, configured, and, to some extent, monitored. This clause defines standard messages used in reporting the nature of these exceptional condition. Standard Messages are the expression of exceptional conditions in a managed device or application in a standard form. In other words, the indication of this condition as a standard message enables a client application that relies solely on SMI-S for instrumentation to take meaningful action in response. There are two types of SMI-S enabled client applications supported by standard messages. The first type actively configures and controls. It requires the details why these types of operations failed to complete successfully. The second type of client application is a passive observer of state changes from the SMI-S Agent. It is solely an observer. Failures in active management may arise for three reasons. The first type of failure is caused by invalid parameters or an invalid combination of parameters to an extrinsic or intrinsic CIM Operation. The second type of failure may also be caused by reasons other than the way in which the operation was requested of the SMI-S agent. The third type of failure may be result from an exception condition in the WBEM Infrastructure itself. The monitoring client waits for indications of exception condition on the device or application it is monitoring. A CIM Operations may be successful and return a response or they may be unnecessarily and return an error. The error is the combination of a standard CIM status code, like CIM_ERR_FAILED, a description, and Error instance. This clause uses the term *Error* for the Error instance returned. A particular combination of state changes within the computer resource may arise from a single condition. The profile, subprofile, or package designers may choose to indicate the condition directly. This indication can be sent to the client, asynchronously, as a AlertIndication instance. This clause uses the term *Alert* for the AlertIndication instance. The combination of the standard message and the enclosing vehicle is called a standard event. See Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4 Clause 25:, "Health Package" for further details on this mechanism. The Errors and Alerts produced need to be interoperability interpreted by the client application that receives them. Without such interoperability, the client developer would behavior details of the computer resource in question from other sources than SMI-S. This situation is undesirable for functionality specified in SMI-S because it means that the functionality specification is incomplete. Some types of exceptional conditions may be both the Error resulting from some CIM Operation and an Alert, like 'system is shutting down'. The same standard message should be conveyed either an Error or an Alert such that both types of clients can interpret the indication in the same manner. Additionally, these types of exceptional conditions may be indicated from a read or write CIM Operation. # 8.2 Required Characteristics of Standard Messages ### 8.2.1 Declaring and Producing Standard Messages Standard Messages are defined in registries. Each registry is the collection of standard messages defined by a particular working group. In the case of SNIA, the registry is defined by particular working groups. Each working group works on a part or domain of the storage management problem. Each message as a unique id within the content of an owning organization, SNIA in this case, and working group. Each message in the registry shall define values for the five message properties, OwningEntity, MessageID, Message, MessageArguments, and MessageFormatString. Since registries are a collection of messages and each registry is defined within the context of a owning entity, the owning entity is implied. The message, as conveyed in an Error or Alert, and received by a client, shall contain the OwningEntity, MessageID, Message, and MessageArguments. See *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* 25.1.3, "Standard Events" in the Health Package. When the Message is produced, the variables defined in the MessageFormatString are replaced with the values from the MessageArguments array in the order in which the variables are defined. The MessageArguments array is an array of strings. So the implementation shall coerce the value in its native CIM data type to a string before adding that value to the MessageArguments. A client may coerce that value back to its native data type using the string coercion rules for each CIM data type. An argument present in the MessageArguments array may itself be an array. The coercion of this array argument to a string element in the MessageArgument shall result in each value of the array argument to be delimited in the resulting string by a comma. If a value within the array argument contains a whitespace, then the value of that element shall appear in the MessageArgument element contained within matching double quotes in the resulting common delimited list of array argument elements. The resulting comma delimited list of array arguments elements shall contain no whitespace characters other that those that are part of a element value. Neither the Message nor the MessageArguments shall contain non-printable characters other than the whitespace. The Message shall be localized in the language requested by the client. See the CIM Operations specification for details on internationalization with WBEM. A Standard Message may be conveyed with an Error or an Alert. The omission of specific values for the other properties in the Error or Alert instance does not imply that this message may not be conveyed in the omitted form. Table 9, "Example Standard Message Declaration" is an example of a Standard Message declaration. Message PropertyValueOwningEntitySNIAMessageIDFC1MessageFormatString"Zone database changed for <Fabric Identity Type> <WWN>MessageArgumentsFabric Identity Type: Defines the type of fabric entity names by the following WWN. Possible values are 'fabric' and 'switch'.WWN: World Wide name identifier. The required form of the WWN is defined by this regular expression, "^[0123456789ABCDEF]{16}\$ **Table 9 - Example Standard Message Declaration** This Standard Message is most likely to be tied to an alert indication - one client subscribing for notications when a different client is changing the fabric. Table 10, "Example Standard Message Values" is an example of Standard Message values. Table 10 - Example Standard Message Values | Message Property | Value | |------------------|-------| | OwningEntity | SNIA | | MessageID | FC1 | Table 10 - Example Standard Message Values | Message Property | Value | |------------------|---| | Message | Zone database changed for switch 100000051e90007d | | MessageArguments | "switch" "100000051e90007d" | ### **EXPERIMENTAL** # 8.3 Registry for Generic Messages Generic Messages are associated with WBEM generic operations and most likely occur as instances of CIM_Error. #### 8.3.1 Messages for Generic Operations SMI-S uses the DMTF WBEM Operations Message Registry for Standard Messages related to generic operations. These are typically manifest as instances of CIM_Error. #### 8.3.1.1 Message: Access denied Owning Entity: DMTF Message ID: WIPG201 Message Format String: Access denied. Table 11 describes the error properties. **Table 11 - Error Properties for Access denied** | Property | Value | Description | |------------------------|---|-------------------------| | CIMSTATUSCODE | 2 (CIM_ERR_ACCESS_DENIED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall be NULL. | Existence is prohibited | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.2 Message: Operation not supported by WBEM service infrastructure Owning Entity: DMTF Message ID: WIPG203 Message Format String: Operation " <GenericOperationName> " is not supported by the WBEM service infrastructure. <ClassMethodName> <ContextParameterValue> Indicates that the operation (not including method invocation) failed because it is not supported by the WBEM service infrastructure (e.g. CIMOM). Note that this does not include the case where the operation is not supported by the CIM class implementation (e.g. CIM provider) which is covered by message WIPG0228, the case where method invocation is not supported by the WBEM service infrastructure (e.g. CIMOM) which is covered by message WIPG0229, and the case where a method is not supported by
the CIM class implementation (e.g. CIM provider) which is covered by message WIPG0219. Table 12 describes the message arguments. **Table 12 - Operation not supported by WBEM service infrastructure Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 13 describes the error properties. Table 13 - Error Properties for Operation not supported by WBEM service infrastructure | Property | Value | Description | |---------------|---------------------------|-----------------------| | CIMSTATUSCODE | 7 (CIM_ERR_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 13 - Error Properties for Operation not supported by WBEM service infrastructure | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.3 Message: Namespace not found Owning Entity: DMTF Message ID: WIPG204 Message Format String: CIM namespace " <NamespaceName> " not found. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM namespace was not found. Table 14 describes the message arguments. **Table 14 - Namespace not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 14 - Namespace not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 15 describes the error properties. **Table 15 - Error Properties for Namespace not found** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 3
(CIM_ERR_INVALID_NAMESPACE) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### Standard Messages # 8.3.1.4 Message: Missing input parameter Owning Entity: DMTF Message ID: WIPG205 Message Format String: Required input parameter " <InputParameterName> " was missing. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation or method failed because a required input parameter was missing. Table 16 describes the message arguments. **Table 16 - Missing input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InputParameterName | string | Name of the input parameter of the generic operation as defined in DSP0223, or of the method as defined in the schema. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 16 - Missing input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 17 describes the error properties. **Table 17 - Error Properties for Missing input parameter** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | |
ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.5 Message: Duplicate input parameter Owning Entity: DMTF Message ID: WIPG206 Message Format String: Input parameter " <InputParameterName> " has been supplied more than once. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation or method failed because an input parameter has been supplied more than once. Typically, the name of the input parameter is valid, i.e. validity is verified before duplication. Table 18 describes the message arguments. **Table 18 - Duplicate input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InputParameterName | string | Name of the input parameter of
the generic operation as defined
in DSP0223, or of the method as
defined in the schema. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 18 - Duplicate input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 19 describes the error properties. **Table 19 - Error Properties for Duplicate input parameter** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### Standard Messages # 8.3.1.6 Message: Unknown input parameter Owning Entity: DMTF Message ID: WIPG207 Message Format String: Unknown input parameter " < InputParameterName > " has been supplied. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation or method failed because an input parameter with an unknown name has been supplied. Table 20 describes the message arguments. **Table 20 - Unknown input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InputParameterName | string | Name of the input parameter of the generic operation as defined in DSP0223, or of the method as defined in the schema. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 20 - Unknown input parameter Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 21 describes the error properties. Table 21 - Error Properties for Unknown input parameter | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.7 Message: Incompatible input parameter type Owning Entity: DMTF Message ID: WIPG208 Message Format String: Input parameter " <InputParameterName> " supplied as type " <ParameterType> " was not compatible with the declared type " <ParameterType> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation or method failed because an input parameter value has been supplied with a type that was not compatible with the type declared for that parameter. Table 22 describes the message arguments. **Table 22 - Incompatible input parameter type Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InputParameterName | string | Name of the input parameter of the generic operation as defined in DSP0223, or of the method as defined in the schema. | | | ParameterType | string | Type of the parameter value supplied. The data type names are defined by WBEM protocol mapping specifications. | | | ParameterType | string | Type of the parameter value declared. The data type names are defined by WBEM protocol mapping specifications. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 22 - Incompatible input parameter type Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------
---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 23 describes the error properties. Table 23 - Error Properties for Incompatible input parameter type | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.8 Message: Instance not found Owning Entity: DMTF Message ID: WIPG213 Message Format String: CIM instance " <InstanceModelPath> " does not exist in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM instance does not exist in a CIM namespace. The namespace typically does exist. Table 24 describes the message arguments. **Table 24 - Instance not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InstanceModelPath | string | Model path of the CIM instance.
The model path shall be
represented as a WBEM URI (as
defined in DSP0207) that consists
of the class name and key values. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 24 - Instance not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 25 describes the error properties. Table 25 - Error Properties for Instance not found | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 6 (CIM_ERR_NOT_FOUND) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.9 Message: Class not found Owning Entity: DMTF Message ID: WIPG214 Message Format String: CIM class " <ClassName> " does not exist in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM class does not exist in a CIM namespace. The namespace typically does exist. Table 26 describes the message arguments. **Table 26 - Class not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 26 - Class not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 27 describes the error properties. Table 27 - Error Properties for Class not found | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 5 (CIM_ERR_INVALID_CLASS) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.10 Message: Qualifier type not found Owning Entity: DMTF Message ID:
WIPG215 Message Format String: CIM qualifier type " <QualifierName> " does not exist in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM qualifier type (qualifier declaration) does not exist in a CIM namespace. The namespace typically does exist. Table 28 describes the message arguments. **Table 28 - Qualifier type not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | QualifierName | string | Name of the CIM qualifier. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 28 - Qualifier type not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 29 describes the error properties. Table 29 - Error Properties for Qualifier type not found | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 6 (CIM_ERR_NOT_FOUND) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.11 Message: Instance already exists Owning Entity: DMTF Message ID: WIPG216 Message Format String: CIM instance " <InstanceModelPath> " already exists in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM instance already exists in a CIM namespace. Table 30 describes the message arguments. **Table 30 - Instance already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InstanceModelPath | string | Model path of the CIM instance.
The model path shall be
represented as a WBEM URI (as
defined in DSP0207) that consists
of the class name and key values. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 30 - Instance already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 31 describes the error properties. Table 31 - Error Properties for Instance already exists | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 11 (CIM_ERR_ALREADY_EXISTS) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.12 Message: Class already exists Owning Entity: DMTF Message ID: WIPG217 Message Format String: CIM class " <ClassName> " already exists in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM class already exists in a CIM namespace. Table 32 describes the message arguments. **Table 32 - Class already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 32 - Class already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic
element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 33 describes the error properties. **Table 33 - Error Properties for Class already exists** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 11 (CIM_ERR_ALREADY_EXISTS) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.13 Message: No such method Owning Entity: DMTF Message ID: WIPG218 Message Format String: CIM method " <MethodName> " is not exposed by class " <ClassName> ". <GenericOperationName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM method is not exposed by a CIM class. This is based upon comparing the method name, without taking into account the parameters or return type. Table 34 describes the message arguments. **Table 34 - No such method Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | MethodName | string | Name of the CIM method. | | | ClassName | string | Name of the CIM class. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 35 describes the error properties. Table 35 - Error Properties for No such method | Property | Value | Description | |---------------|--------------------------------------|-----------------------| | CIMSTATUSCODE | 17
(CIM_ERR_METHOD_NOT_FOUND
) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 35 - Error Properties for No such method | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.14 Message: Method not supported by class implementation Owning Entity: DMTF Message ID: WIPG219 Message Format String: CIM method " < MethodName > " is not supported by the implementation of class " <ClassName> ". <GenericOperationName> <ContextParameterValue> Indicates that the method invocation operation failed because a CIM method is not supported by a CIM class implementation (e.g. CIM provider). Typically, the method is exposed by the class and the WBEM service infrastructure (e.g. CIMOM) supports method invocation. Note that this does not include the case where CIM method invocation is not supported by the WBEM service infrastructure (e.g. CIMOM) which is covered by message WIPG0229, and the case where an operation other than method invocation is not supported by the CIM class implementation (e.g. CIM provider) which is covered by message WIPG0228. Table 36 describes the message arguments. Table 36 - Method not supported by class implementation Message Arguments | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------------------|-----------------| | MethodName | string | Name of the CIM method. | | | ClassName | string | Name of the CIM class. | | Table 36 - Method not supported by class implementation Message Arguments | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 37 describes the error properties. Table 37 - Error Properties for Method not supported by class implementation | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 16
(CIM_ERR_METHOD_NOT_AVAILA
BLE) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | 75 # 8.3.1.15 Message: No such property Owning Entity: DMTF Message ID: WIPG220 Message Format String: CIM class " <ClassName> " does not expose a property named " <PropertyName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM property is not exposed by a CIM class. This is based upon comparing the property name, without taking into account the property type. Note that CIM references are special properties. Table 38 describes the message arguments. **Table 38 - No such property Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | PropertyName | string | Name of the CIM property. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | |
ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 39 describes the error properties. **Table 39 - Error Properties for No such property** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 12
(CIM_ERR_NO_SUCH_PROPERTY) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.16 Message: Unknown query language Owning Entity: DMTF Message ID: WIPG221 Message Format String: Query language " <QueryLanguage> " is unknown. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a query language is unknown. Note that it may or may not be a valid query language. Table 40 describes the message arguments. **Table 40 - Unknown query language Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|---------------------------------------| | QueryLanguage | string | Name of the query language. | "DMTF:CQL" DMTF CIM Query
Language | | | | | Any other query language name | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 40 - Unknown query language Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 41 describes the error properties. Table 41 - Error Properties for Unknown query language | Property | Value | Description | |---------------|--|-----------------------| | CIMSTATUSCODE | 14
(CIM_ERR_QUERY_LANGUAGE_N
OT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 41 - Error Properties for Unknown query language | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.17 Message: Query language feature not supported Owning Entity: DMTF Message ID: WIPG222 Message Format String: Feature " <QueryFeature> " of query language " <QueryLanguage> " required by the query " <Query> " is not supported. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a query requires support for query language features that are not supported. Table 42 describes the message arguments. Table 42 - Query language feature not supported Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|---------------------------------------| | QueryFeature | string | Name of the query language feature. For query language DMTF:CQL, the feature shall be indicated using the strings defined by the Values qualifier of property CIM_QueryCapabilities.CQLFeat ures. | | | QueryLanguage | string | Name of the query language. | "DMTF:CQL" DMTF CIM Query
Language | | | | | Any other query language name | | Query | string | Query string. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | 79 **Table 42 - Query language feature not supported Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 43 describes the error properties. Table 43 - Error Properties for Query language feature not supported | Property | Value | Description | |---------------|---|-----------------------| | CIMSTATUSCODE | 29
(CIM_ERR_QUERY_FEATURE_NOT
_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 43 - Error Properties for Query language feature not supported | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.18 Message: Invalid query Owning Entity: DMTF Message ID: WIPG223 Message Format String: Query " <Query> " is not a valid query in query language " <QueryLanguage> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the
operation (including method invocation) failed because a query is invalid in a query language. Table 44 describes the message arguments. **Table 44 - Invalid query Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|---------------------------------------| | Query | string | Query string. | | | QueryLanguage | string | Name of the query language. | "DMTF:CQL" DMTF CIM Query
Language | | | | | Any other query language name | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 44 - Invalid query Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 45 describes the error properties. Table 45 - Error Properties for Invalid query | Property | Value | Description | | |------------------------|---|-----------------------|--| | CIMSTATUSCODE | 15 (CIM_ERR_INVALID_QUERY) | Existence is required | | | ERROR_TYPE | 4 (Software Error) | Existence is required | | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | | PERCEIVED_SEVE
RITY | | | | ### 8.3.1.19 Message: Class has subclasses Owning Entity: DMTF Message ID: WIPG224 Message Format String: CIM class " <ClassName> " has one or more subclasses in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM class has one or more subclasses. Table 46 describes the message arguments. **Table 46 - Class has subclasses Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 46 - Class has subclasses Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 47 describes the error properties. Table 47 - Error Properties for Class has subclasses | Property | Value | Description | |---------------|---------------------------------------|-----------------------| | CIMSTATUSCODE | 8
(CIM_ERR_CLASS_HAS_CHILDRE
N) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 47 - Error Properties for Class has subclasses | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.20 Message: Class has instances Owning Entity: DMTF Message ID: WIPG225 Message Format String: CIM class " <ClassName> " has one or more instances in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM class has one or more CIM instances. Table 48 describes the message arguments. **Table 48 - Class has instances Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 48 - Class has instances Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be
represented as a WBEM URI, as defined in DSP0207. | | Table 49 describes the error properties. **Table 49 - Error Properties for Class has instances** | Property | Value | Description | |---------------|--|-----------------------| | CIMSTATUSCODE | 9
(CIM_ERR_CLASS_HAS_INSTANC
ES) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | **Table 49 - Error Properties for Class has instances** | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.21 Message: Superclass not found Owning Entity: DMTF Message ID: WIPG226 Message Format String: The superclass " <SuperclassName> " of CIM class " <ClassName> " does not exist in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because the superclass of a CIM class does not exist in the CIM namespace of the class. The namespace and the subject class typically do exist. Table 50 describes the message arguments. **Table 50 - Superclass not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | SuperclassName | string | Name of the superclass of the CIM class. | | | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 50 - Superclass not found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 51 describes the error properties. Table 51 - Error Properties for Superclass not found | Property | Value | Description | |---------------|--|-----------------------| | CIMSTATUSCODE | 10
(CIM_ERR_INVALID_SUPERCLASS
) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 51 - Error Properties for Superclass not found | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.22 Message: Other failure Owning Entity: DMTF Message ID: WIPG227 Message Format String: Operation failed. Additional information: " < AdditionalInformation > ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because an error occured with an operation or method other than those defined in this registry. Occurences of this message typically indicate a need to extend this registry by more specific messages. Table 52 describes the message arguments. **Table 52 - Other failure Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | AdditionalInformation | string | Additional text supplied by the WBEM service. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 52 - Other failure Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 53 describes the error properties. **Table 53 - Error Properties for Other failure** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.23 Message: Operation not supported by class implementation Owning Entity: DMTF Message ID: WIPG228 Message Format String: Operation " <GenericOperationName> " is not supported by the implementation of CIM class " <ClassName> ". <ContextParameterValue> Indicates that the operation (not including method invocation) failed because it is not supported by the CIM class implementation (e.g. CIM provider). Typically, the operation is supported by the WBEM service infrastructure (e.g. CIMOM). Note that this does not include the case where the operation is not supported by the WBEM service infrastructure (e.g. CIMOM) which is covered by message WIPG0203, and the case where a method is not supported by the CIM class implementation (e.g. CIM provider) which is covered by message WIPG0219. Table 54 describes the message arguments. Table 54 - Operation not supported by class implementation Message
Arguments | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. | | | ClassName | string | Name of the CIM class. | | | ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 55 describes the error properties. Table 55 - Error Properties for Operation not supported by class implementation | Property | Value | Description | |---------------|---------------------------|-----------------------| | CIMSTATUSCODE | 7 (CIM_ERR_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 55 - Error Properties for Operation not supported by class implementation | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.24 Message: Method invocation not supported by WBEM service infrastructure Owning Entity: DMTF Message ID: WIPG229 Message Format String: CIM method invocation is not supported by the WBEM service infrastructure. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the method invocation operation failed because CIM method invocation is not supported by the WBEM service infrastructure (e.g. CIMOM). Note that this does not include the case where a CIM method is not supported by the CIM class implementation (e.g. CIM provider) which is covered by message WIPG0219. Table 56 describes the message arguments. Table 56 - Method invocation not supported by WBEM service infrastructure Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 56 - Method invocation not supported by WBEM service infrastructure Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 57 describes the error properties. Table 57 - Error Properties for Method invocation not supported by WBEM service infrastructure | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 7 (CIM_ERR_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.25 Message: Class has referencing association classes Owning Entity: DMTF Message ID: WIPG230 Message Format String: CIM class " <ClassName> " has association classes defined that reference that class in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM class has association classes defined in the same CIM namespace that reference the class. Table 58 describes the message arguments. **Table 58 - Class has referencing association classes Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 58 - Class has referencing association classes Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 59 describes the error properties. Table 59 - Error Properties for Class has referencing association classes | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of
the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.26 Message: Incompatible class modification Owning Entity: DMTF Message ID: WIPG231 Message Format String: CIM class " <ClassName> " in CIM namespace " <NamespaceName> " cannot be modified because the requested modification is incompatible. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because the modification attempted for a CIM class is incompatible. The reason for the incompatibility is not detailed in this message, and includes incompatibility with the prior definition of the class, incompatibility with definitions in subclasses, incompatibility with existing instances of the class. For a definition of compatible changes to classes refer to DSP0004. Table 60 describes the message arguments. **Table 60 - Incompatible class modification Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 60 - Incompatible class modification Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 61 describes the error properties. Table 61 - Error Properties for Incompatible class modification | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.27 Message: Class or its subclasses have instances Owning Entity: DMTF Message ID: WIPG232 Message Format String: CIM class " <ClassName> " or one of its subclasses have CIM instances in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because CIM instances exist with a creation class that is the class being targeted, or one of its subclasses, in the same CIM namespace. Table 62 describes the message arguments. Table 62 - Class or its subclasses have instances Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 62 - Class or its subclasses have instances Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 63 describes the error properties. Table 63 - Error Properties for Class or its subclasses have instances | Property | Value | Description | |---------------|--|-----------------------| | CIMSTATUSCODE | 9
(CIM_ERR_CLASS_HAS_INSTANC
ES) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 63 - Error Properties for Class or its subclasses have instances | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.28 Message: Qualifier type is used Owning Entity: DMTF Message ID: WIPG233 Message Format String: CIM qualifier type " <QualifierName> " is used as a qualifier on a CIM element in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM qualifier type is used (i.e. specified) as a qualifier on a CIM element in a CIM namespace. The operation typically would be a deletion of the qualifier type. Table 64 describes the message arguments. **Table 64 - Qualifier type is used Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | QualifierName | string | Name of the CIM qualifier. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 64 - Qualifier type is used Message Arguments | Message Argument | Data
Type | Description | Possible Values |
-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 65 describes the error properties. Table 65 - Error Properties for Qualifier type is used | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.29 Message: Incompatible modification of qualifier type Owning Entity: DMTF Message ID: WIPG234 Message Format String: CIM qualifier type " <QualifierName> " cannot be modified in an incompatible way. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because the modification attempted for the CIM qualifier type is incompatible as per the definition of compatible modifications in DSP0004. The operation typically would be a modification of the qualifier type. Table 66 describes the message arguments. **Table 66 - Incompatible modification of qualifier type Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | QualifierName | string | Name of the CIM qualifier. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 67 describes the error properties. Table 67 - Error Properties for Incompatible modification of qualifier type | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.30 Message: Continuation on error not supported Owning Entity: DMTF Message ID: WIPG235 Message Format String: Continuation on error is not supported. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because continuation on error is not supported. Table 68 describes the message arguments. **Table 68 - Continuation on error not supported Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 69 describes the error properties. Table 69 - Error Properties for Continuation on error not supported | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 26
(CIM_ERR_CONTINUATION_ON_E
RROR_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.31 Message: WBEM service is shutting down Owning Entity: DMTF Message ID: WIPG236 Message Format String: The WBEM service is shutting down. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because the WBEM service is shutting down. Table 70 describes the message arguments. **Table 70 - WBEM service is shutting down Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be
produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 71 describes the error properties. Table 71 - Error Properties for WBEM service is shutting down | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 28
(CIM_ERR_SERVER_IS_SHUTTING
_DOWN) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.32 Message: Filter queries not supported by WBEM service infrastructure Owning Entity: DMTF Message ID: WIPG237 Message Format String: The WBEM service infrastructure does not support filter queries. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because using a filter query in the enumeration is not supported by the WBEM service infrastructure. Table 72 describes the message arguments. Table 72 - Filter queries not supported by WBEM service infrastructure Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 73 describes the error properties. Table 73 - Error Properties for Filter queries not supported by WBEM service infrastructure | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 25
(CIM_ERR_FILTERED_ENUMERATI
ON_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.33 Message: Pull operation has been abandoned due to enumeration context closure Owning Entity: DMTF Message ID: WIPG238 Message Format String: Pull operation " <GenericOperationName> " has been abandoned because its enumeration context was closed. <ClassMethodName> <ContextParameterValue> Indicates that the Pull operation has been abandoned. Typically, this is due to a successful concurrent execution of a CloseEnumeration operation on the enumeration context. Table 74 describes the message arguments. Table 74 - Pull operation has been abandoned due to enumeration context closure Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 75 describes the error properties. Table 75 - Error Properties for Pull operation has been abandoned due to enumeration context closure | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 23
(CIM_ERR_PULL_HAS_BEEN_ABA
NDONED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.34 Message: Pull operation cannot be abandoned Owning Entity: DMTF Message ID: WIPG239 Message Format String: Pull operation " <GenericOperationName> " cannot be abandoned. <ContextParameterValue> Indicates that the attempt to abandon a Pull operation using the CloseEnumeration operation has failed. The Pull operation proceeds normally. A possible reason is that the WBEM service does not currently have control over the Pull operation. Future retries of the attempt to abandon the Pull operation may or may not succeed. Table 76 describes the message arguments. **Table 76 - Pull operation cannot be abandoned Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced.
The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ContextParameterVal | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 77 describes the error properties. Table 77 - Error Properties for Pull operation cannot be abandoned | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 24
(CIM_ERR_PULL_CANNOT_BE_AB
ANDONED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.35 Message: WBEM service limits are exceeded Owning Entity: DMTF Message ID: WIPG240 Message Format String: The WBEM service has exceeded its limits. <GenericOperationName> <ClassMethodName> <ContextParameterValue> indicates that the operation (including method invocation) failed because the WBEM service has exceeded its limits. Examples for such limits are number of concurrent connections, memory usage, number of instances to be processed or to be returned. Table 78 describes the message arguments. Table 78 - WBEM service limits are exceeded Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 79 describes the error properties. Table 79 - Error Properties for WBEM service limits are exceeded | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 27
(CIM_ERR_SERVER_LIMITS_EXCE
EDED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | # 8.3.1.36 Message: Invalid enumeration context Owning Entity: DMTF Message ID: WIPG241 Message Format String: Invalid enumeration context. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because the specified enumeration context value is invalid. Note that the WBEM service cannot determine whether the enumeration context value represents an enumeration session that had been open at some point and is now closed. Table 80 describes the message arguments. **Table 80 - Invalid enumeration context Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 81 describes the error properties. **Table 81 - Error Properties for Invalid enumeration context** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 21
(CIM_ERR_INVALID_ENUMERATIO
N_CONTEXT) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.37 Message: Invalid timeout Owning Entity: DMTF Message ID: WIPG242 Message Format String: An operation timeout of <TimeoutValue> seconds is invalid. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because the specified timeout is invalid. Table 82 describes the message arguments. **Table 82 - Invalid timeout Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | TimeoutValue | string | The timeout value that was specified, in a unit of seconds. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 82 - Invalid timeout Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose
execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 83 describes the error properties. Table 83 - Error Properties for Invalid timeout | Property | Value | Description | |---------------|---|-----------------------| | CIMSTATUSCODE | 22
(CIM_ERR_INVALID_OPERATION_T
IMEOUT) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 83 - Error Properties for Invalid timeout | Property | Value | Description | |------------------------|---|-----------------------| | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.38 Message: Timeout Owning Entity: DMTF Message ID: WIPG243 Message Format String: The operation or method has timed out. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because it has timed out. Table 84 describes the message arguments. **Table 84 - Timeout Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 84 - Timeout Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 85 describes the error properties. **Table 85 - Error Properties for Timeout** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.39 Message: Filter queries not supported by class implementation Owning Entity: DMTF Message ID: WIPG244 Message Format String: The implementation of CIM class " <ClassName> " does not support filter queries. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation failed because using filter queries in the enumeration is not supported by the CIM class implementation (e.g. CIM provider). Table 86 describes the message arguments. Table 86 - Filter queries not supported by class implementation Message Arguments | Message Argument | Data
Type | Description | Possible Values | |---------------------------|--------------|---|-----------------| | ClassName | string | Name of the CIM class. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterVal
ue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 87 describes the error properties. Table 87 - Error Properties for Filter queries not supported by class implementation | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 25
(CIM_ERR_FILTERED_ENUMERATI
ON_NOT_SUPPORTED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ### 8.3.1.40 Message: Qualifier type inconsistent with DSP0004 Owning Entity: DMTF Message ID: WIPG245 Message Format String: CIM qualifier type " <QualifierName> " cannot be modified or created because its requested definition would be inconsistent with its DSP0004 definition. <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because the resulting CIM qualifier type would be inconsistent with the definition of that qualifier type in DSP0004. The operation typically would be a modification or creation of the qualifier type. Table 88 describes the message arguments. Table 88 - Qualifier type inconsistent with DSP0004 Message Arguments | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | QualifierName | string | Name of the qualifier. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message
to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 88 - Qualifier type inconsistent with DSP0004 Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 89 describes the error properties. Table 89 - Error Properties for Qualifier type inconsistent with DSP0004 | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.41 Message: Instance cannot be deleted due to referencing association Owning Entity: DMTF Message ID: WIPG246 Message Format String: CIM instance " <InstanceModelPath> " in CIM namespace " <NamespaceName> " cannot be deleted because it is referenced by association instance " <AssociationInstanceModelPath> " in CIM namespace " <AssociationNamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM instance cannot be deleted due to an association instance that references the instance to be deleted, and this situation was decided to be handled by rejecting the deletion request. Table 90 describes the message arguments. Table 90 - Instance cannot be deleted due to referencing association Message Arguments | Message Argument | Data
Type | Description | Possible Values | |----------------------------------|--------------|---|-----------------| | InstanceModelPath | string | Model path of the CIM instance. The model path shall be represented as a WBEM URI (as defined in DSP0207) that consists of the class name and key values. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | AssociationInstance
ModelPath | string | Model path of the CIM association instance. The model path shall be represented as a WBEM URI (as defined in DSP0207) that consists of the class name and key values. | | | AssociationNamespa ceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 90 - Instance cannot be deleted due to referencing association Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 91 describes the error properties. Table 91 - Error Properties for Instance cannot be deleted due to referencing association | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.42 Message: Instance cannot be deleted due to multiplicity underflow Owning Entity: DMTF Message ID: WIPG247 Message Format String: CIM instance " <InstanceModelPath> " in CIM namespace " <NamespaceName> " cannot be deleted because its deletion would under-run the minimum multiplicity required by associated instance " <AssociatedInstanceModelPath> " in CIM namespace " <AssociatedNamespaceName> " that is associated via association class " <AssociationClassName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM instance cannot be deleted due to an associated instance that requires a minimum multiplicity (as defined by the Min qualifier or constrained by management profiles) on the instance to be deleted that would be under-run by the deletion, and this situation was decided to be handled by rejecting the deletion request. Table 92 describes the message arguments. Table 92 - Instance cannot be deleted due to multiplicity underflow Message Arguments | Message Argument | Data
Type | Description | Possible Values | |------------------------------|--------------|---|-----------------| | InstanceModelPath | string | Model path of the CIM instance. The model path shall be represented as a WBEM URI (as defined in DSP0207) that consists of the class name and key values. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | AssociatedInstanceM odelPath | string | Model path of the CIM associated instance. The model path shall be represented as a WBEM URI (as defined in DSP0207) that consists of the class name and key values. | | | AssociatedNamespa ceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | AssociationClassNa
me | string | Name of the association class that associates the instance to be deleted with the instance that has the minimum multiplicity requirement. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | Table 92 - Instance cannot be deleted due to multiplicity underflow Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------
---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 93 describes the error properties. Table 93 - Error Properties for Instance cannot be deleted due to multiplicity underflow | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.3.1.43 Message: Qualifier type already exists Owning Entity: DMTF Message ID: WIPG248 Message Format String: CIM qualifier type " <QualifierName> " already exists in CIM namespace " <NamespaceName> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation (including method invocation) failed because a CIM qualifier type already exists in a CIM namespace. Table 94 describes the message arguments. **Table 94 - Qualifier type already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | QualifierName | string | Name of the qualifier type. | | | NamespaceName | string | Name of the CIM namespace. For example, "interop" or "root/cimv2". | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 94 - Qualifier type already exists Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 95 describes the error properties. Table 95 - Error Properties for Qualifier type already exists | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 11 (CIM_ERR_ALREADY_EXISTS) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | #### 8.3.1.44 Message: Invalid input parameter value Owning Entity: DMTF Message ID: WIPG249 Message Format String: Input parameter " <InputParameterName> " has been supplied with the invalid value " <ParameterValue> ". Additional information: " <AdditionalInformation> ". <GenericOperationName> <ClassMethodName> <ContextParameterValue> Indicates that the operation or method failed because an input parameter value has been supplied that was considered invalid for some reason. This message should be used only if there is no more specific message available. For example, an invalid instance path in an input parameter should be handled using WIPG0213 (Instance not found). Table 96 describes the message arguments. **Table 96 - Invalid input parameter value Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|---|-----------------| | InputParameterName | string | Name of the input parameter of the generic operation as defined in DSP0223, or of the method as defined in the schema. | | | ParameterValue | string | String formatted value of the parameter. The string format for all data types is defined by WBEM protocol mapping specifications. | | | AdditionalInformation | string | Additional text supplied by the WBEM service. | | | GenericOperationNa
me | string | Identifies the operation whose execution caused the message to be produced. The value of the dynamic element shall be the name of the generic operation as defined in DSP0223. This also applies to method invocation operations. | | **Table 96 - Invalid input parameter value Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|---|-----------------| | ClassMethodName | string | Identifies the method whose execution, if any, caused the message to be produced. If a method was invoked, the value of the dynamic element shall be the name of the method and the name of the class defining the method in the format (using ABNF): className "." methodName. Otherwise, the value of the dynamic element shall be the empty string. | | | ContextParameterValue | string | Provides the invocation context for the operation or method whose execution caused the message to be produced. The value of the dynamic element shall be the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | | Table 97 describes the error properties. Table 97 - Error Properties for Invalid input parameter value | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is
required | | ERROR_SOURCE | The ErrorSource property shall contain the value of the parameter of the generic operation that is designated as context parameter, as defined in DSP0223. This also applies to method invocation operations. If the context parameter is an object path, it shall be represented as a WBEM URI, as defined in DSP0207. | Existence is required | | PERCEIVED_SEVE
RITY | | | ## 8.4 Registries for Profile-Related Standard Messages Profile-Related Standard Messages are related to specific profiles. Use of these messages is only valid if they are specified in SMI-S profiles either as CIM_Error for methods or as alert indications in SMI-S profiles. #### 8.4.1 Common Profile-Related Messages # 8.4.1.1 Message: Authorization Failure Owning Entity: SNIA Message ID: MP1 Message Format String: <Type of Operation> Access is Denied Table 98 describes the message arguments. **Table 98 - Authorization Failure Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|------------------------------|-----------------| | Type of Operation | string | Type of operation attempted. | Creation | | | | | Modification | | | | | Deletion | | | | | Execution | Table 99 describes the error properties. **Table 99 - Error Properties for Authorization Failure** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 2 (CIM_ERR_ACCESS_DENIED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | A reference to the object to whom access is requested. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.2 Message: Operation Not Supported Owning Entity: SNIA Message ID: MP2 Message Format String: <CIM Operation> is not supported. Table 100 describes the message arguments. **Table 100 - Operation Not Supported Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------|------------------------| | CIM Operation | string | | GetClass | | | | | GetInstance | | | | | DeleteClass | | | | | DeleteInstance | | | | | CreateClass | | | | | CreateInstance | | | | | ModifyClass | | | | | ModifyInstance | | | | | EnumerateClasses | | | | | EnumerateInstances | | | | | EnumerateInstanceNames | | | | | ExecQuery | | | | | Associators | | | | | AssociatorNames | | | | | References | | | | | ReferenceNames | | | | | GetProperty | | | | | SetProperty | | | | | GetQualifier | | | | | SetQualifier | | | | | DeleteQualifier | | | | | EnumerateQualifier | # 8.4.1.3 Message: Property Not Found Owning Entity: SNIA Message ID: MP3 Message Format String: <Property Name> property was not found in the <Class name> class. Table 101 describes the message arguments. **Table 101 - Property Not Found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|-----------------| | Property Name | string | The property name is specified as it was passed by the client. | | | Class name | string | The property name is specified as it was passed by the client. | | ## 8.4.1.4 Message: Invalid Query Owning Entity: SNIA Message ID: MP4 Message Format String: Query language is not supported. The query language supported are <Supported Query Languages> Table 102 describes the message arguments. **Table 102 - Invalid Query Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------------------|--------------|-------------|-----------------| | Supported Query
Languages | string | | | ## 8.4.1.5 Message: Parameter Error Owning Entity: SNIA Message ID: MP5 Message Format String: Parameter <Position> of the <Method Type> method, <Method Name> , is invalid producing <Status Code> . <Additional Status> Table 103 describes the message arguments. **Table 103 - Parameter Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|-----------------| | Position | uint16 | The position the errant argument appears in the declaration of the method, from left to right. | | | Method Type | string | | extrinsic | | | | | intrinsic | | Method Name | string | | | | Status Code | string | | no | **Table 103 - Parameter Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-------------|---| | | | | CIM Status Code: Add status code number after the above | | Additional Status | string | | parameter value out of range | | | | | invalid combination | | | | | null parameter is not permitted | | | | | non-null value is not permitted | | | | | empty string is not permitted | | | | | empty array is not permitted | Table 104 describes the error properties. **Table 104 - Error Properties for Parameter Error** | Property | Value | Description | |------------------------|---|--------------------------| | CIMSTATUSCODE | 4
(CIM_ERR_INVALID_PARAMETER) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.6 Message: Query Syntax Error Owning Entity: SNIA Message ID: MP6 Message Format String: Syntactical error on query: <Errant Query Components> <Syntax Errors> Table 105 describes the message arguments. **Table 105 - Query Syntax Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |----------------------------|--------------|--|-----------------| | Errant Query
Components | string | The parts of the query that are in error with a carrot '^' in front of text that is in error | | | Syntax Errors | string | The syntax errors for each of the query components in the previous argument. The two arrays are to match element to element. | | Table 106 describes the error properties. **Table 106 - Error Properties for Query Syntax Error** | Property | Value | Description | |------------------------|---|--------------------------| | CIMSTATUSCODE | 4 (CIM_ERR_INVALID_QUERY) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.7 Message: Query Too Expensive Owning Entity: SNIA Message ID: MP7 Message Format String: Query is too expensive because the <Rejection Reason> Table 107 describes the message arguments. **Table 107 - Query Too Expensive Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------|---| | Rejection Reason | string | | result set will be too big | | | | | query will take too must computing resources to process | Table 108 describes the error properties. **Table 108 - Error Properties for Query Too Expensive** | Property | Value | Description | |------------------------|---|--------------------------| | CIMSTATUSCODE | 4 (CIM_ERR_INVALID_QUERY) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.8 Message: Class or Property Invalid in Query Owning Entity: SNIA Message ID: MP8 Message Format String: Invalid < Invalid Query Component> Table 109 describes the message arguments. **Table 109 - Class or Property Invalid in Query Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |----------------------------|--------------|--|-----------------| | Invalid Query
Component | string | This argument shall contain the 'class name' or 'class name'.'property name' | | Table 110 describes the error properties. Table 110 - Error Properties for Class or Property Invalid in Query | Property | Value | Description | |------------------------|---|--------------------------| | CIMSTATUSCODE | 4 (CIM_ERR_INVALID_QUERY) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.9 Message: Invalid Join in Query Owning Entity: SNIA Message ID: MP9 Message Format String: Invalid join clause: <Invalid Join Clause> Table 111 describes the message arguments. **Table 111 - Invalid Join in Query Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------|--------------|--|-----------------| | Invalid Join Clause | string | This argument shall contain the entire join clause that is in error. | | Table 112 describes the error properties. Table 112 - Error Properties for Invalid Join in Query | Property | Value | Description | |---------------|---------------------------|-----------------------| |
CIMSTATUSCODE | 4 (CIM_ERR_INVALID_QUERY) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | Table 112 - Error Properties for Invalid Join in Query | Property | Value | Description | | |------------------------|---|--------------------------|--| | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | | #### 8.4.1.10 Message: Unexpected Hardware Fault Owning Entity: SNIA Message ID: MP10 Message Format String: Call technical support and report the following error number has occurred, <Hardware Error> Table 113 describes the message arguments. **Table 113 - Unexpected Hardware Fault Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|-----------------| | Hardware Error | sint32 | Vendor specific hardware error. Use this error, only when all other standard messages can not cover this condition. | | Table 114 describes the error properties. **Table 114 - Error Properties for Unexpected Hardware Fault** | Property | Value | Description | |------------------------|---|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | It is discouraged from specifying any reference here. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## 8.4.1.11 Message: Too busy to respond Owning Entity: SNIA Message ID: MP11 Message Format String: WBEM Server is <Adverse Condition> to respond. Table 115 describes the message arguments. **Table 115 - Too busy to respond Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-------------|-----------------| | Adverse Condition | string | | too busy | | | | | initializing | ## 8.4.1.12 Message: Shutdown Started Owning Entity: SNIA Message ID: MP12 Message Format String: The computer system is shutting down in <seconds to shutdown> seconds. Table 116 describes the message arguments. **Table 116 - Shutdown Started Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------|--------------|--|-----------------| | seconds to shutdown | uint32 | The number of seconds before the system is shutdown. | | Table 117 describes the alerts that are associated with this message. **Table 117 - Shutdown Started Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | The object name must reference the top-most computer system that is shutting down. If the computer system is cluster, then the cluster computer system must be referenced. | | ALERT_TYPE | Υ | 5 | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.1.13 Message: Component overheat Owning Entity: SNIA Message ID: MP13 Message Format String: A component has overheated. <Component Type> Table 118 describes the message arguments. **Table 118 - Component overheat Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|----------------------|-------------|--| | Component Type | omponent Type string | | The entire device is affected. Device wide failure has already or can be expected shortly. | | | | | Only a single component is affected. Corrective action may be taken. | Table 119 describes the error properties. **Table 119 - Error Properties for Component overheat** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 6 (Environment Error) | Existence is required | | ERROR_SOURCE | The object name must reference the physical element most affected by the over temperature message. | Existence is required | | PERCEIVED_SEVE
RITY | 4 (High) | Existence is required | Table 120 describes the alerts that are associated with this message. **Table 120 - Component overheat Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | The object name must reference the physical element most affected by the over temperature message. | | ALERT_TYPE | Υ | 6 | Environmental Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.1.14 Message: WBEM Management Interface is not available Owning Entity: SNIA Message ID: MP14 Message Format String: The management interface for the device is not available. #### 8.4.1.15 Message: Device Failover Owning Entity: SNIA Message ID: MP15 Message Format String: Management interface is active on different device at the following URI, <URI> Table 121 describes the message arguments. **Table 121 - Device Failover Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------|-----------------| | URI | string | | | #### 8.4.1.16 Message: Functionality is not licensed Owning Entity: SNIA Message ID: MP16 Message Format String: Functionality requested is not licensed. The following license is required, <Required License Name> Table 122 describes the message arguments. **Table 122 - Functionality is not licensed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|-------------|-----------------| | Required License
Name | string | | | Table 123 describes the error properties. Table 123 - Error Properties for Functionality is not licensed | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Reference to top most Computer System. | Existence is required | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | # 8.4.1.17 Message: Invalid Property Combination during instance creation or modification Owning Entity: SNIA Message ID: MP17 Message Format String: The instance contains an invalid combination of properties. The <Errant Property Name> property may not have the value, <Errant Property Value> , when the <Existing Property Name> property has value, <Existing Property Value> Table 124 describes the message arguments. Table 124 - Invalid Property Combination during instance creation or modification Message Arguments | Message Argument | Data
Type | Description | Possible Values | |----------------------------|--------------|---|-----------------| | Errant Property
Name | string | The name of the property is primary reason for the rejection of this instance. | | | Errant Property Value | string | The invalid property value, coerced as a string. | | | Existing Property
Name | string | The property whose value has to be set in some way before or regardless of the "Errant Property Name" property. For example, property A of value X may be compatible with property B with value Y. But, property B may have had value Y prior to property A having a value or value X. Or, property B may be a key and must logically have a value before any other property set operation is considered. | | | Existing Property
Value | string | | | Table 125 describes the error properties. Table 125 - Error Properties for Invalid Property Combination during instance creation or modification | Property | Value | Description | |------------------------|-----------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Nothing to reference. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## 8.4.1.18 Message: Property Not Found Owning Entity: SNIA Message ID: MP18 Message Format String: <Errant Property Name> property was not found in class <Class Name used in Operation> Table 126 describes the message arguments. **Table 126 - Property Not Found Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------------------|--------------|---|-----------------| | Errant Property
Name | string | The name of the property provided in a instance related CIM Operation that simply does not exist in the class as indicated by the class name. | | | Class Name used in Operation | string | The class name used in the CIM Operation as stated directly as a method parameters or as part of a
CIM Object Name (CIM Object Path). | | Table 127 describes the error properties. **Table 127 - Error Properties for Property Not Found** | Property | Value | Description | |------------------------|----------------------------------|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Reference the class in question. | Existence is required | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## 8.4.1.19 Message: Proxy Can Not Connect Owning Entity: SNIA Message ID: MP19 Message Format String: Proxy CIM provider can not connect. <Reason for Connection Failure> Table 128 describes the message arguments. **Table 128 - Proxy Can Not Connect Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------------------|--------------|--|------------------------| | Reason for Connection Failure | string | The reason for the connection failure. | Authentication Failure | | | | | Authorization Failure | | | | | Communications Failure | Table 129 describes the error properties. **Table 129 - Error Properties for Proxy Can Not Connect** | Property | Value | Description | |------------------------|-----------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Nothing to reference. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## 8.4.1.20 Message: Not Enough Memory Owning Entity: SNIA Message ID: MP20 Message Format String: <Method Type> method <Method Name> can not be completed because of lack of memory. Table 130 describes the message arguments. **Table 130 - Not Enough Memory Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|-----------------| | Method Type | string | | intrinsic | | | | | extrinsic | | Method Name | string | The method name. If the method is an intrinsic method, provide the CIM Operation Name, e.g. EnumerateInstances. If the method is an extrinsic method, i.e. InvokeMethod, then provide the method name in the class that was invoked. | | Table 131 describes the error properties. **Table 131 - Error Properties for Not Enough Memory** | Property | Value | Description | |------------------------|-----------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Nothing to reference. | Existence is discouraged | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## 8.4.1.21 Message: Object Already Exists Owning Entity: SNIA Message ID: MP21 Message Format String: Object already exists. Table 132 describes the error properties. Table 132 - Error Properties for Object Already Exists | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Reference to the already existing zone element. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **Block Storage Messages** #### **EXPERIMENTAL** ## 8.4.1.22 Message: Device Not ready Owning Entity: SNIA Message ID: DRM1 Message Format String: Device < Device ID> not ready because of < StatusOrStatus> state or status. Table 133 describes the message arguments. **Table 133 - Device Not ready Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|-----------------| | Device ID | string | LogicalDevice.DeviceID,
PhysicalElement.Tag, or
ComputerSystem.Name | | | StatusOrStatus | string | Relavent State or Status the most explains the reason for the production of this message. | | Table 134 describes the error properties. Table 134 - Error Properties for Device Not ready | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 4 (High) | Existence is required | #### **EXPERIMENTAL** 8.4.1.23 Message: Internal Bus Error Owning Entity: SNIA Message ID: DRM2 Message Format String: Internal Bus Error Table 135 describes the error properties. **Table 135 - Error Properties for Internal Bus Error** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 4 (High) | Existence is required | #### **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.24 Message: DMA Overflow Owning Entity: SNIA Message ID: DRM3 Message Format String: DMA Overflow Table 136 describes the error properties. **Table 136 - Error Properties for DMA Overflow** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 4 (High) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.25 Message: Firmware Logic Error Owning Entity: SNIA Message ID: DRM4 Message Format String: Firmware Logic Error Table 137 describes the error properties. **Table 137 - Error Properties for Firmware Logic Error** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 4 (High) | Existence is required | ## **EXPERIMENTAL** 8.4.1.26 Message: Front End Port Error Owning Entity: SNIA Message ID: DRM5 Message Format String: Front End Port Error on Device identified by <Device ID> Table 138 describes the message arguments. **Table 138 - Front End Port Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|------------------------|-----------------| | Device ID | string | LogicalDevice.DeviceID | | Table 139 describes the alerts that are associated with this message. ## **Table 139 - Front End Port Error Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | Object Name for the top-level object for the device, which is typically the computer system instance | | ALERT_TYPE | Υ | 2 | Communications Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.27 Message: Back End Port Error Owning Entity: SNIA Message ID: DRM6 Message Format String: Back End Port Error on Device identified by <Device ID> Table 140 describes the message arguments. ## **Table 140 - Back End Port Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|------------------------|-----------------| | Device ID | string | LogicalDevice.DeviceID | | Table 141 describes the alerts that are associated with this message. **Table 141 - Back End Port Error Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | Object Name for the top-level object for the device, which is typically the computer system instance | | ALERT_TYPE | Υ | 2 | Communications Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## **EXPERIMENTAL** ## 8.4.1.28 Message: Remote Mirror Error Owning Entity: SNIA Message ID: DRM7 Message Format String: Error detected associated with remote volume, <Remote Volume Name> Table 142 describes the message arguments. **Table 142 - Remote Mirror Error Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|--------------|--------------------|-----------------| | Remote Volume
Name | string | StorageVolume.Name | | Table 143 describes the error properties. **Table 143 - Error
Properties for Remote Mirror Error** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the remote block server, which is typically the computer system instance. The implementation will have to implement the Cascading Subprofile. | Existence is optional | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | Table 144 describes the alerts that are associated with this message. **Table 144 - Remote Mirror Error Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | N | | Object Name for the top-level object for the remote block server, which is typically the computer system instance. The implementation will have to implement the Cascading Subprofile. | | ALERT_TYPE | Υ | | | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** 8.4.1.29 Message: Cache Memory Error Owning Entity: SNIA Message ID: DRM8 Message Format String: Cache Memory Error Table 145 describes the error properties. **Table 145 - Error Properties for Cache Memory Error** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.30 Message: Unable to Access Remote Device Owning Entity: SNIA Message ID: DRM9 Message Format String: Unable to Access Remote Device Table 146 describes the error properties. Table 146 - Error Properties for Unable to Access Remote Device | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the remote block server, which is typically the computer system instance. The implementation will have to implement the Cascading Subprofile. | Existence is optional | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.31 Message: Error Reading Data Owning Entity: SNIA Message ID: DRM10 Message Format String: Error Reading Data Table 147 describes the alerts that are associated with this message. **Table 147 - Error Reading Data Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | Object Name for the top-level object for the device, which is typically the computer system instance | | ALERT_TYPE | Υ | 2 | Communications Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.32 Message: Error Writing Data Owning Entity: SNIA Message ID: DRM11 Message Format String: Error Writing Data Table 148 describes the alerts that are associated with this message. **Table 148 - Error Writing Data Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | Object Name for the top-level object for the device, which is typically the computer system instance | | ALERT_TYPE | Υ | 2 | Communications Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.33 Message: Error Validating Write (CRC) Owning Entity: SNIA Message ID: DRM12 Message Format String: Error Validating Write Table 149 describes the alerts that are associated with this message. Table 149 - Error Validating Write (CRC) Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | Object Name for the top-level object for the device, which is typically the computer system instance | | ALERT_TYPE | Υ | 2 | Communications Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.34 Message: Copy Operation Failed Owning Entity: SNIA Message ID: DRM13 Message Format String: Copy Operation Failed Table 150 describes the error properties. **Table 150 - Error Properties for Copy Operation Failed** | Property | Value | Description | |------------------------|----------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | | Existence is discouraged | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.35 Message: RAID Operation Failed Owning Entity: SNIA Message ID: DRM14 Message Format String: RAID Operation Failed Table 151 describes the error properties. **Table 151 - Error Properties for RAID Operation Failed** | Property | Value | Description | |------------------------|----------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 5 (Hardware Error) | Existence is required | | ERROR_SOURCE | | Existence is discouraged | | PERCEIVED_SEVE
RITY | 3 (Medium) | Existence is required | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.36 Message: Invalid RAID Type Owning Entity: SNIA Message ID: DRM15 Message Format String: Invalid RAID Type Table 152 describes the error properties. Table 152 - Error Properties for Invalid RAID Type | Property | Value | Description | |------------------------|------------------------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 10 (Unsupported Operation Error) | Existence is required | | ERROR_SOURCE | | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | #### **EXPERIMENTAL** ## 8.4.1.37 Message: Invalid Storage Element Type Owning Entity: SNIA Message ID: DRM16 Message Format String: Invalid Device Type Table 153 describes the error properties. Table 153 - Error Properties for Invalid Storage Element Type | Property | Value | Description | |------------------------|------------------------------------|--------------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 10 (Unsupported Operation Error) | Existence is required | | ERROR_SOURCE | | Existence is discouraged | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.38 Message: Configuration Change Failed Owning Entity: SNIA Message ID: DRM17 Message Format String: Configuration Change Failed Table 154 describes the error properties. **Table 154 - Error Properties for Configuration Change Failed** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.39 Message: Buffer Overrun Owning Entity: SNIA Message ID: DRM18 Message Format String: Buffer Overrun Table 155 describes the error properties. **Table 155 - Error Properties for Buffer Overrun** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Object Name for the top-level object for the device, which is typically the computer system instance | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | #### **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.40 Message: Stolen Capacity Owning Entity: SNIA Message ID: DRM19 Message Format String: The capacity requested, <Requested Capacity> , that was requested is no longer available. Table 156 describes the message arguments. **Table 156 - Stolen Capacity Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------|--------------|--|-----------------| | Requested Capacity | sint64 | Capacity requested in bytes expressed in powers
of 10. | | Table 157 describes the error properties. **Table 157 - Error Properties for Stolen Capacity** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | The pool, volume, or logical disk being modified, or, in the case of element creation the parent pool from which capacity is being drawn. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** ## 8.4.1.41 Message: Invalid Extent passed Owning Entity: SNIA Message ID: DRM20 Message Format String: One or more of the extents passed can not be used to create or modify storage elements. <Invalid Extents Array> Table 158 describes the message arguments. **Table 158 - Invalid Extent passed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------|---------------|--|-----------------| | Invalid Extents Array | referenc
e | Array of references to the all Extents that can not be used in the specified manner (ex. CreateOrModifyStroragePool or CreateOrModifyElementsFromEle ments). | | Table 159 describes the error properties. Table 159 - Error Properties for Invalid Extent passed | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | A reference to the storage configuration service instance on which the method was called that caused this error. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.42 Message: Invalid Deletion Attempted Owning Entity: SNIA Message ID: DRM21 Message Format String: Existing pool or storage element (StorageVolume or LogicalDisk) may not be deleted because there are existing Storage Extents which relay on it. Table 160 describes the error properties. **Table 160 - Error Properties for Invalid Deletion Attempted** | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | A reference to one of the dependent StorageExtents. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.1.43 Message: Job Failed to Start Owning Entity: SNIA Message ID: DRM22 Message Format String: Job failed to start because resources required for method execution are no longer available. Table 161 describes the error properties. Table 161 - Error Properties for Job Failed to Start | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 8 (Oversubscription Error) | Existence is required | | ERROR_SOURCE | Reference to Job instance which failed to start for this reason if a Job instance was created because of the time required to make this resource assessment. If a Job instance was not created, because the assessment was fast enough, then this property must be NULL. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | #### **EXPERIMENTAL** 8.4.1.44 Message: Job was Halted Owning Entity: SNIA Message ID: DRM23 Message Format String: Job was <Reason for Job halt> Table 162 describes the message arguments. **Table 162 - Job was Halted Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------|--------------|---|-----------------| | Reason for Job halt | string | A Job may be stopped by a client using the RequestedStateChange method. If the job stopped executing for other reasons, then use a different message. | killed | | | | | terminated | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.45 Message: Invalid State Transition Owning Entity: SNIA Message ID: DRM24 Message Format String: An invalid state transition, <Invalid Sync State>, was requested given current state, <Current Sync State> Table 163 describes the message arguments. **Table 163 - Invalid State Transition Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------|--------------|--|-----------------| | Invalid Sync State | string | The textual equivalent (Value) for StorageSynchronized.SyncState value requested. | | | Current Sync State | string | The textual equivalent (Value) for the current StorageSynchronized.SyncState value | | Table 164 describes the error properties. **Table 164 - Error Properties for Invalid State Transition** | Property | Value | Description | |------------------------|--|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Reference to the StorageSynchronized instance in question. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** #### **EXPERIMENTAL** ### 8.4.1.46 Message: Invalid SAP for Method Owning Entity: SNIA Message ID: DRM25 Message Format String: Invalid type of copy services host. The host must be a <Host Type> Table 165 describes the message arguments. **Table 165 - Invalid SAP for Method Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|-----------------| | Host Type | string | The type of copy services on which the method was invoked. | source | | | | | target | Table 166 describes the error properties. Table 166 - Error Properties for Invalid SAP for Method | Property | Value | Description | |------------------------|---|-----------------------| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | 4 (Software Error) | Existence is required | | ERROR_SOURCE | Reference to the Computer System host which is of the wrong type. | Existence is required | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | ## **EXPERIMENTAL** ### **EXPERIMENTAL** 8.4.1.47 Message: Resource Not Available Owning Entity: SNIA Message ID: DRM26 Message Format String: <Resource Needed> Table 167 describes the message arguments. **Table 167 - Resource Not Available Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------|--------------------------------| | Resource Needed | string | | No replication log available. | | | | | Special replica pool required. | Table 168 describes the error properties. **Table 168 - Error Properties for Resource Not Available** | Property | Value | Description | | |------------------------|-----------------------|--------------------------|--| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | | ERROR_TYPE | 4 (Software Error) | Existence is required | | | ERROR_SOURCE | Nothing to reference. | Existence is discouraged | | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | | ## **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.1.48 Message: Resource Limit Exceeded Owning Entity: SNIA Message ID: DRM27 Message Format String: <Reason> Table 169 describes the message arguments. **Table 169 - Resource Limit Exceeded Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|--| | Reason | string | The reasons for the lack of resources for copy services operation. | Insufficient pool space. | | | | | Maximum replication depth exceeded. | | | | | Maxium replicas exceeded for source element. | Table 170 describes the error properties. Table 170 - Error Properties for Resource Limit Exceeded | Property | Value | Description | | |------------------------|-----------------------|--------------------------|--| | CIMSTATUSCODE | 1 (CIM_ERR_FAILED) | Existence is required | | | ERROR_TYPE | 4 (Software Error) | Existence is required | | | ERROR_SOURCE | Nothing to reference. | Existence is discouraged | | | PERCEIVED_SEVE
RITY | 2 (Low) | Existence is required | | #### **EXPERIMENTAL** 8.4.1.49 Message: Thin Provision Capacity Warning Owning Entity: SNIA Message ID: DRM28 Message Format String: Thin provisioned <Thin element type> with identifier <Device or Pool ID> capacity in use nearing available limit. The actual capacity of a volume or pool is nearing a limit (e.g., actual usage of containing pool is nearing SpaceLimit). Table 171 describes
the message arguments. **Table 171 - Thin Provision Capacity Warning Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-------------------------------|-----------------| | Thin element type | string | A value of 'volume' or 'pool' | volume | | | | | pool | | Device or Pool ID | string | Disk Name. | | Table 172 describes the alerts that are associated with this message. **Table 172 - Thin Provision Capacity Warning Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|------------------------| | ALERTING_MANAGED_ELE MENT | Υ | | The pool or volume ID. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.1.50 Message: Thin Provision Capacity Critical Owning Entity: SNIA Message ID: DRM29 Message Format String: Thin provisioned <Thin element type> with identifier <Device or Pool ID> capacity in use exceded available limit. the actual capacity of a volume or pool has reached a limit (e.g., actual usage of containing pool is equal to SpaceLimit). Write commands from hosts to the volume or pool are failing. Table 173 describes the message arguments. **Table 173 - Thin Provision Capacity Critical Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-------------------------------|-----------------| | Thin element type | string | A value of 'volume' or 'pool' | volume | | | | | pool | | Device or Pool ID | string | Disk Name. | | Table 174 describes the alerts that are associated with this message. **Table 174 - Thin Provision Capacity Critical Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|------------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The pool or volume ID. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.1.51 Message: Thin Provision Capacity Okay Owning Entity: SNIA Message ID: DRM30 Message Format String: Thin provisioned <Thin element type> with identifier <Device or Pool ID> capacity condition cleared. the actual capacity of a volume or pool is no longer in a capacity warning or critical state. Table 175 describes the message arguments. **Table 175 - Thin Provision Capacity Okay Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-------------------------------|-----------------| | Thin element type | string | A value of 'volume' or 'pool' | volume | | | | | pool | | Device or Pool ID | string | Disk Name. | | Table 176 describes the alerts that are associated with this message. **Table 176 - Thin Provision Capacity Okay Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|------------------------| | ALERTING_MANAGED_ELE MENT | Υ | | The pool or volume ID. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.1.52 Message: Masking Group Membership Changed Owning Entity: SNIA Message ID: DRM31 Message Format String: There is a change in membership of masking group with identifier <InstanceID> , and with ElementName < ElementName > The membership of a masking group has changed. Table 177 describes the message arguments. **Table 177 - Masking Group Membership Changed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|----------------------------------|-----------------| | InstanceID | string | The instance ID of masking group | InstanceID | | ElementName | string | The ElementName of masking group | ElementName | Table 178 describes the alerts that are associated with this message. **Table 178 - Masking Group Membership Changed Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------------------| | ALERTING_MANAGED_ELE MENT | Υ | | The masking group object name. | | ALERT_TYPE | Υ | 2 | Model Change | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **Fabric Messages** 8.4.1.53 Message: Zone Database Changed Owning Entity: SNIA Message ID: FC1 Message Format String: Zone database changed for <Fabric Identity Type> <WWN> An Indication when the fabric or switch has determined that the Zone Database has been modified. Table 179 describes the message arguments. **Table 179 - Zone Database Changed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |----------------------|--------------|---|-----------------| | Fabric Identity Type | string | Defines the type of fabric entity names by the following WWN. | fabric | | | | | switch | | WWN | string | World Wide name identifier. The required form of the WWN is defined by this regular expression, "^[0123456789ABCDEF]{16}\$" | | Table 180 describes the alerts that are associated with this message. **Table 180 - Zone Database Changed Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--| | ALERTING_MANAGED_ELE
MENT | Υ | | A reference to the switch or fabric which is named by the WWN. | | ALERT_TYPE | Υ | | Environmental Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.1.54 Message: ZoneSet Activated Owning Entity: SNIA Message ID: FC2 Message Format String: ZoneSet <ZoneSet Name> was activated for fabric <WWN> An Indication when the fabric has determined that a ZoneSet has been activated. Table 181 describes the message arguments. **Table 181 - ZoneSet Activated Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|-----------------| | ZoneSet Name | string | CIM_ZoneSet.ElementName attribute | | | WWN | string | World Wide name identifier. The required form of the WWN is defined by this regular expression, "^[0123456789ABCDEF]{16}\$" | | Table 182 describes the alerts that are associated with this message. Table 182 - ZoneSet Activated Alert Information | Name | Req | Value | Description | |---------------------------|------------|---------|--| | ALERTING_MANAGED_ELE MENT | Υ | | A reference to the fabric which is named by the WWN. | | ALERT_TYPE | Υ | | Environmental Error | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** 8.4.1.55 Message: Session Locked Owning Entity: SNIA Message ID: FC3 Message Format String: Operation blocked by session lock. Table 183 describes the error properties. **Table 183 - Error Properties for Session Locked** | Property | Value | Description | |------------------------|--------------------|-----------------------| | CIMSTATUSCODE | (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | (Software Error) | Existence is required | | ERROR_SOURCE | | Existence is required | | PERCEIVED_SEVE
RITY | (Degraded/Warning) | Existence is required | ### **EXPERIMENTAL** ### **EXPERIMENTAL** 8.4.1.56 Message: Session Aborted Owning Entity: SNIA Message ID: FC4 Message Format String: Operation by another client caused the session to be aborted. Table 184 describes the error properties. **Table 184 - Error Properties for Session Aborted** | Property | Value | Description | |------------------------|--------------------|-----------------------| | CIMSTATUSCODE | (CIM_ERR_FAILED) | Existence is required | | ERROR_TYPE | (Software Error) | Existence is required | | ERROR_SOURCE | | Existence is required | | PERCEIVED_SEVE
RITY | (Degraded/Warning) | Existence is required | # **EXPERIMENTAL** #### 8.4.1.57 Message: Switch Status Changed Owning Entity: SNIA Message ID: FC5 Message Format String: Switch <Switch Unique Identifier> in Fabric <Fabric Name> status changed to <Switch OperationalStatus> The fabric has detected a change in status of a switch in the fabric. Table 185 describes the message arguments. **Table 185 - Switch Status Changed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------------|--------------|---|-----------------| | Switch Unique
Identifier | string | The Switch Name (WWN). | | | Fabric Name | string | Fabric name. Typically the principal switch's WWN | | | Switch
OperationalStatus | string | Switch Status | | Table 186 describes the alerts that are associated with this message. **Table 186 - Switch Status Changed Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The Fabric | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.1.58 Message: Fabric Merge/Segmentation Owning Entity: SNIA Message ID: FC6 Message Format String: <Fabric Name> has detected a <Fabric Change> The fabric has detected either two fabrics have merged into a single fabric or a single fabric has segmented. Table 187 describes the message arguments. **Table 187 - Fabric Merge/Segmentation Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|-----------------| | Fabric Name | string | Fabric name. Typically the principal switch's WWN | | **Table 187 - Fabric Merge/Segmentation Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------
--------------|----------------------------------|-----------------| | Fabric Change | string | A value of merge or segmentation | merge | | | | | segmentation | Table 188 describes the alerts that are associated with this message. Table 188 - Fabric Merge/Segmentation Alert Information | Name | Req | Value | Description | |---------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE MENT | Υ | | The SAN | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.1.59 Message: Switch Added/Removed Owning Entity: SNIA Message ID: FC7 Message Format String: The fabric <Fabric Name> has detected switch <Switch Unique Identifier> has been <Fabric Change Type> A Switch has been added or removed from the fabric. Table 189 describes the message arguments. **Table 189 - Switch Added/Removed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------------|--------------|---|-----------------| | Fabric Name | string | Fabric name. Typically the principal switch's WWN | | | Switch Unique
Identifier | string | The Switch Name (WWN). | | | Fabric Change Type | string | A value of added or removed | added | | | | | removed | Table 190 describes the alerts that are associated with this message. Table 190 - Switch Added/Removed Alert Information | Name | Req | Value | Description | |---------------------------|-----|-------|-------------| | ALERTING_MANAGED_ELE MENT | Υ | | The Fabric | Table 190 - Switch Added/Removed Alert Information | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.1.60 Message: Fabric Added/Removed Owning Entity: SNIA Message ID: FC8 Message Format String: Fabric < Fabric Identifier> was < Change Type> The agent has detected the addition or removal of a fabric from the SAN. This message can also be used for Virtual Fabrics. Table 191 describes the message arguments. Table 191 - Fabric Added/Removed Message Arguments | Message Argument | Data
Type | Description | Possible Values | |-------------------|--------------|-----------------------------|-----------------| | Fabric Identifier | string | The Fabric Identity | | | Change Type | string | A value of Added or Removed | added | | | | | removed | Table 192 describes the alerts that are associated with this message. Table 192 - Fabric Added/Removed Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The SAN | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** 8.4.1.61 Message: Security Policy change Owning Entity: SNIA Message ID: FC9 Message Format String: Fabric Security Policy changed in <Fabric Name> The fabric has detected a change in the Security Database. Table 193 describes the message arguments. **Table 193 - Security Policy change Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|-----------------| | Fabric Name | string | Fabric name. Typically the principal switch's WWN | | Table 194 describes the alerts that are associated with this message. **Table 194 - Security Policy change Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The Fabric | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** #### 8.4.2 Filesystem Messages #### **EXPERIMENTAL** ### 8.4.2.1 Message: System OperationalStatus Bellwether Owning Entity: SNIA Message ID: FSM1 Message Format String: The OperationalStatus of the <System Name> system has changed. Related elements will not report the change in their OperationalStatus. A message indicating the change in OperationalStatus of a system is a bellwether alert. Table 195 describes the message arguments. **Table 195 - System Operational Status Bellwether Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|--| | System Name | string | The Name property of the system whose OperationalStatus has changed. | The Name of a NAS System | | | | | The Name of a Component System | | | | | The Name of a Base Server System | | | | | The Name of a Virtual File Server System | Table 196 describes the alerts that are associated with this message. **Table 196 - System Operational Status Bellwether Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The system. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** ### **EXPERIMENTAL** #### 8.4.2.2 Message: NetworkPort OperationalStatus Bellwether Owning Entity: SNIA Message ID: FSM2 Message Format String: The OperationalStatus of the <NetworkPort Name> network port on the <System Name> system has changed. Related elements will not report the change in their OperationalStatus. A message indicating the change in OperationalStatus of a NetworkPort is a bellwether alert. Table 197 describes the message arguments. **Table 197 - NetworkPort OperationalStatus Bellwether Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|---|--| | NetworkPort Name | string | The ElementName property of the network port whose OperationalStatus has changed. | | | System Name | string | The Name property of the system on which the port exists | The Name of a NAS System | | | | | The Name of a Component System | | | | | The Name of a Base Server System | | | | | The Name of a Virtual File Server System | Table 198 describes the alerts that are associated with this message. Table 198 - NetworkPort OperationalStatus Bellwether Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The system. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** ### **EXPERIMENTAL** #### 8.4.2.3 Message: LogicalDisk OperationalStatus Bellwether Owning Entity: SNIA Message ID: FSM3 Message Format String: The OperationalStatus of the <LogicalDisk Name> logical disk on the <System Name> system has changed. Related elements will not report the change in their OperationalStatus. A message indicating the change in OperationalStatus of a LogicalDisk is a bellwether alert. Table 199 describes the message arguments. **Table 199 - LogicalDisk OperationalStatus Bellwether Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|--|--| | LogicalDisk Name | string | The Name property of the logical disk whose OperationalStatus has changed. | | | System Name | string | The Name property of the system on which the logical disk is known. | The Name of a NAS System | | | | | The Name of a Component System | | | | | The Name of a Base Server System | | | | | The Name of a Virtual File Server System | Table 200 describes the alerts that are associated with this message. Table 200 - LogicalDisk OperationalStatus Bellwether Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The system. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### **EXPERIMENTAL** #### **Host Messages** 8.4.2.4 Message: Required Firmware Version Owning Entity: SNIA Message ID: Host1 Message Format String: Controller firmware is older than required. Current Version: <Current Version> Minimum required version: <Minimum required version> A message indicating the controller firmware is older than required. Table 201 describes the message arguments. **Table 201 - Required Firmware Version Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------|--------------|--------------------------------------|-----------------| | Current Version | string | The current firmware version number. | | | Minimum required version | string | The minimum required version number | | Table 202 describes the alerts that are associated with this message. **Table 202 - Required Firmware Version Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------| | ALERTING_MANAGED_ELE MENT | Υ | | The controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.2.5 Message: Recommended Firmware Version Owning Entity: SNIA Message ID: Host2 Message Format String: Controller firmware is older than recommended. Current Version: <Current Version> Minimum recommended version: <Minimum recommended version> A message indicating the controller firmware is older than recommended. Table 203 describes the message arguments. **Table 203 - Recommended Firmware Version Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------------|--------------
--|-----------------| | Current Version | string | The current firmware version number. | | | Minimum recommended version | string | The minimum recommended version number | | Table 204 describes the alerts that are associated with this message. **Table 204 - Recommended Firmware Version Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------| | ALERTING_MANAGED_ELE MENT | Υ | | The controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.2.6 Message: Controller OK Owning Entity: SNIA Message ID: Host3 Message Format String: Controller health is ok. Controller Name: <Controller Name> Table 205 describes the message arguments. **Table 205 - Controller OK Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|------------------|-----------------| | Controller Name | string | Controller Name. | | Table 206 describes the alerts that are associated with this message. **Table 206 - Controller OK Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------| | ALERTING_MANAGED_ELE MENT | Υ | | The controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.2.7 Message: Controller not OK Owning Entity: SNIA Message ID: Host4 Message Format String: Controller health is not ok. Controller Name: <Controller Name> Table 207 describes the message arguments. **Table 207 - Controller not OK Message Arguments** | Message Argume | nt Data
Type | Description | Possible Values | |-----------------|-----------------|------------------|-----------------| | Controller Name | string | Controller Name. | | Table 208 describes the alerts that are associated with this message. Table 208 - Controller not OK Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.2.8 Message: Bus rescan complete Owning Entity: SNIA Message ID: Host5 Message Format String: Bus rescan complete Table 209 describes the alerts that are associated with this message. Table 209 - Bus rescan complete Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.2.9 Message: Disk initialize Failed Owning Entity: SNIA Message ID: Host6 Message Format String: Disk Initialize Failed. Disk name: <Disk Name> Table 210 describes the message arguments. **Table 210 - Disk initialize Failed Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |------------------|--------------|-------------|-----------------| | Disk Name | string | Disk Name. | | Table 211 describes the alerts that are associated with this message. **Table 211 - Disk initialize Failed Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|---------------------------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | The system containing the controller. | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3 Media Library Messages # 8.4.3.1 Message: Read Warning Owning Entity: SNIA Message ID: SML1 Message Format String: The drive is having severe trouble reading. Table 212 describes the alerts that are associated with this message. **Table 212 - Read Warning Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.2 Message: Write Warning Owning Entity: SNIA Message ID: SML2 Message Format String: The drive is having severe trouble writing. Table 213 describes the alerts that are associated with this message. **Table 213 - Write Warning Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.3 Message: Hard Error Owning Entity: SNIA Message ID: SML3 Message Format String: The drive had a hard read or write error. Table 214 describes the alerts that are associated with this message. **Table 214 - Hard Error Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.4 Message: Media Owning Entity: SNIA Message ID: SML4 Message Format String: Media can no longer be written/read, or performance is severely degraded. Table 215 describes the alerts that are associated with this message. **Table 215 - Media Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.5 Message: Read Failure Owning Entity: SNIA Message ID: SML5 Message Format String: The drive can no longer read data from the storage media. Table 216 describes the alerts that are associated with this message. **Table 216 - Read Failure Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.6 Message: Write Failure Owning Entity: SNIA Message ID: SML6 Message Format String: The drive can no longer write data to the media. Table 217 describes the alerts that are associated with this message. **Table 217 - Write Failure Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Y | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.7 Message: Media Life Owning Entity: SNIA Message ID: SML7 Message Format String: The media has exceeded its specified life. Table 218 describes the alerts that are associated with this message. **Table 218 - Media Life Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.3.8 Message: Not Data Grade Owning Entity: SNIA Message ID: SML8 Message Format String: The cartridge is not data-grade. Any data you write to the media is at risk. Replace the cartridge with a data-grade media. Table 219 describes the alerts that are associated with this message. **Table 219 - Not Data Grade Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.9 Message: Write Protect Owning Entity: SNIA Message ID: SML9 Message Format String: Write command is attempted to a write protected media. Table 220 describes the alerts that are associated with this message. **Table 220 - Write Protect Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.10 Message: No Removal Owning Entity: SNIA Message ID: SML10 Message Format String: Manual or software unload attempted when prevent media removal is on. Table 221 describes the alerts that are associated with this message. **Table 221 - No Removal Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.11 Message: Cleaning Media Owning Entity: SNIA Message ID: SML11 Message Format String: Cleaning media loaded into drive Table 222 describes the alerts that are associated with this message. **Table 222 - Cleaning Media Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Y | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.12 Message: Unsupported Format Owning Entity: SNIA Message ID: SML12 Message Format String: Attempted load of unsupported media format (e.g., DDS2 in DDS1 drive). Table 223 describes the alerts that are associated with this message. **Table 223 - Unsupported Format Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | |
CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.13 Message: Recoverable Snapped Tape Owning Entity: SNIA Message ID: SML13 Message Format String: Tape snapped/cut in the drive where media can be de-mounted. Table 224 describes the alerts that are associated with this message. **Table 224 - Recoverable Snapped Tape Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.14 Message: Unrecoverable Snapped Tape Owning Entity: SNIA Message ID: SML14 Message Format String: Tape snapped/cut in the drive where media cannot be de-mounted. Table 225 describes the alerts that are associated with this message. **Table 225 - Unrecoverable Snapped Tape Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.15 Message: Memory Chip In Cartridge Failure Owning Entity: SNIA Message ID: SML15 Message Format String: Memory chip failed in cartridge. Table 226 describes the alerts that are associated with this message. **Table 226 - Memory Chip In Cartridge Failure Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.16 Message: Forced Eject Owning Entity: SNIA Message ID: SML16 Message Format String: Manual or forced eject while drive actively writing or reading. Table 227 describes the alerts that are associated with this message. Table 227 - Forced Eject Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.17 Message: Read Only Format Owning Entity: SNIA Message ID: SML17 Message Format String: Media loaded that is read-only format. Table 228 describes the alerts that are associated with this message. **Table 228 - Read Only Format Alert Information** | Name | Req | Value | Description | |---------------------------|-----|-------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | Table 228 - Read Only Format Alert Information | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.18 Message: Directory Corrupted On Load Owning Entity: SNIA Message ID: SML18 Message Format String: Drive powered down while loaded, or permanent error prevented the directory being updated. Table 229 describes the alerts that are associated with this message. **Table 229 - Directory Corrupted On Load Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.19 Message: Nearing Media Life Owning Entity: SNIA Message ID: SML19 Message Format String: Media may have exceeded its specified number of passes. Table 230 describes the alerts that are associated with this message. **Table 230 - Nearing Media Life Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.20 Message: Clean Now Owning Entity: SNIA Message ID: SML20 Message Format String: The drive thinks it has a head clog or needs cleaning. Table 231 describes the alerts that are associated with this message. **Table 231 - Clean Now Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.21 Message: Clean Periodic Owning Entity: SNIA Message ID: SML21 Message Format String: The drive is ready for a periodic cleaning. Table 232 describes the alerts that are associated with this message. **Table 232 - Clean Periodic Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.22 Message: Expired Cleaning Media Owning Entity: SNIA Message ID: SML22 Message Format String: The cleaning media has expired. Table 233 describes the alerts that are associated with this message. **Table 233 - Expired Cleaning Media Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.23 Message: Invalid Cleaning Media Owning Entity: SNIA Message ID: SML23 Message Format String: Invalid cleaning media type used. Table 234 describes the alerts that are associated with this message. Table 234 - Invalid Cleaning Media Alert Information | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.24 Message: Retention Requested Owning Entity: SNIA Message ID: SML24 Message Format String: The drive is having severe trouble reading or writing, which will be resolved by a retention cycle. Table 235 describes the alerts that are associated with this message. **Table 235 - Retention Requested Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.25 Message: Dual-Port Interface Error Owning Entity: SNIA Message ID: SML25 Message Format String: Failure of one interface port in a dual-port configuration (i.e., Fibre Channel) Table 236 describes the alerts that are associated with this message. Table 236 - Dual-Port Interface Error Alert Information | Name | Req | Value | Description | |------------------------------|-----|-------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | Table 236 - Dual-Port Interface Error Alert Information | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.26 Message: Drive Maintenance Owning Entity: SNIA Message ID: SML26 Message Format String: The drive requires preventive maintenance (not cleaning). Table 237 describes the alerts that are associated with this message. **Table 237 - Drive Maintenance Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.27 Message: Hardware A Owning Entity: SNIA Message ID: SML27 Message Format String: The drive has a hardware fault that requires reset to recover. Table 238 describes the alerts that are associated with this message. **Table 238 - Hardware A Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.28 Message: Hardware B Owning Entity: SNIA Message ID: SML28 Message Format String: The drive has a hardware fault that is not read/write related or requires a power cycle to recover. Table 239 describes the alerts that are associated with this message. Table 239 - Hardware B Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.29 Message: Interface Owning Entity: SNIA Message ID: SML29 Message Format String: The drive has identified an interface fault. Table 240 describes the alerts that are associated with this message. **Table 240 - Interface Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.30 Message: Eject Media Owning Entity: SNIA Message ID: SML30 Message Format String: Error recovery action: Media Ejected Table 241 describes the alerts that
are associated with this message. **Table 241 - Eject Media Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.31 Message: Download Failure Owning Entity: SNIA Message ID: SML31 Message Format String: Firmware download failed. Table 242 describes the alerts that are associated with this message. **Table 242 - Download Failure Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.32 Message: Loader Hardware A Owning Entity: SNIA Message ID: SML32 Message Format String: Loader mechanism is having trouble communicating with the drive. Table 243 describes the alerts that are associated with this message. **Table 243 - Loader Hardware A Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.33 Message: Loader Stray Media Owning Entity: SNIA Message ID: SML33 Message Format String: Stray media left in loader after previous error recovery. Table 244 describes the alerts that are associated with this message. **Table 244 - Loader Stray Media Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE MENT | Y | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.34 Message: Loader Hardware B Owning Entity: SNIA Message ID: SML34 Message Format String: Loader mechanism has a hardware fault. Table 245 describes the alerts that are associated with this message. Table 245 - Loader Hardware B Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.35 Message: Loader Door Owning Entity: SNIA Message ID: SML35 Message Format String: Changer door open. Table 246 describes the alerts that are associated with this message. **Table 246 - Loader Door Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.36 Message: Loader Hardware C Owning Entity: SNIA Message ID: SML36 Message Format String: The loader mechanism has a hardware fault that is not mechanically related. Table 247 describes the alerts that are associated with this message. **Table 247 - Loader Hardware C Alert Information** | Name | Req | Value | Description | |------------------------------|-----|-------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | **Table 247 - Loader Hardware C Alert Information** | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.37 Message: Loader Magazine Owning Entity: SNIA Message ID: SML37 Message Format String: Loader magazine not present. Table 248 describes the alerts that are associated with this message. **Table 248 - Loader Magazine Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.38 Message: Loader Predictive Failure Owning Entity: SNIA Message ID: SML38 Message Format String: Predictive failure of loader mechanism hardware Table 249 describes the alerts that are associated with this message. **Table 249 - Loader Predictive Failure Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.39 Message: Load Statistics Owning Entity: SNIA Message ID: SML39 Message Format String: Drive or library powered down with media loaded. Table 250 describes the alerts that are associated with this message. Table 250 - Load Statistics Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|---| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice or CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.40 Message: Media Directory Invalid at Unload Owning Entity: SNIA Message ID: SML40 Message Format String: Error preventing the media directory being updated on unload. Table 251 describes the alerts that are associated with this message. **Table 251 - Media Directory Invalid at Unload Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.41 Message: Media System area Write Failure Owning Entity: SNIA Message ID: SML41 Message Format String: Write errors while writing the system area on unload. Table 252 describes the alerts that are associated with this message. **Table 252 - Media System area Write Failure Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.3.42 Message: Media System Area Read Failure Owning Entity: SNIA Message ID: SML42 Message Format String: Read errors while reading the system area on load. Table 253 describes the alerts that are associated with this message. Table 253 - Media System Area Read Failure Alert Information | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.43 Message: No Start of Data Owning Entity: SNIA Message ID: SML43 Message Format String: Media damaged, bulk erased, or incorrect format. Table 254 describes the alerts that are associated with this message. Table 254 - No Start of Data Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.44 Message: Loading Failure Owning Entity: SNIA Message ID: SML44 Message Format String: The drive is unable to load the media Table 255 describes the alerts that are associated with this message. **Table 255 - Loading Failure Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|-----------------------| | ALERTING_MANAGED_ELE MENT | Y | | CIM_MediaAccessDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.45 Message: Library Hardware A Owning Entity: SNIA Message ID: SML45 Message Format String: Changer mechanism is having trouble communicating with the internal drive Table 256 describes the alerts that are associated with this message. **Table 256 - Library Hardware A Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.46 Message: Library Hardware B Owning Entity: SNIA Message ID: SML46 Message Format String: Changer mechanism has a hardware fault Table 257 describes the alerts that are associated with this message. **Table 257 - Library Hardware B Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.47 Message: Library Hardware C Owning Entity: SNIA Message ID: SML47 Message Format String: The changer mechanism has a hardware fault that requires a reset to recover. Table 258 describes the alerts that are associated with this message. **Table 258 - Library Hardware C Alert Information** | Name | Req | Value | Description | |------------------------------|-----|-------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | **Table 258 - Library Hardware C Alert Information** | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.48 Message: Library Hardware D Owning Entity: SNIA Message ID: SML48 Message Format String: The changer mechanism has a hardware
fault that is not mechanically related or requires a power cycle to recover. Table 259 describes the alerts that are associated with this message. **Table 259 - Library Hardware D Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | #### 8.4.3.49 Message: Library Diagnostic Required Owning Entity: SNIA Message ID: SML49 Message Format String: The changer mechanism may have a hardware fault which would be identified by extended diagnostics. Table 260 describes the alerts that are associated with this message. **Table 260 - Library Diagnostic Required Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.50 Message: Library Interface Owning Entity: SNIA Message ID: SML50 Message Format String: The library has identified an interface fault Table 261 describes the alerts that are associated with this message. **Table 261 - Library Interface Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.51 Message: Failure Prediction Owning Entity: SNIA Message ID: SML51 Message Format String: Predictive failure of library hardware Table 262 describes the alerts that are associated with this message. **Table 262 - Failure Prediction Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|-------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ChangerDevice | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.52 Message: Library Maintenance Owning Entity: SNIA Message ID: SML52 Message Format String: Library preventative maintenance required. Table 263 describes the alerts that are associated with this message. **Table 263 - Library Maintenance Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.53 Message: Library Humidity Limits Owning Entity: SNIA Message ID: SML53 Message Format String: Library humidity limits exceeded Table 264 describes the alerts that are associated with this message. **Table 264 - Library Humidity Limits Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.54 Message: Library Voltage Limits Owning Entity: SNIA Message ID: SML54 Message Format String: Library voltage limits exceeded Table 265 describes the alerts that are associated with this message. **Table 265 - Library Voltage Limits Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.55 Message: Library Stray Media Owning Entity: SNIA Message ID: SML55 Message Format String: Stray cartridge left in library after previous error recovery Table 266 describes the alerts that are associated with this message. **Table 266 - Library Stray Media Alert Information** | Name | Req | Value | Description | |---------------------------|-----|-------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | **Table 266 - Library Stray Media Alert Information** | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.56 Message: Library Pick Retry Owning Entity: SNIA Message ID: SML56 Message Format String: Operation to pick a cartridge from a slot had to perform an excessive number of retries before succeeding Table 267 describes the alerts that are associated with this message. **Table 267 - Library Pick Retry Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.57 Message: Library Place Retry Owning Entity: SNIA Message ID: SML57 Message Format String: Operation to place a cartridge in a slot had to perform an excessive number of retries before succeeding Table 268 describes the alerts that are associated with this message. **Table 268 - Library Place Retry Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.58 Message: Library Load Retry Owning Entity: SNIA Message ID: SML58 Message Format String: Operation to load a cartridge in a drive had to perform an excessive number of retries before succeeding Table 269 describes the alerts that are associated with this message. **Table 269 - Library Load Retry Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.59 Message: Library Door Owning Entity: SNIA Message ID: SML59 Message Format String: Library door open is preventing the library from functioning Table 270 describes the alerts that are associated with this message. **Table 270 - Library Door Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.60 Message: Library Mailslot Owning Entity: SNIA Message ID: SML60 Message Format String: Mechanical problem with import/export mailslot Table 271 describes the alerts that are associated with this message. **Table 271 - Library Mailslot Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Y | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.61 Message: Library Magazine Owning Entity: SNIA Message ID: SML61 Message Format String: Library magazine not present Table 272 describes the alerts that are associated with this message. **Table 272 - Library Magazine Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # 8.4.3.62 Message: Library Security Owning Entity: SNIA Message ID: SML62 Message Format String: Library door opened then closed during operation Table 273 describes the alerts that are associated with this message. **Table 273 - Library Security Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### 8.4.3.63 Message: Library Security Mode Owning Entity: SNIA Message ID: SML63 Message Format String: Library security mode changed Table 274 describes the alerts that are associated with this message. **Table 274 - Library Security Mode Alert Information** | Name | Req | Value | Description | |------------------------------|-----|-------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | **Table 274 - Library Security Mode Alert Information** | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.64 Message: Library Offline Owning Entity: SNIA Message ID: SML64 Message Format String: Library manually turned offline Table 275 describes the alerts that are associated with this message. **Table 275 - Library Offline Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.65 Message: Library Drive Offline Owning Entity: SNIA Message ID: SML65 Message Format String: Library turned internal drive offline. Table 276 describes the alerts that are associated with this message. **Table 276 - Library Drive Offline Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No
Data | No Data | 8.4.3.66 Message: Library Scan Retry Owning Entity: SNIA Message ID: SML66 Message Format String: Operation to scan the bar code on a cartridge had to perform an excessive number of retries before succeeding Table 277 describes the alerts that are associated with this message. **Table 277 - Library Scan Retry Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.67 Message: Library Inventory Owning Entity: SNIA Message ID: SML67 Message Format String: Inconsistent media inventory Table 278 describes the alerts that are associated with this message. **Table 278 - Library Inventory Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.68 Message: Library Illegal Operation Owning Entity: SNIA Message ID: SML68 Message Format String: Illegal operation detected Table 279 describes the alerts that are associated with this message. **Table 279 - Library Illegal Operation Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | 8.4.3.69 Message: Pass Through Mechanism Failure Owning Entity: SNIA Message ID: SML69 Message Format String: Error occurred in pass-through mechanism during self test or while attempting to transfer a cartridge between library modules Table 280 describes the alerts that are associated with this message. Table 280 - Pass Through Mechanism Failure Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.3.70 Message: Cartridge in Pass-through Mechanism Owning Entity: SNIA Message ID: SML70 Message Format String: Cartridge left in the pass-through mechanism between two library modules Table 281 describes the alerts that are associated with this message. Table 281 - Cartridge in Pass-through Mechanism Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ## 8.4.3.71 Message: Unreadable barcode Labels Owning Entity: SNIA Message ID: SML71 Message Format String: Unable to read a bar code label on a cartridge during library inventory/scan Table 282 describes the alerts that are associated with this message. Table 282 - Unreadable barcode Labels Alert Information | Name | Req | Value | Description | |------------------------------|-----|-------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | Table 282 - Unreadable barcode Labels Alert Information | Name | Req | Value | Description | |--------------------|------------|---------|--------------| | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### **EXPERIMENTAL** 8.4.3.72 Message: Throughput Threshold Warning Alert Owning Entity: SNIA Message ID: SML72 Message Format String: The throughput threshold has exceeded the warning level <ThroughputWarningAlertThreshold> of the <Computer System> system Table 283 describes the message arguments. **Table 283 - Throughput Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |----------------------------------|--------------|---|--| | ThroughputWarningA lertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Throug hputWarningAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 284 describes the alerts that are associated with this message. **Table 284 - Throughput Threshold Warning Alert Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.3.73 Message: Throughput Threshold Critical Alert Owning Entity: SNIA Message ID: SML73 Message Format String: The throughput threshold has exceeded the critical level <ThroughputCriticalAlertThreshold> of the <Computer System> system Table 285 describes the message arguments. **Table 285 - Throughput Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |-----------------------------------|--------------|--|---| | ThroughputCriticalAl ertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Throug hputCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library System | Table 286 describes the alerts that are associated with this message. **Table 286 - Throughput Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### **EXPERIMENTAL** #### **EXPERIMENTAL** 8.4.3.74 Message: Physical Capacity Threshold Warning Alert Owning Entity: SNIA Message ID: SML74 Message Format String: The physical capacity threshold has exceeded the warning level <PhysicalCapacityWarningAlertThreshold> of the <Computer System> system Table 287 describes the message arguments. **Table 287 - Physical Capacity Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|---|--| | PhysicalCapacityWar ningAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Physic alCapacityWarningAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 288 describes the alerts that are associated with this message. **Table 288 - Physical Capacity Threshold Warning Alert Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | ### **EXPERIMENTAL** # **EXPERIMENTAL** 8.4.3.75 Message: Physical Capacity Threshold Critical Alert Owning Entity: SNIA Message ID: SML75 Message Format String: The physical capacity threshold has exceeded the critical level <PhysicalCapacityCriticalAlertThreshold> of the <Computer System> system Table 289 describes the message arguments. **Table 289 - Physical Capacity Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---|--------------|--|--| | PhysicalCapacityCriti calAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Physic alCapacityCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 290 describes the alerts that are associated with this message. **Table 290 - Physical Capacity Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.76 Message: Logical Capacity Threshold Warning Alert Owning Entity: SNIA Message ID: SML76 Message Format String: The logical capacity threshold has exceeded the warning level <LogicalCapacityWarningAlertThreshold> of the <Computer System> system Table 291 describes the message arguments. **Table 291 - Logical Capacity Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------------------------|--------------
--|--| | LogicalCapacityWarn ingAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Logical CapacityWarningAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 292 describes the alerts that are associated with this message. **Table 292 - Logical Capacity Threshold Warning Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.77 Message: Logical Capacity Threshold Critical Alert Owning Entity: SNIA Message ID: SML77 Message Format String: The logical capacity threshold has exceeded the critical level <LogicalCapacityCriticalAlertThreshold> of the <Computer System> system Table 293 describes the message arguments. **Table 293 - Logical Capacity Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|---|--| | LogicalCapacityCritic alAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Logical CapacityCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 294 describes the alerts that are associated with this message. **Table 294 - Logical Capacity Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.78 Message: System Ratio Threshold Warning Alert Owning Entity: SNIA Message ID: SML78 Message Format String: The system ratio has fallen below the warning level threshold <SystemRatioWarningAlertThreshold> of the <Computer System> system Table 295 describes the message arguments. **Table 295 - System Ratio Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--------------------------------------|--------------|---|--| | SystemRatioWarning
AlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Logical CapacityCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 296 describes the alerts that are associated with this message. Table 296 - System Ratio Threshold Warning Alert Alert Information | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.79 Message: System Ratio Threshold Critical Alert Owning Entity: SNIA Message ID: SML79 Message Format String: The system ratio threshold has fallen below the critical level threshold <SystemRatioCriticalAlertThreshold> of the <Computer System> system Table 297 describes the message arguments. **Table 297 - System Ratio Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |---------------------------------------|--------------|---|---| | SystemRatioCriticalA
lertThreshold | string | A string rendering of the CIM_VTLResourceUsage.System RatioCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library System | Table 298 describes the alerts that are associated with this message. **Table 298 - System Ratio Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.80 Message: Deduplication Ratio Threshold Warning Alert Owning Entity: SNIA Message ID: SML80 Message Format String: The deduplication ratio has fallen below the warning level threshold <DeduplicationRatioWarningAlertThreshold> of the <Computer System> system Table 299 describes the message arguments. **Table 299 - Deduplication Ratio Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|--|--| | DeduplicationRatioW arningAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Dedupl icationRatioWarningAlertThreshol d property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 300 describes the alerts that are associated with this message. **Table 300 - Deduplication Ratio Threshold Warning Alert Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.81 Message: Deduplication Ratio Threshold Critical Alert Owning Entity: SNIA Message ID: SML81 Message Format String: The deduplication ratio threshold has fallen below the critical level threshold <DeduplicationRatioCriticalAlertThreshold> of the <Computer System> system Table 301 describes the message arguments. **Table 301 - Deduplication Ratio Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|--|--| | DeduplicationRatioCr
iticalAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Dedupl icationRatioCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 302 describes the alerts that are associated with this message. **Table 302 - Deduplication Ratio Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |---------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.82 Message: Replication Traffic Threshold Warning Alert Owning Entity: SNIA Message ID: SML82 Message Format String: The replication traffic threshold has exceeded the warning level <ReplicationTrafficWarningAlertThreshold> of the <Computer System> system Table 303 describes the message arguments. **Table 303 - Replication Traffic Threshold Warning Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|---|--| | ReplicationTrafficWar ningAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Replica tionTrafficWarningAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 304 describes the alerts that are associated with this message. **Table 304 - Replication Traffic Threshold Warning Alert Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** ## **EXPERIMENTAL** 8.4.3.83 Message: Replication Traffic Threshold Critical Alert Owning Entity: SNIA Message ID: SML83 Message Format String: The replication traffic
threshold has exceeded the critical level <ReplicationTrafficCriticalAlertThreshold> of the <Computer System> system Table 305 describes the message arguments. **Table 305 - Replication Traffic Threshold Critical Alert Message Arguments** | Message Argument | Data
Type | Description | Possible Values | |--|--------------|--|--| | ReplicationTrafficCriticalAlertThreshold | string | A string rendering of the CIM_VTLResourceUsage.Replica tionTrafficCriticalAlertThreshold property. | A number between 0 and 1 | | Computer System | string | The Name property of the Virtual
Library System or Virtual Tape
Library | The Name of a Virtual Library System | | | | | The Name of a Virtual Tape Library
System | Table 306 describes the alerts that are associated with this message. **Table 306 - Replication Traffic Threshold Critical Alert Alert Information** | Name | Req | Value | Description | |------------------------------|------------|---------|--------------------| | ALERTING_MANAGED_ELE
MENT | Υ | | CIM_ComputerSystem | | ALERT_TYPE | Υ | | Device Alert | | PERCEIVED_SEVERITY | No
Data | No Data | No Data | # **EXPERIMENTAL** # **Clause 9: Service Discovery** # 9.1 Objectives Service discovery in the context of SMI-S refers to the discovery of dedicated SMI-S servers, general purpose SMI-S servers, and directory servers, and the functions they offer in an SMI-S managed environment. The specific objectives to be addressed by the discovery architecture are: - Provide a mechanism that allows SMI-S clients to discover the SMI-S constituents in a storage network environment so that they may communicate with these constituents using CIM Operations over HTTP protocol. This includes: - · Finding the address for the SMI-S constituent; - Finding the capabilities of the server, including communications capabilities, security capabilities, CIM operational capabilities and the functional capabilities (CQL, Batch operations support, etc.); - 2) Provide a mechanism that is efficient in the amount of information exchanged with minimal exchanges to acquire the information; - 3) Provide a mechanism that accurately defines the services in the network, independent of whether or not those services are currently available; - 4) Provide a mechanism that provides information on namespaces provided and the CIM Schema supported; - 5) Provide a mechanism that allows SMI-S clients the profile(s) supported by agents and object managers; - 6) Provide a mechanism that scales to enterprise environments; - 7) Utilize existing standard mechanisms to effect the SMI-S service discovery to enable rapid deployment; - 8) Provide a mechanism that allows SMI-S clients to determine the level of (SMI-S) support provided by the constituents (e.g., R1, R2, etc.) #### 9.2 Overview SMI-S uses the Service Location Protocol Version 2 (SLPv2), as defined by IETF RFC 2608, for its *basic* discovery mechanism. SLPv2 is used to locate constituents (agents, object managers, etc.), but complete discovery of all the services offered involves traversing the interoperability model for the SMI-S profile supported. This clause of the SMI-S specification deals primarily with the information discovered using SLPv2. There are references to information discovered by traversing the interoperability model, but details on this are provided in 10.3. **Note:** SLPv1 is not supported in SMI-S as discovery mechanism. SMI-S requires capabilities that were introduced in SLPv2 in order to support the discovery of SMI-S agents and object managers. SLPv2 defines discovery protocols among three constituents: User Agent (UA): A process that attempts to establish contact with one or more services. A User Agent retrieves service information from Service Agents or Directory Agents. In SMI-S, a "user agent" would be part of an SMI-S Client. Service Agent (SA): A process working on behalf of one or more services to advertise the services. In SMI-S, a "service agent" would be supported by SMI-S dedicated or general purpose servers. Directory Agent (DA): A process that caches SLP service advertisements registered by Service Agents and forwards the service advertisements to User Agents on demand. In SMI-S, the SLP "Directory agent" is defined as the main function of the "directory server" role in the SMI-S Reference Model. SMI-S allows multiple Directory Agents to be used for purposes including load sharing and availability. These Directory Agents may have the same scope, as allowed by SLPv2. SLPv2 provides a framework for client applications, represented by User Agents, to find and utilize services, represented by Service Agents. The Directory Agents represent an optional part that enhances the performance and scalability of the protocol by acting as a cache for all services that have been advertised. Directory Agents also reduce the load on Service Agents, making simpler implementations of Service Agents possible. User Agents can then query the Directory Agents for services. Service Agents register with Directory Agents and are required to reregister as the registrations expire. If no Directory Agents are present, User Agents may request service information directly from the Service Agents. Using SLPv2, a client can discover SMI-S servers and SLPv2 Directory Agents in the storage network. In the case of SMI-S servers, the basic information discovered is the profiles supported and the URL of the service. Details on the specific services provided with the profile are then found by traversing the service structure modeled for the profile. Using SLPv2, a "service agent" advertises its services. These advertisements have an expiration time period. To avoid getting an advertisement deleted, a service agent shall reregister before the time period expires. SMI-S servers may deregister as part of a graceful shutdown. A service advertisement consists of file components: - Service type name describes the general type of service being advertised (ex. Printing, faxing, etc.). The working assumption is that DMTF wants "WBEM Servers" advertised with the service type WBEM. This is used by SMI-S servers (both dedicated and general purpose servers).; - Attributes The collection of attributes describes the particular instance of the service in more detail. For SMI-S, these would be the attributes defined by the service type template for WBEM. The attributes are defined in 9.5.2: - Service Access point the service access point defines the point of connection that the software client of the UA uses to connect to the service over the network.; - Scopes These are administrative groupings of services. The default value ("default") should be used for SMI-S servers. Other scopes may be defined by the customer, but care must be taken when this is done. The administrator shall do this correctly or SMI-S servers will not be visible. All the SMI-S recipes assume that DEFAULT is set for scopes; - Language Services advertisements contain human readable strings. These are provided in English, but may also be in other languages. #### **IMPLEMENTED** SLPv2 provides for authentication of service URLs and service attributes. This provides user agents (UAs) and directory agents (DAs) with assurances of the integrity of service URLs and attributes included in SLP messages. The only systems which can generate digital signatures are those which have been configured by administrators in advance. Agents that verify signed data may assume it is trustworthy inasmuch as administrators have assured trustworthiness through the cryptographic keying of SAs and DAs. The SLPv2 security model assumes that service information is public, and therefore does not require confidentiality. Section 2.5 of RFC 3723, Securing Block Storage Protocols over IP, states that the SA advertisements as well as UA requests and/or responses are vulnerable to these security threats: 1) An attacker could insert or alter service agent (SA) advertisements or responses to a UA requests in order to masquerade as the real peer or launch a denial of service attack. - 2) An attacker could gain knowledge about an SA or a UA through sniffing, and launch an attack against the peer. - 3) An attacker could spoof DA advertisements and thereby cause UAs and SAs to use a rogue DA. Section 2.5 of RFC 3723 also outlines the capabilities required to address these threats, but notes that SLP (as defined in RFC 2608) does not satisfy these security requirements. SLPv2 only provides end-to-end authentication (i.e., does not support confidentiality), but with this authentication, there is no way to authenticate zero result responses. Thus an attacker could mount a denial of service attack by sending UAs a zero results Service Reply (SrvRply) or Attribute Reply (AttrRply) with a source address corresponding to a legitimate DA advertisement. The RFC 3723 mitigation strategies include reliance on digital signatures for authentication of service URLs and attributes as well as IPsec. For SMI-S environments that require security in conjunction with the use of SLPv2, the major RFC 3723 recommendations are not necessary as long as the SLP messages are not fully trusted and SSL or TLS with server certificates are used. Additional security guidance is provided in the sections associated with UAs and SAs. #### **IMPLEMENTED** # 9.3 SLP Messages SLP v2 divides the base set of SLP messages into required and optional subsets. **Note:** SLP v2 also includes a new feature, an extension format. Extension messages are attached to base messages. SMI-S does not use extensions. The discussion of messages introduces terms that define the SLP services: - Attribute Reply (AttrRply): A reply to an Attribute Request. (optional) - Attribute Request (AttrRqst): A request for attributes of a given type of service or attributes
of a given service. (optional) - DA Advertisements (DAAdvert): A solicited (unicast) or unsolicited (multicast) advertisement of Directory Agent availability. - SA Advertisement (SAAdvert): Information describing a service that consists of the Service Type, Service Access Point, lifetime, and Attributes. - Service Acknowledgement (SrvAck): A reply to a SrvReg request. - Service Deregister (SrvDereg): A request to deregister a service or some attributes of a service. (optional) - Service Register (SrvReg): A request to register a service or some attributes of a service. - Service Reply (SrvRply): A reply to a Service Request. - Service Request (SrvRqst): A request for a service on the network. - Service Type Reply (SrvTypeRply): A reply to a Service Type Request. (optional) - Service Type Request (SrvTypeRqst): A request for all types of service on the network. (optional) Service Agents (SAs) and User Agents (UAs) shall support Service Request, Service Reply, and DAAdvertisement message types. Service Agents shall additionally support Service Registration, SA Advertisement, and Service Acknowledgement message types. The remaining message types may be supported by Service Agents and User Agents. Directory Agents (DAs) shall support all message types with the exception of SA Advertisement. Table 307 lists each base message type, its abbreviation, function code, and required/optional status. Table 307 - Message Types | Message Type | Abbreviation | Function
Code | Required (R)/
Optional (O) | | | |----------------------------|--------------|------------------|-------------------------------|-----|-----| | | | | DAs | SAs | UAs | | Service Request | SrvRqst | 1 | R | R | R | | Service Reply | SrvRply | 2 | R | R | R | | Service
Registration | SrvReg | 3 | R | R | 0 | | Service
Deregistration | SrvDereg | 4 | R | 0 | 0 | | Service
Acknowledgement | SrvAck | 5 | R | R | 0 | | Attribute Request | AttrRqst | 6 | R | R | R | | Attribute Reply | AttrRply | 7 | R | R | R | | DA Advertisement | DAAdvert | 8 | R | R | R | | Service Type
Request | SrvTypeRqst | 9 | R | 0 | 0 | | Service Type
Reply | SrvTypeRply | 10 | R | 0 | 0 | | SA Advertisement | SAAdvert | 11 | N/A | R | 0 | **Note:** The requirements in this table extend the requirements defined for SLP V2. SMI-S adds additional requirements for AttrRqst and AttrRply beyond those defined by the RFC. # 9.4 Scopes SLPv2 defines a scope as follows: Scope: A set of services, typically making up a logical administrative group. Scopes are sets of service instances. The primary use of Scopes is to provide the ability to create administrative groupings of services. A set of services may be assigned a scope by network administrators. A User Agent (UA) seeking services is configured to use one or more scopes. The UA only discovers those services that have been configured for it to use. By configuring UAs and Service Agents with scopes, administrators may make services available. Scopes strings are case insensitive. The default SCOPE string is "DEFAULT". SMI-S does not dictate how Scopes are set. That is, scopes can be set by customers to match their needs. However, SMI-S requires that SMI-S servers use the "default" scope as a means of making SMI-S advertisements visible to SMI-S clients. To be compliant with SMI-S, User Agents (SMI-S clients) and Service Agents (SMI-S servers) shall not require scope settings that interfere with administrative use of scopes. Specifically, this means: • SMI-S clients and servers shall allow an administrator to set scopes to define what is to be searched, and, SMI-S clients and servers shall allow an administrator to configure scopes, including turning off the "default" scope. #### 9.5 Services Definition Services definition uses these terms defined in SLPv2: - Service Type Template: A formalized, computer-readable description of a Service Type. The template defines the format of the service URL and attributes supported by the service type. - Service URL: A Uniform Resource Locator for a service containing the service type name, network family, Service Access Point, and any other information needed to contact the service. Services are defined by two components: the Service URL and the Service Type Template. The Service URL defines an access point for the service and identifies a unique resource in the network. Service URLs may be either existing generic URLs or URLs from the service: URL scheme. The second component in a Service definition is a Service Type Template. Service Type Templates define the attributes associated with a service. These attributes, through inclusion in registrations and queries, allow clients to differentiate between similar services. SMI-S servers use a Service Type Template defined by DMTF for advertising "WBEM Servers" (e.g., CIMOMs). The template name for WBEM Servers is "WBEM". #### 9.5.1 Service Type Service Type: The class of a network service represented by a unique string (for example a namespace assigned by IANA). The service type describes a class of services that share the same attributes (e.g., the service printer or the service "WBEM"). DMTF is considering an SLP-based discovery mechanism that locates "WBEM" (e.g., CIMOMs). The SMI-S design builds on the DMTF proposal. The basic function of SLP discovery is the identification of the service offered by a constituent. In the case of SMI-S, the service type advertised by all constituents is "WBEM." This follows a DMTF proposal for advertising WBEM Servers. The only exception to this is the Directory Server, which advertises itself as a "directory-agent." That is, SMI-S uses a standard SLP directory service. SMI-S does not require a unique SMI-S directory server. For other roles (SMI-S servers) the role advertises its services as a WBEM services (e.g., "WBEM"). #### 9.5.2 Service Attributes Attributes: A collection of tags and values describing the characteristics of a service. SMI-S servers shall advertise a standard set of attributes: - Service-hi-name This is the name of the service for use in human interfaces. - Service-hi-description This is a description of the CIM service that is suitable for use in human interfaces. - Service-id A unique id for the CIM Server that is providing the service. - Service-location-tcp This is a list of TCP addresses that can be used to reach the service. NOTE: This need only be one (for CIM-XML). But it could hold others (for other communications protocols). - CommunicationMechanism "cim-xml" (at least). The SMI-S server could support others, but "cim-xml" is mandatory for SMI-S servers. - OtherCommunicationMechanismDescription used only if "other" is also specified for CommunicationMechanism. - InteropSchemaNamespace The Namespace within the SMI-S server where the CIM Interop Schema can be accessed. Each namespace provided shall contain the complete information and if multiple namespaces are provided they shall contain the same information. Even though multiple InteropSchemaNamespaces may be provided, an SMI-S client may rely on the first namespace as the definitive namespace for accessing the Interop Schema (including the class instances of the Server Profile). - ProtocolVersion The Version of the cim-xml protocol if this is the defined. This is mandatory for SMI-S servers. - FunctionalProfilesSupported: Permissible values are "Unknown", "Other", "Basic Read", "Basic Write", "Schema Manipulation", "Instance Manipulation", "Association Traversal", "Query Execution", "Qualifier Declaration", "Indications". This defines the CIM Operation Profiles supported by the SMI-S server. Can return multiple values. - FunctionalProfileDescriptions If the "other" value is used in the FunctionalProfilesSupported attribute, this shall be populated. If provided it shall be derived from the CommunicationMechanism.FunctionalProfileDescriptions property. Use of this attribute is not specified by SMI-S. - MultipleOperationsSupported A Boolean that defines whether the SMI-S server supports batch operations. - AuthenticationMechanismsSupported Permissible values are "Unknown", "None", "Other", "Basic", "Digest". Defines the authentication mechanism supported by the SMI-S server. Can return multiple values. - AuthenticationMechanismDescriptions Defines other Authentication mechanism supported by the SMI-S server. The value shall be supplied if the "Other" value is set in the AuthenticationMechanismSupported attribute. This attribute is optional. It is to be provided only when the AuthenticationMechanismSupported attribute is "other". - Namespace Namespace(s) supported on the SMI-S server. This attribute may have multiple values (one for each namespace defined in the SMI-S server), and is literal (L) because the namespace names may not be translated into other languages. - Classinfo The values are taken from the interop schema Namespace.classinfo property. The values represent the classinfo (CIM Schema version, etc.) for the namespaces defined in the corresponding namespace listed in the namespace attribute. Each entry in this attribute shall correspond to the namespace defined in the same position of the namespace attribute. There shall be one entry in this attribute for each entry in the namespace attribute. - RegisteredProfilesSupported The SMI-S profile(s) supported by the server, prefixed by "SNIA" (at least). An SMI-S server may also support other RegisteredProfiles, but it shall support at least one "SNIA" profile. In addition, this attributed can also be used to advertise subprofiles, when subprofiles are to be advertised. The RegisteredProfilesSupported is an array. Each entry includes a RegisteredOrganization (i.e., SNIA), a Profile name and an optional subprofile name. Each name is separated by a colon. Note that a single SMI-S server can support multiple profiles. As a result, the profile attribute is an array of values. Additional attributes, such as specific profile services supported, model subprofiles supported
and the SMI-S release level are not discovered via SLP. They would be found by traversing the model presented by the SMI-S server. # 9.6 User Agents (UA) A User Agent is a Client process working on the user's behalf to establish contact with some service. A User Agent retrieves service information from Service Agents (9.7) or Directory Agents (9.8). Further description of a Client and its role may be found in 10.2, "SMI-S Client". The only required feature of a User Agent is that it can issue SrvRqsts and interpret DAAdverts, SAAdverts and SrvRply messages. If Directory Agents exist, User Agents shall issue requests as Directory Agents are discovered. An SMI-S Client should act as an SLP user agent (UA) using the query functions of SLP V2 to determine location and other attributes of the "WBEM" SLP Service Type Template defined in 9.11, "'Standard WBEM' Service Type Templates". The basic search methodology for SMI-S clients is to search for directory agents and service agents within their scope. If all SMI-S servers are supported by a directory agent, then the search yields nothing but directory agents. The client can then obtain a list of services (and their URLs) for management of the SMI-S servers. If any Service agents are not covered by a directory agent (i.e., are not within its scope), then the client obtains service replies from those service agents. An client would typically search for all service types available in their scope(s). This returns a list of service types available in the network. However, an SMI-S client can be assumed to be searching for "WBEM" service types. If a client only manages selected devices (e.g., switches or arrays), the SMI-S client can issue a request for the specific services by using predicates on the "RegisteredProfilesSupported" attribute. #### **IMPLEMENTED** When a SMI-S client uses SLPv2 and security is an issue, the following should be considered: - SSL and TLS should be used with a certificate-based cipher suite along with a certificate installed on each SMI-S server (SA) for communications with discovered SAs (SMI-S servers). - SLPv2 Service Agents (SA) and Directory Agents (DA) may advertise (SAAdverts and DAAdverts, respectively) their presence on the network, using multicast; however, SMI-S clients should treat these advertisements as advisory (i.e., identity shall be verified as described in 9.7 and 9.8). - SMI-S clients should maintain and use a negative authentication cache to avoid repeatedly contacting an SMI-S server that fails to authenticate as part of the SSL or TLS handshake. #### **IMPLEMENTED** # 9.7 Service Agents (SAs) A Service Agent supports an SMI-S server process working on behalf of one or more services to advertise the services. See Clause 10: SMI-S Roles for further description of SMI-S servers. Service Agents shall accept multicast service requests and unicast service requests. SAs may accept other requests (Attribute and Service Type Requests). An SA shall reply to appropriate SrvRqsts with SrvRply or SAAdvert messages. The SA shall also register with all DAs as they are discovered. To provide for SMI-S Client discovery of SMI-S servers, a CIM Server shall act as a Service agent (SA) for the IETF Service Level Protocol (SLP) V2 as defined in IETF RFC 2608. The service shall correspond to V2 of SLP (IETF RFC 2608 and 2609) and shall use the Service Templates defined in 9.11 of this specification for advertisements. An SMI-S server acting as an SA shall provide a separate SLP advertisement for each address/port that the CIM Server advertises. #### **IMPLEMENTED** When a SMI-S server uses SLPv2 and security is an issue, the following should be considered: - SMI-S servers should accept SSL and TLS unicast connections from SMI-S clients as well as selecting a certificate-based cipher suite. - SMI-S servers that advertise their existence as SLPv2 SAs (SAAdverts) should minimize leakage of information, by minimizing the information that is contained in the multicast advertisements. - SMI-S servers, functioning as SAs, should register with all discovered DAs, which advertise any of its configured scopes and establish connections with these DAs over unicast. - When SMI-S servers are also functioning as clients (e.g., cascading), they should follow the security guidance provided in 9.6 User Agents (UA). ### **IMPLEMENTED** # 9.8 Directory Agents (DAs) SMI-S supports existing SLPv2 Directory Agents (without modification). That is, SMI-S makes no assumptions on Directory Agents that are not made by SLPv2. Note that this cannot quite be said for User Agents, which are looking for SMI-S specific services, or Service Agents, which are advertising SMI-S specific services. # 9.9 Service Agent Server (SA Server) ## 9.9.1 General Information The reserved listening port for SLP is 427, the destination port for all SLP messages. Service Agents (SAs) are required to listen for both unicast and multicast requests. A Directory Agent (DA) shall listen for unicast request and specific multicast DA discovery service requests. SAs and User Agents (UAs) that perform passive DA discovery shall listen for multicast DA Advertisements (DAAdverts). TCP/IP requires that a single server process per network interface control all incoming messages to a port. That requirement necessitates a mechanism to share the SLP port (427). Sharing the SLP port (427) is accomplished with a Service Agent Server (SA Server) process that 'owns' the port on behalf of all SAs, UAs and optional DA that are listening for SLP messages. The SA Server listens for incoming messages that request advertisement information and either answer each request or forward it to the appropriate SA. The SA Server also performs passive DA discovery and distribute the DA addresses and scopes to the SAs and UAs that it serves. A SA Server may also function as a DA if the SA Server is implemented so that it answers requests for advertisement information rather than forwarding each request to the appropriate SA. The combined DA/SA Server is acting as an intermediary between a SA that registered an advertisement and a UA requesting information about the advertisement. ## 9.9.2 SA Server (SAS) Implementation IETF RFC 2614 describes APIs for both the C and Java languages. Both APIs are designed for standardized access to the Service Location Protocol (SLP). The goals of the C API are: Directly reflect the structure of SLP messages in API calls and return types as character buffers and other simple data structures. - Simplify memory management to reduce API client requirements. - Provide API coverage of just the SLP protocol operations to reduce complexity. - · Allow incremental and asynchronous access to return values, so small memory implementations are possible. - Support multithreaded library calls on platforms where thread packages are available. ## The Java API goals are: - Provide complete coverage of all protocol features, including service type templates, through a programmatic interface. - Encourage modularity so that implementations can omit parts of the protocol that are not needed. - In conformance with Java's object-oriented nature, reflect the important SLP entities as objects and make the API itself object-oriented. - Use flexible collection data types consistently in the API to simplify construction of parameters and analysis of results. - Designed for small code size to help reduce download time in networked computers. ## 9.9.3 SA Server (SAS) Clients #### 9.9.3.1 Description An SAS Client is a Service Agent (SA), User Agent (UA), or Directory Agent (DA) that is associated with a SA Server. The SA Server listens on the SLP port (427) and appropriately handle all incoming messages for each SAS Client. A DA acting as a SAS Client is separately configured on the same host as the SA Server. #### 9.9.3.2 SAS Client Requests – SA Server Responses A SA Server responds when appropriate, to incoming unicast and multicast messages from SAS Clients. The SA Server may answer with the appropriate advertisement, if available, or forward the request on to the appropriate SAS Client. If the SA Server is also functioning as a DA, it discards a multicast SrvRqst of "service:directory-agent" that has either a missing scope list or the scope list does not contain a scope the Service Agent Server/DA is configured with. #### 9.9.4 SA Server Configuration #### **9.9.4.1** Overview SA Servers may be configured via an individual SLP configuration file, programmatically, or a combination of the two. DHCP may also be used obtain the scope list for a SA Server. Figure 17 illustrates the various means of configuring a SA Server. #### 9.9.4.2 SLP Configuration File If a SA Server is also functioning as a DA, the DA configuration properties shown in Table 308 shall be set: Table 308 - Required Configuration Properties for SA as DA | Keyword | Data Type | Value | |----------------------|-----------|------------------| | net.slp.isDA | boolean | true | | net.slp.DAAttributes | string | (SA-Server=true) | The DA attribute/value pair of "SA-Server=true" allows a query to be used when a SA Server/DA needs to be identified. In addition, when the SA Server/DA responds to a SrvRqst message with a DAAdvert message, the DA attribute/value pair is included. The remaining DA configuration property, net.slp.DAHeartBeat, with a default of 10,800 seconds, may be set as appropriate. If a SA Server is not functioning as a DA, the SA configuration property in Table 309 shall be set: Table 309 - Required Configuration Properties for SA | Keyword | Data Type | Value | |----------------------|-----------|------------------| | net.slp.SAAttributes | string | (SA-Server=true) | # 9.9.4.3 Programmatic Configuration Both the C and Java language API's provide access to SLP properties contained in the SLP configuration file. The actual SLP configuration file is not accessed or modified via the interfaces. Once the file is loaded into memory at the start of
execution, the configuration property accessors work on the in-memory representation. The C language API provides the SLPGetProperty() and SLPSetProperty() functions. The SLPGetProperty() function allows read access to the SLP configuration properties while the SLPSetProperty() function allows modification of the configuration properties. The SLPSetProperty() function has the following prototype: ``` void SLPSetProperty(const char *pcName, const char *pcValue); ``` The SLPSetProperty() function takes two string parameters: pcName and pcValue. The pcName parameter contains the property name and pcValue contains the property value. The following example uses the SLPSetProperty() function to configure a SA Server that is not functioning as a DA: ``` void setSAAttributes() { char value[80]; /* A buffer for storing the attribute string. */ value = "SA Server=true"; SLPSetProperty("net.slp.SAAttributes", value); } ``` ## 9.9.4.4 DHCP Configuration If the Service Agent Server is also functioning as a DA, its scope list may be obtained via DHCP. Scopes discovered via DHCP take precedence over the net.slp.useScopes property in the SLP configuration file. ### 9.9.4.5 Scope A Service Agent Server is configured with a minimum scope of DEFAULT. If a Service Agent Server is not functioning as a DA, DEFAULT is the only scope configured. If a Service Agent Server is functioning as a DA, it may have additional scopes configured. Use of the DEFAULT scope enables the associated SAS Clients (UAs, SAs and DA) to actively discover the Service Agent Server using a well-known value for scope. Figure 17 - SA Server Configuration - 1) The SA Server may obtain specific configuration values via an individual SLP Configuration file. - 2) The C or Java API provides programmatic access to the configuration file properties. - 3) The SA Server may obtain its scope values from a DHCP Server. #### 9.9.5 SA Server Discovery "Discovery" of a SA Server by its SAS Clients is accomplished by successfully establishing the required communication link between the two entities. There is no need for active or passive discovery as described by SLP since both the SA Server and SAS Clients reside on the same host system. #### 9.9.6 SAS Client Registration Service Agents (SAs) that are SAS Clients register and deregister with the local SA Server using the SrvReg/SrvDereg messages. The SA Server responds with a Service Acknowledgement (SrvAck) message. The SA Server store a service advertisement until either its lifetime expires or a SrvDereg message is received. If the SA Server is also functioning as a DA, the DA registration requirement is also met. The SA server also forwards any SA registration to other DAs that have the same scope as the SA. # 9.10 Configurations There are three network configurations (9.10.1, 9.10.2, 9.10.3) showing SMI-S clients and servers. The routing of SLP's multicast messages effect the SMI-S discovery process. SMI-S clients and servers shall be able to be configured to work in these environments. # 9.10.1 Multicast Configurations This is the simplest environment and is shown in Figure 18. This network allows multicast messages to be delivered to all the components of a SMI-S management system. As defined in IETF RFC 2608 - 8.1, the client uses multicast SLP messages to contact the SLP Service Agent (SA) associated with each SMI-S server. Then, each SA sends replies directly back to the client. Because of the possible size of the reply, servers shall support TCP/IP (as well as UDP) to send the reply. The server shall also support the SLP oversize bit to tell the client large TCP/IP messages shall be used. When a client sees the overflow bit in a UDP response, it should retry using a TCP request. Figure 18 - Multicast Configuration # 9.10.2 No Multicast configuration In this configuration, shown in Figure 19, the network doesn't allow the use of multicast messages. All communication shall use TCP/IP point to point connections. First, a SLP directory agent should be used. Each SA shall be configurable by the user. The user will configure the SA by setting the address of the SLP directory agent (DA). At startup each SA shall use a temporary registration to tell the DA its SLP information (IETF RFC 2608 - 8.3). The SAs shall renew the registration before it expires (IETF RFC 2608 - 8.3). The registration timeout should be about 5-10 min. The client shall also be configurable by the user. The user will configure the client by setting the DA address. The client will use this address to send SLP messages to the DA (IETF RFC 2608 - 8.1). The DA will satisfy the requests using information provided by the SAs. Figure 19 - No Multicast configuration #### 9.10.3 Multicast Islands Networks that allow for multicast messages to reach parts of the system, require the use of both techniques described. The client should use the multicast process and the no multicast method. It should be able to combine the information found each way into a single set of discovery information. The SAs shall support both methods at the same time as shown in Figure 20. Figure 20 - Multicast Islands # 9.11 'Standard WBEM' Service Type Templates **Note:** For each description in the template that states the value shall be the ClassName.PropertyName value, the format/rules for these values are defined in the Interop Model of the CIM Schema and in the "Server Profile" section of this specification. This SLP Template requires a minimum Schema version of 2.7 to support the required values. Some of the optional values require CIM Schema version 2.8. ``` Name of submitter: "DMTF" <technical@dmtf.org> Language of service template: en Security Considerations: Information about the specific CIM Server implementation or the Operating System platform may be deemed a security risk in certain environments. Therefore these attributes are optional but recommended. Template Text: -----template begins here---template-type=wbem template-version=1.0 ``` ``` template-description= This template describes the attributes used for advertising WBEM Servers. template-url-syntax=string #The template-url-syntax MUST be the wbem URI encoding of #the location of one service access point offered by the WBEM Server #over TCP transport. This attribute must provide sufficient addressing #information so that the WBEM Server can be addressed directly using #the url. service-hi-name=string 0 # This string is used as a name of the CIM service for human # interfaces. This attribute MUST be the # CIM_ObjectManager.ElementName property value. service-hi-description=string 0 # This string is used as a description of the CIM service for # human interfaces. This attribute MUST be the # CIM_ObjectManager.Description property value. service-id=string L # The ID of this WBEM Server. The value MUST be the # CIM_ObjectManager.Name property value. CommunicationMechanism=string L # The communication mechanism (protocol) used by the CIM Object Manager for # this service-location-tcp defined in this advertisement. This information # MUST be the CIM_ObjectManagerCommunicationMechanism.CommunicationMechanism # property value. # CIM-XML is defined in the CIM Operations over HTTP specification which can # be found at http://dmtf.org/ "Unknown", "Other", "cim-xml" OtherCommunicationMechanismDescription = String L O # The other communication mechanism defined for the CIM Server in the case # the "Other" value is set in the CommunicationMechanism string. # This attribute MUST be the CIM_ObjectManagerCommunicationMechanism.OtherCommunicat ionMechanism # property value. This attribute is optional because it is only required if the # "other" value is set in CommunicationMechansim. The value returned is # a free-form string. InteropSchemaNamespace=string L M # Namespace within the target WBEM Server where the CIM Interop Schema can be # accessed. Multiple namespaces may be provided. Each namespace provided ``` #### Service Discovery ``` # MUST contain the same information. ProtocolVersion=String O L # The version of the protocol. It MUST be the # CIM_ObjectManagerCommunicationMechanism.Version property value. FunctionalProfilesSupported=string L M # ProfilesSupported defines the CIM Operation profiles supported by the # CIM Object Manager. This attribute MUST be the # CIM_ObjectManagerCommunicationMechansim.FunctionalProfilesSupported # property value. "Unknown", "Other", "Basic Read", "Basic Write", "Schema Manipulation", "Instance Manipulation", "Association Traversal", "Query Execution", "Qualifier Declaration", "Indications" FunctionalProfileDescriptions=string L O M # Other profile description if the "other" value is set in the ProfilesSupported # attribute. This attribute is optional because it is returned only if the "other" # value is set in the ProfilesSupported attribute. If provided it MUST # be equal to the CIM_ObjectManagerCommunicationMechanism.FunctionalProfi leDescriptions # property value. MultipleOperationsSupported=Boolean # Defines whether the CIM Object Manager supports batch operations. # This attribute MUST be the # CIM_ObjectManagerCommunicationMechanism.MultipleOperationsSupported # property value. AuthenticationMechanismsSupported=String L M # Defines the authentication mechanism supported by the CIM Object Manager. # This attributed MUST be the # CIM_ObjectManagerCommunicationMechanism.AuthenticationMechanismsSupported property value. "Unknown", "None", "Other", "Basic", "Digest" AuthenticationMechansimDescriptions=String L O M # Defines other Authentication mechanisms supported by the CIM Object Manager # in the case where the "Other" value is set in any of the # AuthenticationMechanismSupported attribute values. If provided, this attribute MUST be the # CIM_ObjectManagerCommunicationMechanism.AuthenticationMechansimDescriptions # property value. Namespace=string L M O # Namespace(s) supported on the CIM Object Manager. ``` #### Service Discovery ``` # This attribute MUST be the # CIM_Namespace.name
property value for each instance of CIM_Namespace # that exists. This attribute is optional. # NOTE: This value is literal (L) because # the namespace names MUST not be translated into other languages. Classinfo=string M O # This attributes is optional but if used, the values MUST be the # CIM_Namespace.classinfo property value. # The values represent the classinfo (CIM Schema version, etc.) for # the namespaces defined in the corresponding namespace listed in the # Namespace attribute. Each entry in this attribute MUST correspond # to the namespace defined in the same position of the namespace # attribute. There must be one entry in this attribute for each # entry in the namespace attribute. RegisteredProfilesSupported=string L M # RegisteredProfilesSupported defines the Profiles that # this WBEM Server has support for. Each entry in this # attribute MUST be in the form of # Organization:Profile Name {: Subprofile Name} # examples: DMTF:CIM Server DMTF:CIM Server:Protocol Adapter DMTF:CIM Server:Provider Registration # The Organization MUST be the # CIM_RegisteredProfile.RegisteredOrganization property value. # The Profile Name MUST be the # CIM_RegisteredProfile.RegisteredName property value. # The subprofile Name MUST be the # CIM_RegisteredProfile.RegisteredName property value when it is # used as a Dependent in the CIM_SubProfileRequiresProfile # association for the specified Profile Name (used as the antecedent). ``` -----template ends here----- ## Clause 10: SMI-S Roles ## 10.1 Introduction As shown in Figure 21, the complete reference model shows the roles for the various entities of the management system. Any given host, network device or storage device may implement one or more of these roles as described later in this clause. Figure 21 - SMI-S Roles This profile presents a concise definition of each of these roles and the requirements on implementations of these roles in a management system. For each of these roles, specific functions are required to be implemented in one or more functional areas: - a) SLP Discovery Functions the required discovery capabilities that the role performs in the overall management system; - b) Generic Operations the management model operations that the role performs; - c) Security the security requirements that the role is expected to satisfy; - d) Lock Management Operations the locking operations that the role is expected to perform. The detail of these responsibilities for each of the roles is described in this profile. ## 10.2 SMI-S Client #### 10.2.1 Overview The SMI-S Client role in the overall management system is performed by software that is capable of performing management operations on the resources under management. This includes monitoring, configuration, and control of the operations on the resources. Typical clients include user interface consoles, complete management frameworks, and higher-level management applications and services such as policy based management systems. There can be zero or more SMI-S clients in the overall management system. These clients can all coexist simultaneously and can perform independent or overlapping operations in the management system. It is outside the scope of this specification to specify client cooperation with other clients in any way. The semantics of the described management system is that the last successful client operation is valid and persists in the absence of any other client operations (last write wins). It is expected that development kits for the management system will provide code for the required functions implemented in clients. Consoles, frameworks and management applications can then use this common code in order to comply with this specification. The specification of an API for this client code, and specific language bindings for applications is outside the scope of this specification, but is a candidate for follow-on work. #### 10.2.2 SLP Functions The SMI-S Client role is required to implement SLP User Agent (UA) functionality as specified in 9.6, "User Agents (UA)". The Client discovers all SMI-S servers within its configured scope that are required for its operations by querying for service specific attributes that match the criteria for those operations. ## 10.2.3 Generic Operations The SMI-S Client role shall implement client functionality as specified by the relevant WBEM protocol standard and should implement asynchronous notification functionality as specified by that standard. ## 10.2.4 Security Considerations The SMI-S Client role shall implement security as specified in 12.2.1, "General Requirements for HTTP Implementations". ### 10.2.5 Lock Management Functions There are no requirements for locking in this release of the specification. ### 10.3 Dedicated SMI-S Server ## 10.3.1 Overview The intention of the SMI-S server role in a management system is to provide device management support in the absence of any other role. A simple management system could consist of just a SMI-S Client and a SMI-S Server and all management functions can be performed on the underlying resource. This means that a vendor can offer complete management for the resource by shipping a standalone client for the resource and not depend on any other management infrastructure. Although, at the same time, the SMI-S Server can participate in a more complex management environment through the use of the standard mechanisms described here. - Embedded SMI-S Server the SMI-S Server functions are incorporated into the resource directly and do not involve separate installation steps to become operational. - Proxy SMI-S Server the SMI-S Server is hosted on a system separate from the resource and communicates with the resource via either a standard or proprietary remote protocol. This typically involves an installation operation for the SMI-S Server and configuration for, or independent discovery of, the desired resource. In order to minimize the footprint on the resource or proxy hosts, the required functions of the SMI-S Server role have purposely been scaled back from those of a typical general purpose CIM Server running on host with more significant resources. These required functions are described in 10.3.2 and 10.3.3. #### 10.3.2 SLP Functions The SMI-S Server role is required to implement SLP Service Agent (SA) functionality as specified in 9.7, "Service Agents (SAs)". Optionally, it should implement Service Agent Server functionality or use an existing SA Server if one exists. The SMI-S server shall advertise service-specific attributes that allow the client to locate it based on its profile, as defined in section 9.11, "'Standard WBEM' Service Type Templates". ## 10.3.3 Generic Operations #### 10.3.3.1 General The SMI-S Server role shall implement the server functionality as specified by the relevant WBEM Protocol standard. ## 10.3.3.2 Required Operations The generic operations used by SMI-S Servers are: - GetInstance - DeleteInstance - ModifyInstance - CreateInstance - OpenClassInstancesWithPath - OpenClassInstancePaths - OpenAssociatedInstancesWithPath - OpenAssociatedInstancePaths - OpenReferencingInstancesWithPath - OpenReferencingInstancePaths - OpenQueryInstance - PullInstancesWithPath - PullInstancePaths - PullInstances - CloseEnumeration - EnumerationCoount - InvokeMethod - InvokeStaticMethod #### **DEPRECATED** The following operations are deprecated in favor of the "pull" operations. These operations are still supported in SMI-S 1.x versions, but will be removed in the future. - · GetClassInstancesWithPath - GetClassInstancePaths - GetAssociatedInstancesWithPath - GetAssociatedInstancePaths - GetReferencingInstancesWithPath - GetReferencingInstancePaths #### DEPRECATED ### 10.3.3.3 Required Model Support The SMI-S Server shall implement the Server Profile as detailed in *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* Clause 40: Server Profile. ### 10.3.4 Security Considerations The SMI-S Server role shall implement security as specified in Clause 12: Security. ## 10.3.5 Lock Management Functions There are no requirements for locking in this release of the specification. ## 10.4 General Purpose SMI-S Server #### 10.4.1 Overview The General Purpose SMI-S Server role in an overall management system is intended to reduce the number of network connections needed by a Client to manage large numbers of resources. It is also envisioned as a convenient place to perform operations across multiple resources, further off-loading these from the Client as well. In addition, the General Purpose SMI-S Server role can provide a hosting environment for the plug-in instrumentation of host-based resources and management proxies for resources with remote management protocols. These plug-ins are called providers and considered sub roles of the General Purpose SMI-S Server. A General Purpose SMI-S Server is not required in a management system, but is expected to be deployed at least as a common infrastructure for host-based resources. In any large storage network, there may be several General Purpose SMI-S Servers (as many as one per host). Communication between General Purpose SMI-S Servers may be standardized in the future, but this capability is outside the scope of this specification. General Purpose SMI-S Servers may act as a point of aggregation for multiple SMI-S Profiles as described in Clause 40: Server Profile using existing standard mechanisms as specified here. As General Purpose SMI-S Servers are expected to be deployed on hosts with more resources and less footprint concerns than other managed resources, the required functions, specified in 10.4.2, 10.4.3, and 10.4.4, are more extensive that of an Dedicated SMI-S Server. #### 10.4.2 SLP Functions The General Purpose SMI-S Server role is required to implement SLP Service Agent (SA) functionality as specified in 9.7, "Service Agents (SAs)". The General Purpose SMI-S Server shall advertise service specific attributes that allow the Client
to locate it based on the profiles it supports, as defined in 10.4.3.1, "General". #### 10.4.3 Generic Operations #### 10.4.3.1 General The General Purpose SMI-S Server role shall implement CIM Server functionality as specified by the Generic Operations standard. #### 10.4.3.2 Required Operations The General Purpose SMI-S Server is required to implement the minimum profile as specified in the Generic Operations standard. In addition, it shall implement the intrinsic methods needed to support the Profiles that it supports. ### 10.4.3.3 Required Model Support The General Purpose SMI-S Server shall implement the Server Profile as detailed in *Storage Management Technical Specification*, Part 2 Common Profiles, 1.6.0 Rev 4 Clause 40: Server Profile. ## 10.4.3.4 Security Considerations The General Purpose SMI-S Server role shall implement security as specified in *Storage Management Technical Specification*, Part 2 Common Profiles, 1.6.0 Rev 4 Clause 40: Server Profile. ### 10.4.4 Lock Management Functions There are no requirements for locking in this release of the specification. # 10.4.5 Provider Subrole #### 10.4.5.1 Overview A sub-role within a General Purpose SMI-S Server that can be used to provide management support for the resource, especially useful when the resource is host-based (i.e., HBA or Host Software) and the platform provides a CIM Server as part of its operating system. ### 10.4.5.2 Required Model Support The Provider shall implement the Provider Subprofile as detailed in the object model shown in *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* Clause 40: Server Profile). ## 10.5 Directory Server The Directory Server role is used to facilitate Discovery of instances of the various roles in a management system, but may also be used by management systems to store common configurations, user credentials and management policies. Functions outside of Discovery are outside the scope of this specification. The Directory Server role is optional for a compliant management system. #### 10.5.1 SLP Functions The Directory Server role is required to implement SLP Directory Agent (DA) functionality as specified in 9.8, "Directory Agents (DAs)". The Directory registers all Agents and Object Managers within its configured scope and allows queries for their respective service specific attributes. ## 10.5.2 Generic Operations There are no additional requirements for this role. ## 10.5.3 Security Considerations There are no additional security requirements for this role. #### 10.5.4 Lock Management Functions There are no requirements for locking in this release of the specification. # 10.6 Combined Roles on a Single System #### 10.6.1 Overview As mentioned previously, the various roles of the management system can be deployed in different combinations to different systems throughout the managed environment. In general, there are no restrictions on what roles can be deployed on any given system, but some examples are given to illustrate typical situations. #### 10.6.2 General Purpose SMI-S Server as a Profile Aggregator #### 10.6.2.1 SLP Functions The General Purpose SMI-S Server role may implement SLP User Agent (UA) functionality as specified in 9.6, "User Agents (UA)". The General Purpose SMI-S Server discovers all Profiles within its configured scope that are aggregated by querying for service specific attributes that match the criteria for those aggregations. ## 10.6.2.2 Generic Operations The General Purpose SMI-S Server role may implement CIM Client functionality as specified by Generic Operations standard and may implement CIM listener functionality as specified by the applicable WBEM Protocol standard. A General Purpose SMI-S Server may reflect instances and classes from the aggregated Profiles (perhaps by delegating operations to the Dedicated SMI-S Servers), but is not required to do so. The Profile's Model instances should be reflected in the advertised default namespace of the General Purpose SMI-S Server. The hierarchy of General Purpose SMI-S Servers and Dedicated SMI-S Servers in a multi-level system needs to be reflected in the model such that it can be administrated. #### 10.6.2.3 Security Considerations There are no requirements for security for this role. ## 10.6.2.4 Lock Manager Functions There are no requirements for locking in this release of the specification. # Clause 11: Installation and Upgrade ### 11.1 Introduction The interoperability of the management communications in a storage network gives customers a choice in vendors of their management solutions, but it also can introduce ease-of-use problems when these different vendors each supply different components. In order to supply a complete management solution, many management vendors provide not only WBEM Clients, Providers and other Management Interfaces, but also software components that provide other pieces of the management infrastructure (e.g., Directory Services, WBEM Services, Database Management). Problems are possible when multiple vendors install or remove these components in the same configuration and conflicts can arise. One of the goals of creating management interoperability is to reduce the time and expense end-users apply to the management of their SANs. Thus, SAN management should be easy to install, easy to upgrade, and easy to reconfigure. Mature management products using SMI-S technology should experience seamless and almost completely automated installation, upgrade, and reconfiguration. This clause deals with issues in installation, upgrade and uninstallation of products using SMI-S technology, and recommends some steps that vendors should take to minimize the problems, leading to better customer satisfaction with the overall management solution. ## 11.2 Role of the Administrator Ultimately, a vendor's installation software cannot make perfect decisions when the conflicts referenced in 11.1 arise, since there may be valid reasons why a customer has deployed software of similar function from multiple vendors. In the situation where two software components are both installed that perform the same shared function, and only one can reasonably operate without conflicts, the administrator must be able to resolve these conflicts and remove or disable the redundant component(s). Installation software should, however, make a best effort to detect any conflicts and notify the administrator of possible conflicts during its installation and initialization. A vendor's installation software should allow the administrator to install and uninstall the various infrastructure components on an individual basis should such a conflict arise. The implications of this are that vendors are motivated to support interoperation with other vendor's components. The advantage to the vendor is that a customer is more likely to install a component that can demonstrate the most interoperability with other components. #### 11.3 Goals ## 11.3.1 Non-Disruptive Installation and De-installation WBEM Clients & Services, Providers, and Directory Services may be capable of being installed and de-installed without disrupting the operation of other constituents in a SMI-S management environment. As SANs are often deployed in mission critical environments the up-time of the solution is critical and thus, the uptime of the management backbone as a key component of the solution is equally critical. Additionally, the installation and de-installation of SMI-S interface constituents should not compromise the availability of mission critical applications. ## 11.3.2 Plug-and-Play The ultimate goal of management interoperability is zero administration of the management system itself. A customer should be able to install new storage hardware and software and have the new component become part of the management system automatically. Use of the Service Discovery process (see Clause 9: Service Discovery), the discovery-related aspects of the SMI-S Role definitions (see Clause 10: SMI-S Roles), and the Server Profile (see *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* Clause 40: Server Profile) are intended to assist in achieving this goal. During the reconfiguration of the management system, the schema that Clients see should remain consistent (Schema forward compatibility is ensured via CIM standard). ## 11.4 Server Deployment #### 11.4.1 General Manufacturers of storage hardware and software typically install their product and the accompanying management support at the same time. Conflicts are possible between Agents if multiple vendors attempt to install support for the same device. Also, when a device vendor needs to upgrade an Agent or Provider for a device, the installation software needs to determine all of the locations of the previous installations to insure there are not duplicate management paths to the device and thus, insure reliable on-going operation of the device. SMI-S agent implementations must first determine the environment they will run in and how they will be installed into that environment. These environments include: - Controlled environment (11.4.2) - Multiple CIMOM environment (11.4.3) - Shared CIMOM environment (11.4.4) For each of these issue areas, this clause provides requirements to authors of SMI-S agents and CIM-based management software. These practices are designed to maximize interoperability. #### 11.4.2 Controlled Environment A Controlled environment is either embedded in the system being managed or a dedicated management processor that limits the software a user can install on it. Agents in controlled environments shall be exempt from the requirements in 11.4.3 and 11.4.4. ## 11.4.3 Multiple CIMOM systems A system supporting multiple CIM agents may require multiple CIMOMs. Because the SMI-S agent can't control when multiple CIMOMs are required, all SMI-S agents other than controlled environments shall implement the Multiple CIMOM requirements. #### 11.4.3.1
Determine Multiple CIMOMs Installation software for devices shall be able to locate existing CIM Servers that may control the device in order to offer an administrator a choice in management constituents for the device. In addition, the installation software should locate existing Agents and Providers that provide device support in order to reliably upgrade that support. For these reasons, an installation software program may act as a SMI-S Client during installation. This will allow it to employ the Service Discovery (see Clause 9: Service Discovery) to locate the appropriate functions, and to make the automated decisions that eliminate the need for an administrator to manually configure or adjust certain aspects of the management system. #### 11.4.3.2 Ports SMI-S uses TCP/IP, HTTP/HTTPS, and CIM/XML or WS-Management protocols. These protocols require the use of TCP/IP ports. SMI-S defines the way a client discovers the server ports in Clause 9: Service Discovery. Any SMI-S agent (CIMOM) that may be installed in an environment with other agents shall support the use of alternate port addresses. The agent shall support user configured port addresses. #### 11.4.3.3 SLP SMI-S requires the use of SLP for agent discovery (see Clause 9: Service Discovery). The SLP standard requires the use of a "well known port" that may not be shared. Therefore, a computer system can only have one instance of a SLP service agent running on a system. All SMI agents on the system shall register with the common SLP service agent or provide user documentation that allows a user to manually register the agent and its profiles. ### 11.4.3.4 Directories Some environments require multiple copies of the same CIMOM to be installed. This may be done to solve version compatibility issues. SMI agents shall be coded to allow user settable directory names to be used. Installation programs for SMI agents should find all instances of compatible CIMOMs and allow the user to select the CIMOM installed into. The installation shall then install the agent in directories relative to that CIMOM. #### 11.4.3.5 Miscellaneous Conflicts are possible between Agents if multiple vendors attempt to install support for the same device. Also, when a device vendor needs to upgrade an Agent or Provider for a device, the installation software shall determine all of the locations of the previous installations to insure there is not duplicate management paths to the device and thus, insure reliable on-going operation of the device. #### 11.4.3.6 Tools Utilities needed to manage the CIMOM (e.g., users, configuration) shall be able to find the CIMOM and allow the user to select a CIMOM if more than one is found. #### 11.4.4 Shared CIMOM A shared CIMOM environment is when two or more unrelated providers share a single CIMOM. #### 11.4.4.1 Namespaces In the case of shared CIMOMs, namespaces help isolate implementations and reduce provider interaction. The device model should be implemented in a vendor specific namespace. A single vendor may choose to put multiple implementations in it's own namespace. Vendor namespace names should be chosen to reduce any chance of conflict. The namespace name should include the vendor's company name or stock symbol. #### 11.4.4.2 Trivial sub classes "CIM" classes should not be implemented directly. They should be subclassed using a name prefix unique to their company. This sub classing prevents interaction between provides. Instances in the "interop" namespace shall be subclassed. ## 11.4.4.3 "interop" namespace The profile registration profile shall be implemented in a namespace named "interop". The profile contains two parts. First part is a model of the CIMOM. This section shall be implemented by the software package that installs the CIMOM. All other implementations shall extend the profile registration profile with instances that define the profile they support. Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4, 41.3.3 The SMI-S Registered Profile shows what device support is already installed, and installation software should consult this schema before installing new software. If the installation software is changing the device support from one configuration to another, the installation software needs to uninstall or disable the previous software support elements. ## 11.4.4.4 SLP support Tenant providers shall extend the "Profile Registration Profile" and shall extend the SLP registered profiles as required in the SMI-S discover clause. #### 11.4.4.5 Version/Change control It is the responsibility of the SMI agent installation to protect the CIMOM. The installation process shall determine if a compatible CIMOM is installed before becoming a tenant. #### 11.4.4.6 Base Server Profile Some profiles can extend the "Base Server Profile". New providers should look for a "Base Server Profile" to extend before installing its own. #### 11.4.5 Uninstallation During the uninstallation of a device, the installation/uninstallation software (if available) should automatically detect existing management support software for the device in order to shut down and remove it in a consistent manner. This detection process need to be cognizant that SMI-S Clients may be actively using the device and that the device may need to be disabled for new management operations and administrated through an orderly shutdown procedure prior to uninstallation. The implementation of such procedures and any order dependency is outside the scope of this specification, but may need to be considered by implementors. ### 11.4.6 Update During the update of device support software, installation software should automatically detect any existing device support software in order to successfully complete the upgrade. This device support may exist on multiple hosts, but that situation is not specified in this version. If the update includes installing a new provider, the installation software needs to use the provider installation/upgrade method that is supported by the existing Object Manager. When a software update involves a major schema version upgrade (e.g., 2.x to 3.x), the installation software needs to be cognizant of the effect of the schema upgrade on existing clients. For example, it may choose to simultaneously support both versions for some period of time. ## 11.4.7 Reconfiguration When device support update requires an update of an agent or provider, the device support installation software should configure the new provider with the same subscriptions that exist in the old agent or provider before removing it, unless those subscriptions are specifically defined as being periodically cleaned up. This can be done via the instances of the subscriptions in the agent or object manager that currently exist. # 11.5 WBEM Service Support & Related Functions ### 11.5.1 Installation Customers are increasingly sensitive to the size of the memory footprint for management software. The goal is to minimize the impact on hosts that are not dedicated to running management software by making appropriate choices during installation and giving the administrator control over these issues. It is recommended that vendors take advantage of an existing Object Manager where one exists, by installing a provider that communicated with that Object Manager for device support. Additional support for such "multi-tenant" Object Managers will be included in a future version of this document. If an object manager does not exist, or the device support does not work with the existing object manager (e.g., due to interface requirements) it is recommended that the vendor supply a Agent that is lightweight for device support. Another option is to offer to install an Object Manager that the vendor does have provider support for, allowing other vendors to further leverage that installation. Providers that use an in-band connection to devices have an issue where zoning may alter the management path to the device from a provider or agent. In this case, the device support may need to be installed on multiple hosts in the network and the vendor needs to provide some way to coordinate which provider or agent is responsible for a particular device. Vendors should install their providers in a unique namespace for isolation and qualification reasons. The installer should employ the Service Discovery process (see Clause 9: Service Discovery), and/or the Server Profile (see Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4 Clause 40: Server Profile) to discover the existing namespaces and insure that the one created for the new device is truly unique. ### 11.5.2 Multiple CIM Servers on a Single Server System At installation and setup, a user interface should be provided by the CIM Server installation utility that allows an administrator to manually set the TCP port number in a persistent fashion. To support discovery, the SLP Service Agent (see 9.7, "Service Agents (SAs)") associated with a newly-installed CIM Server should register its TCP port number along with all the other necessary discovery information with the Discovery Service. This requirement applies to both automated port selection as well as manually configured installations. Clients, working through their SLP User Agent, described in 9.6, "User Agents (UA)", then use this information to establish contact with the CIM Server. ### 11.5.3 Uninstallation/Upgrade An Object Manager may be upgraded without needing to change the Providers that it supports. Depending on the Object Manager, the Providers may have to be reinstalled and reconfigured following such an upgrade. In this case, an administrator may need to re-run the device support installation software and such software should be able to restore the previous configuration. ## 11.5.4 Reconfiguration Device Support Reconfiguration (see 11.3.2, "Plug-and-Play") identifies issues that may also be applicable to Object Managers. #### 11.5.5 Failure
Temporary failure of an object manager (for example, a host being powered off) can result in bad installation decisions for installation software. In this case, it is advisable that the installation software provide for manual input of the characteristics of additional components of the management system that the installation process needs to consider. ### 11.6 Client #### 11.6.1 Uninstallation When Client software is removed, the uninstallation software should ensure that all client-defined information (settings, policies etc.), and any subscriptions for that client that exist in any agent or object manager, are also removed. #### 11.6.2 Reconfiguration Client software can include a Listener that is configured to listen on a specific port. When this port is reconfigured, the client should redirect any Indication Handlers in existing agent and object managers as a result. ## 11.7 Directory Service #### 11.7.1 Installation The installation of more than one Directory Agent—addressed in 9.6, "User Agents (UA)"—or Service Agent Server—addressed in 9.7, "Service Agents (SAs)"—providing a Directory Service in a management system does not impose a significant burden for management clients and adds to the overall availability. Vendors should recommend to administrators of their products that one or more SA Servers or Directory Agents should be deployed in the management system. This may also be done for network or system management reasons. #### 11.7.2 Uninstallation/Failure SLP Clients are defined to handle failure and uninstallation of DAs as per the specification (see Clause 9: Service Discovery). # 11.8 Issues with Discovery Mechanisms Experience with existing SMI-S installations has indicated that some sites have policies that can impact the Service Discovery process (see Clause 9: Service Discovery). This subject will be addressed in greater detail in a future revision of this document, but two specific items of guidance are given here, as follows: - a) Where the site policy has caused multicast to be disabled, the DHCP option for SLP defined in IETF RFC 2610 is recommended as an alternate method of locating Service Agent Servers or Directory Agents. Also note that the shipping configuration of many network routers has multicast disabled. - b) Where the site policy has caused support for SLP itself to be disabled, an out of band method of providing a list of IP addresses for CIM Servers is recommended, after which the Server Profile (see *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* Clause 40: Server Profile) should be used to obtain the information about Registered Profiles usually retrieved via SLP. ## **IMPLEMENTED** # Clause 12: Security ## 12.1 Objectives Security in the context of SMI-S refers to the protective measures employed in the management of storage. The specific objectives to be addressed by security include: - 1) Provide a mechanism that assures that the communications between a SMI-S client and server cannot be read or modified by a third party (confidentiality and integrity). - 2) Provide a mechanism that allows SMI-S clients and servers to provide an assurance of their identity (authentication). - 3) Provide a mechanism that allows control of the actions a SMI-S client is permitted to perform on a SMI-S server (authorization). - 4) Provide a mechanism for records to be generated for actions performed by a SMI-S client on a SMI-S server (auditing). - 5) Provide a mechanism that allows SMI-S clients to discover the SMI-S constituents in a storage network environment so that they may communicate with these constituents using CIM Operations over HTTP protocol. ## 12.2 Overview Security requirements can be divided into five major categories: - 1) Authentication verifying the identity of an entity (client or server) - 2) Authorization deciding if an entity is allowed to perform a given operation - 3) Confidentiality restricting information to only those intended recipients - 4) Integrity guaranteeing that information, passed between entities, has not been modified - 5) Non-repudiation the ability to prove an action or event has taken place, so that this event or action cannot be denied or disayowed later. SMI-S security primarily addresses authentication, confidentiality of communications, and authorization to a lesser degree. Integrity has been left for future work, and non-repudiation is not currently identified as a need for SMI-S. Security concerns occur in three areas of an SMI-S implementation: - First, an SMI-S Server may also be a client of other services (sometimes conceptualized as a device). Those services, or devices, may require a login before discovery or operations are allowed to be performed. The information needed to perform this login is generically referred to as "credentials" (or in the case of devices as "device credentials"). An SMI-S server or provider needs to obtain these credentials in order to talk to the service, and they should be provided confidentially. - 2) Second, an SMI-S Server may need to authenticate an SMI-S Client. Not all Clients may be allowed to query the object model, and not all Clients may be allowed to perform operations on objects in the model. The SMI-S Server is responsible for the process of authenticating credentials received from an SMI-S Client. Successful authentication establishes a trust relationship, which is represented on the SMI-S Server by an authenticated Identity. Authenticating the client is the first step in determining what that Client is allowed to do. 3) Thirdly, should implementers of an SMI-S Server be unaware of secure development practices, attackers may be able to exploit resulting flaws in implementations. **Note:** Potential attacks might include, but not be limited to, buffer overflows, obtaining secure information—such as passwords—handled by the SMI-S implementation, etc. In an effort to increase the general knowledge of SMI-S developers, for secure development practices, two suggested resources are: - "Writing Secure Code" (2ed) by Michael Howard and David LeBlanc (ISBN 0-7356-1722-8) - "19 Deadly Sins of Software Security" by Michael Howard, David LeBlanc and John Viega (ISBN 0-07-226085-8) ## 12.2.1 General Requirements for HTTP Implementations The security requirements for HTTP implementations apply to both SMI-S servers and clients. An SMI-S client shall comply with all security requirements for HTTP that are applicable to clients. The following are general requirements for the support of security when using HTTP. - a) SMI-S Servers and Clients shall conform to *DMTF DSP0200 CIM Operations over HTTP*. See 12.3.1.1 "HTTP/HTTPS". - b) HTTP Basic Authentication shall be implemented. HTTP Digest Authentication should be implemented. See 12.3.3.1 "User Authentication". - c) To minimize compromising user identities, and credentials such as passwords, implementations should use HTTP Basic Authentication ONLY in conjunction with SSL 3.0 or TLS and an enhanced strength cipher suite. See 12.4.1.2 "Cipher Suites". - d) Where neither SSL 3.0 nor TLS are used, or where they are used with a basic strength cipher suite, implementers should utilize HTTP Digest Authentication. See 12.4.2.1 "User Authentication". ## **IMPLEMENTED** e) To ensure a minimum level of security and interoperability between implementations, support for the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite shall be included in all implementations. Implementers are free to include additional cipher suites. Anonymous SSL/TLS cipher suites should not be offered or used for CIM operation invocation by SMI-S Clients. See 12.4.1.2 "Cipher Suites". ### **IMPLEMENTED** - f) If no enhanced strength cipher suite is supported, then HTTP Digest Authentication shall be implemented. See 12.4.2.1 "User Authentication". - g) A user identity and credential used with one type of HTTP Authentication (i.e., Basic or Digest) shall not ever be subsequently used with the other type of HTTP Authentication. To avoid compromising the integrity of a stronger scheme, established good security practices avoids the reuse of identity & credential information across schemes of different strengths. See 12.4.2.1 "User Authentication". - h) SSL 3.0 and TLS 1.0 shall be supported; TLS 1.1 and TLS 1.2 are currently allowed options with TLS 1.2 strongly recommended. SSL support is currently required for backwards compatibility as described in Appendix E of RFC 4346. See 12.3.2 "SSL 3.0 and TLS". - i) Clients that fail to contact an SMI-S server via HTTP over SSL 3.0 or TLS on TCP port 5989 should retry with HTTP on TCP port 5988 if their security policy allows it. See 12.3.1.1 "HTTP/HTTPS". - j) In order for Clients and Servers to communicate, they need to be using a consistent approach to security. It is possible for properly configured Clients and Servers to fail to communicate if one is relying upon port 5989 and the other on port 5988. - k) Servers can accelerate discovery that a secure channel is needed by responding to HTTP contacts on TCP port 5988 with an HTTP REDIRECT to the appropriate HTTPS: URL (HTTP over SSL or TLS on TCP port 5989) to avoid the need for clients to timeout the HTTP contact attempt. Clients should honor such redirects in this situation. - I) HTTP Realms shall be supported. See 12.3.6 "HTTP Realms". - m) All certificates, including CA Root Certificates used by clients for certificate validation, shall be replaceable. See 12.3.2.2.3 "Certificate Management". - n) The DER encoded X.509, Base64 encoded X.509 and PKCS#12 certificate formats shall be supported. See 12.3.2.2.2 "Certificate Formats". - o) Certificate Revocation Lists shall be supported in the DER encoded X.509 and Base64 encoded X.509 formats. See 12.3.2.2.1 "Certificate Validation". #### **EXPERIMENTAL** p) Anonymous SSL/TLS cipher suites should not be used for indication delivery to indication listeners that do not have certificates. See 12.3.4 "Indications". ####
EXPERIMENTAL ## 12.3 Description of SMI-S Security SMI-S security is primarily focused on securing the underlying network transport, authenticating users, and securely interacting with IT infrastructure. #### 12.3.1 Transport Security For most SMI-S implementations, the Hypertext Transfer Protocol (HTTP) is the underlying communications protocol used to transfer SMI-S messages, but it is possible that other transports like Web Services for System Management (WS-Management) may be used. A major element of SMI-S security is focused on securing these underlying transports. ### STABLE #### 12.3.1.1 HTTP/HTTPS CIM over HTTP is the mandatory transport mechanism for this version of SMI-S and the specific requirements are derived from DMTF DSP0200, (Specification for CIM Operations over HTTP), which describes the requirements for CIM clients and servers. It is important to note that HTTP by itself offers no confidentiality or integrity protections. SMI-S also includes a mechanism to secure HTTP communications such that data sent between the clients and servers are encrypted before being sent out over the network. This security is achieved by transmitting HTTP over SSL/TLS (also known as HTTPS); the URL of a secure connection will begin with https:// instead of http://. It is also important to note that an SMI-S Client communicates with an SMI-S server via HTTPS on TCP port 5989 (TCP port 5988 is used for HTTP). When SSL/TLS is used to secure HTTP, the client and server typically perform some form of entity authentication. However, the specific nature of this entity authentication is dependent on the cipher suite negotiated; a cipher suite specifies the encryption algorithm and digest algorithm to use on a SSL/TLS connection. A very common scenario involves the use of server-side certificates, which the client trusts, as the basis for unidirectional, entity authentication. It is possible that no authentication will occur (e.g., anonymous authentication) or on the other extreme, mutual authentication involving both client-side and server-side certificates may be required. 12.3.2 "SSL 3.0 and TLS" provides important details on SSL/TLS. ### **STABLE** ### **EXPERIMENTAL** ## 12.3.1.2 WS-Management WS-Management is a SOAP protocol and not tied to a specific network transport; however, interoperation requires some common standards to be established for the transport. The DMTF DSP0226 - Web Services for Management (WS-Management) Specification identifies HTTP 1.1 (RFC 2616) and HTTPS (using TLS 1.0) (RFC 2818¹) as the standard transports. In addition, DSP0226 allows any SOAP-enabled transport to be used as a carrier for WS-Management messages. For services that support HTTPS (TLS 1.0), the service shall at least implement TLS_RSA_WITH_RC4_128_SHA. It is recommended that the service also support TLS_RSA_WITH_AES_128_CBC_SHA. #### **EXPERIMENTAL** #### 12.3.2 SSL 3.0 and TLS The specifications for both versions 1.0 and 1.1 of the Transport Layer Security (TLS) protocol are defined by IETF RFC 4346. In addition, IETF RFC 5246 specifies version 1.2 of the TLS protocol. The Secure Sockets Layer (SSL) 3.0 is defined in the Internet draft, The SSL Protocol Version 3.0. The SSL 3.0 and the TLS are protocols that provide communications security over networks. They allow client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. SSL/TLS is layered on top of some reliable transport protocol (e.g., TCP), and it is used for encapsulation of various higher-level protocols (e.g., HTTP). SSL/TLS provides endpoint authentication and communications privacy over the network using cryptography. Typically, only the server is authenticated (i.e., its identity is ensured) while the client remains unauthenticated; this means that the end user (whether an individual or an application) has a measure of assurance with whom they are communicating. Mutual authentication (the identities of both endpoints are verified) requires, with few exceptions, the deployment of digital certificates on the client. SSL/TLS involves three basic phases: - Peer negotiation for algorithm support - 2) Key exchange and authentication - 3) Symmetric cipher encryption and message authentication During the first phase, the client and server negotiate cipher suites (see 12.3.2.1 "Cipher Suites"), which determine the ciphers to be used, the key exchange and authentication algorithms, as well as the message authentication codes (MACs). The key exchange and authentication algorithms are typically public key algorithms. The MACs are made up from a keyed-Hash Message Authentication Code, or HMAC. ^{1.}This IETF RFC includes a reference to RFC 2246 (TLS 1.0) that has been obsoleted by IETF RFC 4346, which contains specifications for both versions 1.0 and 1.1. It is important to note that the mandatory cipher suites differ in these two RFCs. While TLS 1.2, TLS 1.1 and TLS 1.0 are based on SSL 3.0 and the differences between them are not dramatic, it is important to note that these differences are significant enough that TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 will not interoperate. However, all versions of TLS do provide mechanisms for backwards compatibility with the earlier versions. For this version of SMI-S, SSL 3.0 and TLS 1.0 shall both be supported; TLS 1.1 and TLS 1.2 are currently allowed option, and support of TLS 1.2 is strongly recommended. SSL support is currently required for backwards compatibility as described in Appendix E of IETF RFC 4346. ## **STABLE** ## 12.3.2.1 Cipher Suites Both TLS and SSL 3.0 package one key establishment, confidentiality, signature and hash algorithm into a "cipher suite." A registered 16-bit (4 hexadecimal digit) number, called the cipher suite index, is assigned for each defined cipher suite. For example, RSA key agreement, RSA signature, Triple Data Encryption Standard (3DES) using Encryption-Decryption-Encryption (EDE) and Cipher Block Chaining (CBC) confidentiality, and the Secure Hash Algorithm (SHA-1) hash are assigned the hexadecimal value {0x000A} for TLS. Note especially that TLS 1.1 requires (IEFT RFC 4346, Section 9 - Mandatory Cipher Suites): "In the absence of an application profile standard specifying otherwise, compliant application shall implement cipher а TLS the suite TLS_RSA_WITH_3DES_EBE_CBC_SHA" described above. The client always initiates the TLS and SSL 3.0 session and starts cipher suite negotiation by transmitting a handshake message that lists the cipher suites (by index value) that it will accept. The server responds with a handshake message indicating which cipher suite it selected from the list or an "abort". Although the client is required to order its list by increasing "strength" of cipher suite, the server may choose ANY of the cipher suites proposed by the client. Therefore, there is NO guarantee that the negotiation will select the strongest suite. If no cipher suites are mutually supported, the connection is aborted. When the negotiated options, including optional public key certificates and random data for developing keying material to be used by the cryptographic algorithms, are complete, messages are exchanged to place the communications channel in a secure mode. For the purposes of SMI-S, basic strength cipher suites include 512-bit (or longer) asymmetric algorithms (RSA or Diffie-Hellman), combined with 40-bit (or longer) symmetric algorithms (Triple DES, IDEA, RC4-128) and either SHA-1 or MD5. Enhanced strength cipher suites combine 1024-bit (or longer) asymmetric algorithms (RSA or Diffie-Hellman) with 128-bit (or longer) symmetric algorithms (Triple DES, IDEA, RC4-128, AES) and either SHA-1 or MD5. ### **STABLE** To ensure a minimum level of security and interoperability between implementations, all SMI-S clients and servers that support HTTPS are required to implement the TLS_RSA_WITH_3DES_EBE_CBC_SHA cipher suite, which is also the mandatory cipher suite for TLS 1.1 (see IEFT RFC 4346, Section 9 - Mandatory Cipher Suites). Inclusion of the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (hexadecimal value {0x002F}) is strongly recommended in both SMI-S clients and servers because it is currently the mandatory cipher suite for TLS 1.2. In addition, the TLS_RSA_WITH_AES_128_CBC_SHA256 cipher suite (hexadecimal value {0x003C}) is recommended to meet the transitions to a security strength of 112 bits (guidance is provided in NIST Special Publication 800-57). Implementers are free to include additional cipher suites; however, anonymous SSL/TLS cipher suites should not be offered or used for CIM operation invocation by SMI-S Clients or used for indication delivery to indication listeners that do not have certificates. #### **STABLE** ### 12.3.2.2 Digital Certificates SMI-S clients and servers may be attacked by setting up a false SMI-S server to capture userids and passwords or to insert itself as an undetected proxy between an SMI-S client and server. The most effective countermeasure for this attack is the controlled use of server certificates with SSL 3.0 or TLS, matched by client controls on certificate acceptance on the assumption that the false server will be unable to obtain an acceptable certificate. Specifically, this could be accomplished by configuring clients to always use SSL 3.0 or TLS underneath HTTP authentication, and only accept certificates from a specific local certificate authority. When used by SMI-S, SSL 3.0 and TLS use X.509 version 3 public key certificates that are conformant with the Certificate and Certificate Extension Profile defined in Section 4 of IETF RFC 3280 (X.509v3 Certificate and CRL). This certificate and certificate revocation list (CRL) profile specifies the mandatory fields that shall be included in the certificate as well as optional fields and extensions that may be included in the certificate. Server certificates shall be supported by all SMI-S servers and client certificates MAY be supported by
SMI-S clients. A server certificate is presented by the server to authenticate the server to the client; likewise, a client certificate is presented by the client to authenticate itself to the server. For public web sites offering secure communications via SSL 3.0 or TLS, server certificate usage is quite common, but client certificates are rarely used. This is because the client is typically authenticated by other means. For example, an e-commerce site will authenticate a client by a credit card number, user name/password, etc., when a purchase is made. It is much more of a trust issue that the client (purchaser) be assured of the identity of the e-commerce site and this is the reason server certificates are much more commonly encountered in practice. These X.509 certificates use a digital signature to bind together a public key with an identity. These signatures will often be issued by a certification authority (CA) associated with an internal or external public key infrastructure (PKI); however, an alternate approach uses self-signed certificates (the certificate is digitally signed by the very same key-pair whose public part appears in the certificate data). The trust models associated with these two approaches are very different. In the case of PKI certificates, there is a hierarchy of trust and a trusted third-party that can be consulted in the certificate validation process, which enhances security at the expense of increased complexity. The self-signed certificates can be used to form a web of trust (trust decisions are in the hands of individual users/administrators), but is considered less secure as there is no central authority for trust (e.g., no identity assurance or revocation). This reduction in overall security, which may still offer adequate protections for some environments, is accompanied by an easing of the overall complexity of implementation. With PKI certificates, it is often necessary to traverse the hierarchy or chain of trust in search of a root of trust or trust anchor (a trusted CA). This trust anchor may be an internal CA, which has a certificate signed by a higher ranking CA, or it may be the end of a certificate chain as the highest ranking CA. This highest ranking CA is the ultimate attestation authority in a particular PKI scheme and its certificate, known as a root certificate, can only be self-signed. Establishing a trust anchor at the root certificate level, especially for commercial CAs, can have undesirable side effects resulting from the implicit trust afforded all certificates issued by that commercial CA. Ideally the trust anchor should be established with the lowest ranking CA that is practical. ## 12.3.2.2.1 Certificate Validation SMI-S clients and servers shall perform basic path validation, extension path validation, and Certificate Revocation List (CRL) validation as specified in Section 6 of IETF RFC 3280 for all presented certificates. These validations include, but are not limited to, the following: - The certificate is a validly constructed certificate - The signature is correct for the certificate - The date of its use is within the validity period (i.e., it has not expired) - The certificate has not been revoked (applies only to PKI certificates) • The certificate chain is validly constructed (considering the peer certificate plus valid issuer certificates up to the maximum allowed chain depth (applies only to PKI certificates). When SMI-S clients and servers use CRLs, they shall use X.509 version 2 CRLs that are conformant with the CRL and CRL Extension Profile defined in Section 5 of IETF RFC 3280 (this also only applies to PKI certificates). When PKI certificates and self-signed certificates are used together in a single management domain, it is important to recognize that the level of security is lowered to that afforded by self-signed certificates. Self-signed certificates by themselves only offer the keying materials to allow confidentiality and integrity in communications. The only identity assurances for self-signed certificates lie in the processes governing their acceptance as described in section 12.4.1.1. #### 12.3.2.2.2 Certificate Formats All interfaces for certificate configuration (import in particular) shall support the following certificate formats: #### DER encoded X.509 International Telecommunications Union Telecommunication Standardization Sector (ITU-T), Recommendation X.509: Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks, May 2000. Specification and technical corrigenda can be obtained from: http://www.itu.int/ITU-T/publications/recs.html; Base64 encoded X.509 (often called PEM) N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, IETF RFC 2045, November 1996, Section 6.8. Available at: http://www.ietf.org/rfc/rfc2045.txt: #### PKCS#12 RSA Laboratories, PKCS #12: Personal Information Exchange Syntax, Version 1.0, June 1999. Specification and Technical Corrigendum. Available at: http://www.rsasecurity.com/rsalabs/pkcs. All certificate validation software shall support local certificate revocation lists, and at least one list per CA root certificate supported. Support is REQUIRED for both DER encoded X.509 and Base64 encoded X.509 formats, but this support MAY be provided by using one format in the software and providing a tool to convert lists from the other format. OCSP and other means of immediate online verification of certificate validity are OPTIONAL, as connectivity to the issuing Certificate Authority cannot be assured. #### 12.3.2.2.3 Certificate Management All certificates identifying SMI-S management entities and their associated private keys shall be replaceable. SMI-S clients and servers shall either 1) have the ability to import an externally generated certificate and corresponding private key or 2) have the ability to generate and install a new self-signed certificate along with its corresponding private key. When PKI certificates are used by SMI-S clients and servers, the implementations shall include the ability to import, install/store, and remove the CA root certificates; support for multiple trusted issuing CAs shall be included. CA certificates are used to verify that a certificate has been signed by a key from an acceptable certification authority. All certificate interfaces required above shall support access restrictions that permit access only by suitably privileged administrators. A suitably privileged security administrator shall be able to disable functionality for acceptance of unrecognized certificates described in 12.3.2.2.1 and 12.3.2.2.2. The above requirements can be satisfied via appropriate use of the readily-available OpenSSL toolkit software (www.openssl.org). Support for PKCS#7 certificate format was deliberately omitted from the requirements. This format is primarily used for online interaction with certificate authorities; such functionality is not appropriate to require of all SMI-S storage management software, and tools are readily available to convert PKCS#7 certificates to or from other certificate formats. #### STABLE #### 12.3.3 Authentication At a basic level, authentication is the process used to identify a user (or entity) through the verification of supplied information (i.e., verify a declared identity). This information is often a secret (e.g., a password), but it may also be accomplished by possessing something (e.g., a smart card) or be something that you are (e.g., biometrics); combining multiple forms (or factors) of authentication credentials is known as multi-factor authentication. Increasingly, strong (multi-factor) authentication is required for privileged users or any remote access (including vendor access). It is also important to note that some of these credentials are static (i.e., indefinite use period) while others have expiration periods or may be one-time-use. Within SMI-S, the dominant form of authentication is for users, but entity authentication does occur. In addition, the SMI-S Servers frequently employ local authentication, but external authentication is an option. ## **STABLE** #### 12.3.3.1 User Authentication SMI-S Clients are responsible for initiating user authentication for each SMI-S Server that is accessed by a user. HTTP Basic Authentication shall be implemented and HTTP Digest Authentication should be implemented; HTTP Digest Authentication is a required contingency when authentication credentials have to be secured, but appropriate SSL or TLS protections cannot be negotiated. For both forms of HTTP authentication, the SMI-S Server functions as the authenticator and it receives the user credentials from the HTTP authentication operations. Established good security practices avoid the reuse of identity & credential information across schemes of different strengths. Thus, a SMI-S user identity and credential used with one type of HTTP Authentication (i.e., Basic or Digest) shall not ever be subsequently used with the other type of HTTP Authentication. Section 4.4 of DSP0200 defines additional requirements for HTTP authentication, above those found in IETF RFC 2616 or IETF RFC 2617. HTTP authentication generally starts with an HTTP client request, such as "GET Request-URI" (where Request-URI is the resource requested). If the client request does not include an "Authorization" header line and authentication is required, the server responds with a "401 unauthorized" status code, and a "WWW-Authenticate" header line. The HTTP client shall then respond with the appropriate "Authorization" header line in a subsequent request. The format of the "WWW-Authenticate" and "Authorization" header lines varies depending on the type of authentication required: basic authentication or digest authentication. If the authentication is successful, the HTTP server will respond with a status code of "200 OK". Basic authentication involves
sending the user name and password in the clear, and should only be used on a secure network, or in conjunction with a mechanism that ensures confidentiality, such as TLS (see 12.3.2 "SSL 3.0 and TLS"). Digest authentication sends a secure digest of the user name and password (and other information including a nonce value), so that the password is not revealed. "401Unauthorized" responses should not include a choice of authentication. Client authentication to the SMI-S Server is based on an authentication service (local and/or external). Differing authentication schemes may be supported, including host-based authentication, Kerberos, PKI, or other; the authentication service is out of scope of this specification. ## **STABLE** ## 12.3.3.2 Entity Authentication Entity authentication is the process by which an agent in a distributed system gains confidence in the identity of a communication partner. More often than not, the entity authentication process is coupled with the distribution of a "session key" which the partners can later use for message confidentiality, integrity, or whatever else. Within SMI-S, entity authentication is typically performed whenever SSL/TLS is used and it is accomplished using digital certificates. An SMI-S server may also use a form of entity authentication for certain types of third-party authentications services. For example, RADIUS employs a shared secret to protect certain user credentials. #### **EXPERIMENTAL** #### 12.3.4 Indications SMI-S indications provide the mechanism for event notifications. As specified, a SMI-S server initiates a HTTP connection with an Indication Listener (typically a SMI-S client). In other words, the SMI-S server (CIMOM) is functioning as a HTTP client and the SMI-S client is functioning as a HTTP server. In this mode, SMI-S clients will have limited functionality. When there is a need to guard against rogue indications being sent to an SMI-S client or to ensure that authorized SMI-S clients are the only recipients of an indication, HTTP over TLS (HTTPS) can be used for bi-directional (mutual) authentication, using both client- and server-side digital certificates. This use of HTTPS has some differences from the normal SMI-S use of HTTPS (see 12.3.1.1 "HTTP/HTTPS"). As such, the security requirements based on 12.2.1 "General Requirements for HTTP Implementations" shall apply to Indications, except where noted in the following: - When the scheme (protocol prefix or the URL in the ListenerDestinationCIMXML property of the indication) is "HTTPS:", the SMI-S Server shall connect using SSL/TLS when delivering the indication to the Indication Listener. - General Requirements i), j), and k) in 12.2.1 "General Requirements for HTTP Implementations" shall not apply to indication delivery because the URL specifies the protocol to use. - The IETF-specified SSL/TLS mandatory cipher suites do not have to be used for indications because encryption may not be required; consider using the TLS_RSA_WITH_NULL_SHA256 cipher suite (hexadecimal value {0x003B}). - HTTP Basic Authentication and HTTP Digest Authentication may be supported (they are optional) because their use would force the Indication Listener (SMI-S client) to handle authentication credentials. - HTTP Realms may be supported (it is optional). - SMI-S Servers shall have a digital certificate that it uses as the SSL/TLS client certificate to deliver indications to the Indication Listener. - SMI-S Servers that can function as Indication Listeners shall support certificates for receiving indications. - An Indication Listener may have a digital certificate that it will use as the SSL/TLS server certificate - If an Indication Listener does not have such a certificate, SSL or TLS may negotiate the use of Anonymous cipher suites and no assurance can be provided that the indication was delivered to the intended destination due to the lack of authentication of the Listener end of the secure channel. HTTP security shall be implemented for Indications as specified in 12.2.1 "General Requirements for HTTP Implementations" with additional requirements specified in this section. For applying the requirements in 12.2.1 "General Requirements for HTTP Implementations" to Indications, the term "SMI-S Client" shall be read to mean "any SMI-S entity that can function as an Indication Listener." HTTP security support for Indications is a mandatory part of Indications support for SMI-S Servers. An SMI-S Client that does not support certificates may omit SSL/TLS support for reception of Indications, but shall comply with all other requirements. In order to use SSL or TLS for mutual authentication for indication delivery, the Indication Listener is required to have a certificate; since the SMI-S Server should also have a certificate, mutual SSL/TLS Authentication is possible. SMI-S Servers should not use SSL or TLS for indication delivery when the Indication Listener does not present a certificate, and shall support a configurable operating mode in which indication delivery is not performed via SSL or TLS when the Listener does not present a certificate. This can be accomplished by preventing the use of Anonymous SSL/TLS cipher suites. All SMI-S entities shall use certificates consistently - the certificate used for CIM operation invocation over SSL/TLS shall be used for indication delivery when SSL/TLS is employed for indication delivery. For SMI-S Servers, this requires that the SSL/TLS server certificate used to receive CIM operations via SSL/TLS shall be provided as the SSL/TLS client certificate for indication delivery when mutual authentication is used (i.e., when an anonymous SSL/TLS cipher suite is not used). For SMI-S Clients that support certificates and can function as Indication Listeners, this means that the SSL/TLS client certificate used for CIM operation invocation over SSL/TLS shall be used as the SSL/TLS server certificate for receiving indications. ## **EXPERIMENTAL** ### 12.3.5 Service Discovery Service discovery protocols are network protocols which allow automatic detection of devices and services offered by these devices on a computer network. Within the context of SMI-S (see Clause 9: Service Discovery), service discovery refers to the discovery of dedicated SMI-S servers, general purpose SMI-S servers, and directory servers as well as the functions they offer in an SMI-S managed environment. This release of SMI-S uses the Service Location Protocol Version 2 (SLPv2), as defined by IETF RFC 2608, for its basic discovery mechanism. SLP is a packet-oriented protocol. Most packets are transmitted using UDP, but TCP can also be used for the transmission of longer packets. Because of the potential unreliability of UDP, SLP repeats all multicasts several times in increasing intervals until an answer has been received. All devices are required to listen on port 427 for UDP packets, SAs and DAs should also listen for TCP on the same port. Multicasting is used extensively by SLP, especially by devices that join a network and need to find other devices. The operation of SLP differs considerably, depending on whether a Directory Agent (DA) is in the network or not. When a client first joins a network, it multicasts a query for DAs on the network. If no DA answers, the client will assume that it is in a network without DAs. It is also possible to add DAs later, as they multicast a "heartbeat" packet in a predefined interval that will be received by all other devices. When a SA discovers a DA, it is required to register all services at the DA. When a service disappears the SA should notify the DA and un-register it. The SLPv2 security model assumes that service information is public, and therefore does not require confidentiality. SLPv2 provides for authentication of service URLs and service attributes, thus providing integrity assurances for service URLs and attributes included in SLP messages. For SMI-S environments that require security in conjunction with the use of SLPv2, the major threat mitigation strategies (see RFC 3723) are not necessary as long as the SLP messages are not fully trusted and SSL/TLS with server certificates is used. Additional security guidance is provided in Clause 9: Service Discovery as well as section 12.4.4.1. # 12.3.6 HTTP Realms ## 12.3.6.1 Requirements for the support of HTTP Realm The relationship of the realm-value to an authentication service, and one or more sets of user identity and credential, is determined separately by the configuration of each SMI-S client, and configurations may differ between multiple SMI-S clients in the same system. The means of creating this configuration in the SMI-S client is outside of the scope of this specification. The client configuration is expected to a contain at least a default set of user identity and credential per realm-value. When the configuration associates a single realm-value with multiple sets of user identity and credential, the basis on which a single set is selected is also outside of the scope of this specification (and may include considerations such as the need to assert elevated privilege at the server to perform specific operations.) Where the Realm field is not used, or the realm-value is unrecognized, the SMI-S Client may use means outside of the scope of this specification to identify the user identity and credential to be used, including the use of information obtained during Service Discovery. For this revision of the specification, it is recommended that a single realm-value per SMI-S Server be defined by means such as a configuration file. In future revisions, the definition of multiple and dynamic user identities and credentials per SMI-S Server will be addressed, and may use other communication methods in addition to, or in place of, the Realm field. - a) The Realm field defined by HTTP Version 1.1 (see RFC 2617 section 1.2 and RFC 2616) shall be implemented by the SMI-S Server, and should be used to identify to the
Client the authentication service to be used to access the server. - b) The realm-value contains information to help determine which specific user identity and credential (e.g., user ID & password) and are to be used with the authentication service, but shall not contain any portion of an identity or a credential itself. - c) The exact form of the authentication service is not defined by SMI-S, and may either be part of the configuration of an SMI-S Server, or may involve an external entity such as a RADIUS server. A single authentication service may be utilized by multiple SMI-S Servers. Realm-values shall be unique throughout the scope of the authentication service. - d) When provided, the realm-value shall meet all of the requirements contained in RFC 2616 and RFC 2617, with the exception of the specific requirement in section 3.2.1 of RFC 2617 that the realm-value "be displayed to users". In SMI-S, the realm-value may be handled by the SMI-S Client without reference to a user. - e) Where no format for the realm-value has been defined by other standards or conventions, and where an authentication is handled autonomously by an SMI-S server, then a string in the format defined in 12.3.6.2 "SMI-S defined format for HTTP Realm" is recommended. - f) Where a single authentication service is utilized by multiple SMI-S Servers, the SMI-S recommended format defined in 12.3.6.2 "SMI-S defined format for HTTP Realm" should not be used, and use of SHA-1 in the creation of realm-values is recommended. #### 12.3.6.2 SMI-S defined format for HTTP Realm The format is based on components of the definition of the Uniform Resource Identifier (URI) in IETF RFC 2396 and extended in IETF RFC 3986, and is described using the BNF-like grammar of those documents as: ``` [1*(unreserved) "."] "smis@" host ``` where: - unreserved is as defined in section 2.3 of IETF RFC 2396 - "." is a dot - "smis@" is a string literal - host is as defined in section 3 of IETF RFC 3986 The combination of the unreserved and host portions should be defined in a manner that allows an administrator to quickly identify a specific SMI-S Server in his configuration. Note that some portion of unreserved could be generated randomly in the SMI-S Server to reduce the chance of accidental realm collisions. An example of the use of the recommended format defined above is as follows: Consider a single server system labeled Server6 owned by Widgets Inc. (owner of the example.com domain) that hosts two SMI-S Servers, one from Acme Inc., and the other from XYZ Ltd. The realm-value reported by the Acme SMI-S Server might be "ug723.acme.net.smis@server6.example.com". In the configuration of a specific SMI-S client accessing the Acme SMI-S Server, this realm-value might identify a server-specific authentication service and a user identity of "arrayuser74" and a password of "YT56z". Similarly, the realm-value reported by the XYZ Ltd. SMI-S Server might be "bx48d.xyz.co.uk.smis@server6.example.com". In the configuration of a different SMI-S client accessing the XYZ SMI-S Server, this realm-value might identify a SMI-S-server-specific authentication service and a user identity of "42fred" and a password of "OTH3afa". ## 12.4 Security Guidance #### 12.4.1 SSL 3.0 and TLS Guidance ### 12.4.1.1 Digital Certificates To facilitate the use of certificates, SMI-S implementations should include configurable mechanisms that allow for one of the following mutually exclusive operating modes to be in force at any point in time for end-entity certificates (i.e., not CA certificates): Unverifiable end-entity (self-signed) certificates are automatically installed as trust anchors when they are presented; such certificates shall be determined to not be CA root certificates prior to being installed as trust anchors and shall not serve as trust anchors to verify any other certificates. If a CA certificate is presented as an end-entity certificate in this mode, it shall be rejected. For SMI-S clients, a variant of this option, which consults the user before taking action, should be implemented and used when possible. **Note:** The use of this operating mode should be limited to a learning or enrollment period during which communication is established with all other SMI-S systems with which security communication is desired. Use of a timeout to force automatic exit from this mode is recommended. Unverifiable end-entity (self-signed) certificates can be manually imported and installed as trust anchors (in a fashion similar to manually importing and installing a CA root certificate), but they are not automatically added when initially encountered. Administrative privilege may be required to import and install an end-entity certificate as a trust anchor. NOTE: This is considered the normal operating mode. All certificate acceptance policies for SMI-S clients and servers shall be configurable. The configurable mechanisms determine how the SMI-S implementation handles presented certificates. Under normal operating mode, SMI-S servers should not accept certificates from unknown trust authorities (i.e., the CA root certificate has not been installed). When self-signed certificates are used in conjunction with SLPv2, the trustworthiness of these certificates becomes an important factor in preventing SLPv2 from becoming an attack vector. Interactive clients should provide a means to query the user about acceptance of a certificate from an unrecognized certificate authority (no corresponding CA root certificate installed in client), and accept responses allowing use of the certificate presented, or all certificates from the issuing CA. Servers should not support acceptance of unrecognized certificates; it is expected that a limited number of CAs will be acceptable for client certificates in any site that uses them. Pre-configuring root certificates from widely used CAs is OPTIONAL, but simplifies initial configuration of certificate-based security, as certificates from those CAs will be accepted. These CA root certificates can be exported from widely available web browsers. ### 12.4.1.2 Cipher Suites Although DES is an allowed cipher when used with the appropriate key exchange mechanism, DES is vulnerable to brute-force attacks. When such an attack is a concern, a stronger cipher should be used. #### 12.4.1.3 SMI-S Use of SSL 3.0 and TLS It is important to recognize that maintaining security often requires changing requirements to reflect advances in technology, discovery of vulnerabilities, and defenses against new attacks. Consequently, it is expected that future versions of SMI-S will require TLS 1.1 to be implemented, deprecate support for SSL 3.0, deprecate cipher suites that include DES (any key size) as the cipher, and deprecate cipher suites that include MD5 as the hash. #### 12.4.2 Authentication Guidance #### 12.4.2.1 User Authentication User authentication is the most frequent form of authentication within SMI-S implementations and the primary mechanism for preventing unauthorized access to systems and data. As such, it is important to understand the details of this mechanism as well as the context in which it operates. To assist with both, the ISO/IEC 27002:2005 secure log-on procedures are used as a point of reference. Per ISO/IEC 27002:2005, the procedure for logging into an operating system should be designed to minimize the opportunity for unauthorized access. The log-on procedure should therefore disclose the minimum of information about the system, in order to avoid providing an unauthorized user with any unnecessary assistance. A good log-on procedure should: - a) not display system or application identifiers (this is not the same as authentication banners) until the log-on process has been successfully completed; - b) display a general notice warning that the computer should only be accessed by authorized users; - c) not provide help messages during the log-on procedure that would aid an unauthorized user; - d) validate the log-on information only on completion of all input data. If an error condition arises, the system should not indicate which part of the data is correct or incorrect; - e) limit the number of unsuccessful log-on attempts allowed, e.g., to three attempts, and consider: - 1) recording unsuccessful and successful attempts; - 2) forcing a time delay before further log-on attempts are allowed or rejecting any further attempts without specific authorization; - 3) disconnecting data link connections; - 4) sending an alarm message to the system console if the maximum number of log-on attempts is reached; - 5) setting the number of password retries in conjunction with the minimum length of the password and the value of the system being protected; - f) limiting the maximum and minimum time allowed for the log-on procedure. If exceeded, the system should terminate the log-on; - g) displaying the following information on completion of a successful log-on: - 1) date and time of the previous successful log-on; - 2) details of any unsuccessful log-on attempts since the last successful log-on; - h) not displaying the password being entered or consider hiding the password characters by symbols; - i) not transmitting passwords in cleartext over a network. ISO/IEC 27002 acknowledges that passwords are a very common way to provide identification and authentication based on a secret that only the user knows, and it goes on to say that the strength of user identification and authentication should be suitable to the sensitivity of the information to be accessed. The following implementation guidance is also offered: - a) Enforce the use of individual user IDs and passwords to maintain accountability. - b) Allow users to select and change their own passwords and include a confirmation procedure to allow for input errors. - c) Enforce a choice of quality passwords. - d) Enforce password changes. - e) Force users to change temporary passwords at the first log-on. - f) Maintain a record of
previous user passwords and prevent re-use. - g) Do not display passwords on the screen when being entered. - h) Store password files separately from application system data. - i) Store and transmit passwords in protected (e.g., encrypted or hashed) form. All of the above log-on and password guidance is applicable to SMI-S servers when local authentication is being used; however, the use of external authentication pushes some of the implementation details (e.g., items b, c, d, e, f, h of the password guidance) to the external authentication services. The following guidance should be considered for all forms of user authentication within SMI-S clients and servers: - a) All user access should only be granted upon successful authentication. - All user authentication attempts (successful or not) should result in the creation of an appropriate audit log entry. - c) All local authentication implementations should include provisions to perform entitlement reviews, which identify all users, the state of their accounts, their log-on status, and assigned role(s). ## 12.4.2.2 Third-party Authentication Authentication implementations can take on many forms, including: - Local Authentication The system needing the authentication service is also the authenticator (i.e., entity making the authentication decision). There is no easy way to synchronize the credential database used for verification, so its usability is limited within larger organizations. - External Authentication The authenticator resides outside of the control and influence of the system needing an authentication decision; further, the authenticator is a trusted, authoritative source. - Centralized Authentication This form of external authentication is designed to support many systems (often heterogeneous) and it often includes redundancy, use of standard protocols, and provides additional useful information (e.g., role identifiers). There is no attempt to make subsequent authentications transparent (i.e., multiple authentication are often required). - Single Sign-on (SSO) This form of centralized authentication employs a single set of credentials, which are then used transparently to perform subsequent authentications on behalf of the users. In addition, there is typically a close alignment with a centralized authorization system to ensure consistent privileges. A Microsoft Window domain with Active Directory is a good example. Many enterprises have centralized their identity management (directory services, NIS, NIS+) and authentication services (e.g., RADIUS, PKI, Kerberos, LDAP, etc.), so there is a natural desire to leverage this infrastructure and the investments made in populating the identity data to help address authentication and authorization. The remainder of this section provides information on third-party authentication services that SMI-S servers are likely to use (i.e., RADIUS, LDAP, and Kerberos). ### 12.4.2.2.1 RADIUS The Remote Authentication Dial In User Service (RADIUS) protocol is widely used and implemented to manage access to network services. It defines a standard for information exchange between a Network Access Server (NAS) and an authentication, authorization, and accounting (AAA) server for performing authentication, authorization, and accounting operations. A RADIUS AAA server can manage user profiles for authentication (verifying user name and password), configuration information that specifies the type of service to deliver, and policies to enforce that may restrict user access. RADIUS is an IETF AAA (authentication, authorization and accounting) protocol commonly used for applications such as network access or IP mobility. Its key features are: - Client/Server Model A device or Network Access Server (NAS) operates as a client of RADIUS. The client is responsible for passing user information to designated RADIUS servers, and then acting on the response which is returned. RADIUS servers are responsible for receiving user connection requests, authenticating the user, and then returning all configuration information necessary for the client to deliver service to the user. A RADIUS server can act as a proxy client to other RADIUS servers or other kinds of authentication servers. - Network Security Transactions between the client and RADIUS server are authenticated through the use of a shared secret, which is never sent over the network. In addition, any user passwords are sent encrypted between the client and RADIUS server, to eliminate the possibility that someone snooping on an unsecure network could determine a user's password. - Flexible Authentication Mechanisms The RADIUS server can support a variety of methods to authenticate a user. When it is provided with the user name and original password given by the user, it can support PPP PAP or CHAP, UNIX login, and other authentication mechanisms. - Extensible Protocol All transactions are comprised of variable length Attribute-Length-Value 3-tuples. New attribute values can be added without disturbing existing implementations of the protocol. When RADIUS is used as a third-party authentication service for a SMI-S server, the guidance should be heeded: - A different shared secret for each RADIUS client-RADIUS server pair should be used. - Strong shared secrets consisting of a random sequence of hexadecimal digits at least 32 digits long or a random sequence of upper and lower case letters, numbers, and punctuation at least 22 characters long (128 bits of entropy) should be used. Ideally, the shared secret should be computer-generated. - To provide protection from spoofed Access-Request messages and RADIUS message tampering, each RADIUS message should be additionally protected with the RADIUS Message Authenticator attribute, which is described in RFC 2869, "RADIUS Extensions." - All shared secrets, which shall be retained in cleartext form, should be stored in an encrypted form. #### 12.4.2.2.2 LDAP LDAP is an Internet standard protocol used by applications to access information in a directory. It runs directly over TCP, and can be used to access a standalone LDAP directory service or to access a directory service that is backended by X.500. It was created as a way to minimize the implementation requirements on directory clients, and to simplify and encourage the use of directories among applications. LDAP is based on a client-server model. LDAP servers make information about people, organizations, and resources accessible to LDAP clients. The LDAP protocol defines operations that clients use to search and update the directory. To perform these LDAP operations, an LDAP client needs to establish a connection with an LDAP server. The LDAP protocol specifies the use of TCP/IP port number 389, although servers may run on other ports. The LDAP protocol also defines a simple method for authentication. LDAP servers can be set up to restrict permissions to the directory. Before an LDAP client can perform an operation on an LDAP server, the client authenticates itself to the server by supplying a distinguished name (DN) and password. If the user identified by the distinguished name does not have permission to perform the operation, the server does not execute the operation. When LDAP is used as a third-party authentication service for a SMI-S server, the following guidance should be heeded: a) Only LDAP Version 3 (LDAPv3) should be used. - b) Cleartext password should not be transmitted between the client and the LDAP server; the use of TLS is the preferred mechanism. - c) The client should be able to handle referrals and be capable of propagating the authentication through at least 10 such referrals before abandoning the authentication attempt. - d) When TLS is used to secure the LDAP communications: - It should be invoked by using the StartTLS command. - The client should reject referrals from the StartTLS operation. - The client implementation should include the TLS 1.1 mandatory cipher suite (TLS_RSA_WITH_3DES_EDE_CBC_SHA; { 0x00,0x0A }) and the client should present it as the preferred cipher suite. - e) The LDAPS alternate method (denoted in LDAP URLs by using the URL scheme "ldaps") of securing LDAP communication, using an SSL tunnel over the default port for 636, should not be used.¹ Unlike other authentication services, LDAP provides no support to enforce common password policies; it is simply a repository for a credential that can be accessed using the LDAP bind operation. Thus, the out-of-band mechanism that creates the password entry in the directory should perform the appropriate checks and policy enforcement. In addition, the implementation of LDAP authentication should include provisions to detect attacks (e.g., multiple failed log-on attempts) and provide part of the enforcement (e.g., detect and respond to expired passwords). #### 12.4.2.2.3 Kerberos Kerberos is the name of a computer network authentication protocol, which allows individuals communicating over a non-secure network to prove their identity to one another in a secure manner. It is also a suite of free software published by Massachusetts Institute of Technology (MIT) that implements this protocol. Its designers aimed primarily at a client-server model, and it provides mutual authentication - both the user and the server verify each other's identity. Kerberos protocol messages are protected against eavesdropping and replay attacks. Kerberos builds on symmetric key cryptography and requires a trusted third party. Extensions to Kerberos can provide for the use of public-key cryptography during certain phases of authentication. #### 12.4.3 Authorization Authorization is the process by which one determines whether an authenticated party has permission to access a particular resource or service. Although tightly bound, authentication and authorization are two separate mechanisms. Perhaps because of this tight coupling, authentication is sometimes mistakenly thought to imply authorization. Authentication simply
validates the identity of a party; authorization defines whether they can perform a certain action. Numerous access control models and systems (e.g., Bell-LaPadula, Cark-Wilson, etc.) have been developed since the early 1970s. Almost all of these access control models can be formally stated using the following notions and their relationships: - user people who interface with the system; the focus is on the human and not the credentials - subjects a computer process acting on behalf of a user; they can initiate requests to perform an operation or series of operations on objects - objects any resource accessible on a computer system; passive entities that contain or receive information - operations an active process invoked by a subject ^{1.}The use of LDAP over SSL tunnels was common in LDAP Version 2 (LDAPv2) but it was never standardized in any formal specification. This usage has been deprecated along with LDAPv2, which was officially retired in 2003. permissions (or privileges) - authorizations to perform some action on the system; it typically refers to some combination of object and operation These concepts have been incorporated into a variety of access control policies (rules) and mechanisms, including the following: - Discretionary Access Control (DAC) policy permits the granting and revocation of access permissions to be left to the discretion of the individual users - Mandatory Access Control (MAC) policy is centrally controlled by a security policy administrator; users do not have the ability to override the policy - Role-based Access Control (RBAC) non-discretionary policy that assigns permissions to specific roles and roles in turn are assigned users; management of individual user rights becomes a matter of simply assigning the appropriate roles to the user This version of SMI-S provides no explicit guidance on how implementations handle authorization/access control of authenticated users. A more simplistic implementation is likely to impose few if any controls on an authenticated user (i.e., granting unrestricted access to the SMI-S server's resources). More sophisticated implementations are likely to impose controls on users based on their membership in groups or holding a particular role. This latter approach is often implemented using Role-based Access Control (RBAC) mechanisms and it is the recommend technique for implementations. The remainder of this section describes common access control mechanisms. ## 12.4.3.1 Access Control Lists (ACLs) An access control list is one way of implementing an access control matrix that specifies the operations users or subjects are allowed to perform on an object. In a typical ACL, each entry in the list specifies a subject and an operation; as shown in Table 310, the entry (Alice, Delete) on the ACL for file XYZ gives Alice permission to delete file XYZ. User/Subject Operations Alice Delete Joe Read, Write Jane Execute Table 310 - ACL for File "XYZ" In an ACL-based security model, the system first checks the list for an applicable entry in order to decide whether or not to proceed with the operation a user (subject) requested. The list is often a data structure, usually a table, containing entries that specify individual user or group rights to specific system objects, such as a program, a process, or a file. These entries are sometimes called access control entries (ACE) Each accessible object contains an identifier to its ACL. The privileges or permissions determine specific access rights, such as whether a user can read from, write to, or execute an object. In some implementations an ACE can control whether or not a user, or group of users, may alter the ACL on an object. It is also possible for the users (subjects) to be grouped so that the ACL would contain the name of the group rather than individual users. This makes the management of ACL's much easier as revoking a user's permissions would involve removing them from membership in the group rather than modifying the ACL itself. #### 12.4.3.2 Protection Bits Protection bit mechanisms are similar to ACLs; however, bits are associated with an object rather associating users and operations entries. Protection bit mechanisms are commonly implemented in UNIX operating systems and are used to divide users into different categories, typically user (self), group, and other. The access control system regulates access to a file by associating read (r), write (w), or execute (x) operations with each of the categories of users. As an access control mechanism, protection bit mechanisms have an assortment of issues, including: - The user who created a file is the owner, by default. - The owner of a file is typically the only one (besides the superuser or administrator) who can modify the protection bits. - There is only one group available for each file - The system administrator controls group membership; as membership within groups changes, so will the capabilities of users to access files. - The system cannot grant access to an object on an individual basis. ## 12.4.3.3 Role-based Access Control (RBAC) Access control decisions are often determined by the roles individual users take on as members of an organization. This includes the specification of duties, responsibilities, and qualifications. For example, the roles an individual associated with a hospital can assume include doctor, nurse, clinician, and pharmacist. Roles in a bank include teller, loan officer, and accountant. Roles can also apply to military systems; for example, target analyst, situation analyst, and traffic analyst are common roles in tactical systems. A role-based access control (RBAC) policy bases access control decisions on the functions a user is allowed to perform within an organization. The users cannot pass access permissions on to other users at their discretion. This is a fundamental difference between RBAC and Discretionary Access Controls (DAC). A suggested resource for additional information is: Role-based Access Control by David Ferraiolo, D. Richard Kuhn and Ramaswamy Chandramouli (ISBN 1-58053-370-8) Within SMI-S there are no predefined roles; however, it is important to recognize specific trends within certain market sectors (e.g., financial services). The following general roles should be considered within implementations: - Security Administrator This role has view and modify rights to establish and manage accounts, to create and associate roles/permissions, for audit logging configurations and contents (audit log event entries can never be changed), to trust establish relationships with IT infrastructure (e.g., shared secrets for RADIUS), to manage certificate and key stores, to manage encryption and key management, and to set access controls. - Storage Administrator This role has view and modify rights for all aspects of the storage system. No access is granted to security-related elements or data. - Security Auditor This role has view rights that allow entitlement reviews, verification of security parameters and configurations, and inspections of audit logs. No access is granted to the storage, configuration, or data. - Storage Auditor This operator-like role has view rights that allow for the verification of storage parameters and configurations and inspections of health/fault logs. No access is granted to security-related elements or data. Each storage management transaction should be associated with a "security" or "storage" role so that appropriate separation of duties can be enforced within customer environments. ## 12.4.4 Using IT Infrastructure Securely ### 12.4.4.1 Service Discovery Service discovery using SLPv2 contains a public-key cryptography based security mechanism that allows signing of service announcements. In practice, however, it is rarely used because: • The public keys of every service provider must be installed on every UA. This requirement defeats the original purpose of SLP, being able to locate services without prior configuration. - Protecting only the services is not enough. Service URLs contain host names or IP addresses, and in a local network it is almost impossible to prevent IP or DNS spoofing. Only guaranteeing the authenticity of the URL is not enough, if any device can respond to the address. - Since addresses can be spoofed, the authenticity of the device must be proved at a different level anyway (e.g., with SSL/TLS or IPsec), so the additional work and complexity necessary to use SLP security measures are not warranted. When service discovery using SLPv2 must be used, but security is a concern, SSL/TLS with an appropriate cipher suite should also be used. ## **IMPLEMENTED** # Annex A (informative) Mapping CIM Objects to SNMP MIB Structures ## A.1 Purpose of this appendix In order to encourage adoption of the WBEM initiative, its associated data model (CIM), WBEM protocol, and profiles (described in previous sections of this standard), the Storage Media Library (SML) workgroup defined a means of mapping CIM objects to SNMP MIB objects, or "fields." SNMP (Simple Network Management Protocol) is the popular non-proprietary network management protocol used by the storage devices. This "CIM-to-MIB" mapping methodology has been successfully used by members of SNIA-SML to demonstrate—at minimal cost in development time—WBEM-based interoperability in plugfests and industry demonstrations such as Storage Networking World. The "CIM-to-MIB" mapping methodology is mentioned in this specification in order to: - Document that a standard path of backward compatibility is obtainable between WBEM and SNMP-based management paradigms, - Document one successful method of CIM-to-MIB mapping, - Recommend this method as the standard CIM-to-MIB mapping method in order to avoid a proliferation of deviant de facto standards, and - Allow companies to benefit from earlier experience and work. # A.2 CIM-to-MIB Mapping Overview CIM is an object-based modeling schema that supports all common object-oriented
principles, including abstract class objects, instance objects, inheritance, single- and multiple-association, aggregation, properties, methods, and qualifiers. In contrast, SNMPís ASN.1-based modeling schema is strictly hierarchical, involving such structures as nested parent and child nodes, and scalar and tabular fields. While unique CIM objects are typically referenced by parent class name (or Creation Class Name) and key properties, SNMP objects are typically referenced by an Object Identifier (OID) that points to their position in the SNMP Management Information Base (MIB) hierarchy or itree.î (In the case of tabular fields, additional indexes are appended to a base OID to identify unique instances of information.) The task of any CIM-to-MIB mapping methodology is primarily to create a one-to-one mapping between object-oriented information and tree-based hierarchical information. Naming constraints within the CIM and MIB domains must also be adhered to in a way that prevents ambiguities in uniquely identifying and referencing information, particularly in the SNMP/MIB domain. Therefore, SMLs mapping methodology provides the following: - A description of mapping CIM data -- classes, instances, properties, associations ñ into an SNMP format involving nodes, fields, and tables, - A naming convention in the SNMP/MIB domain that allows for unambiguous identification of the original CIM data, - A data type mapping that allows common CIM data to be represented by existing ASN.1 data types. ## A.3 The SML MIB As the CIM object model continues to change and expand, the SML MIB has also changed and expanded. As a result, it has become impractical to include the full MIB in each revision of this SMI specification. SMI client application vendors or others interested in obtaining the latest SML MIB, or more information on the CIM-to-MIB mapping methodology in general, should contact the SNIA SML Technical Workgroup. SNIA-SML's website is: http://www.snia.org/apps/org/workgroup/sml/ or http://www.snia.org/apps/org/workgroup/sml/ or http://www.snia.org/apps/org/workgroup/sml/ or http://www.snia.org/apps/org/workgroup/sml/ or http://www.snia.org/tech_activities/work/twgs/. ## Annex B (normative) Compliance with the SNIA SMI Specification ## **B.1** Compliance Statement The declaration of SMI-S compliance of a given CIM Instance within a CIM Server also declares that any CIM Instance associated, directly or indirectly, to the first CIM Instance will also be SMIS compliant if SMIS itself declares compliance rules for either CIM Instance or instances of their superclasses. The declaration of SMI-S compliance also declares that the implementation shall also conform to the SMI-S architecture as defined in Storage Management Technical Specification, Part 1 Common Architecture. ## **B.2** How Compliance of the Architecture is Declared An agent indicates which version of SMI-S it conforms to using "the SMI-S registered profile" as defined in the Profile Registration Profile (see *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* 41.3.3 "The SMI-S Registered Profile"). The agent shall conform to all the provisions of the versions of *Storage Management Technical Specification, Part 1 Common Architecture* where it instantiates an instance of RegisteredProfile with a matching RegisteredVersion value. # **B.3** How Compliance of the Model Is Declared - The declaration of SMI-S compliance is made through the use of the Server Profile and the declaration of supported profiles. - Direct association between CIM Instances is made through instance of a CIM Association. - Indirect association between CIM Instance is made through more than one CIM Association. - SMI-S Compliance is assessed against CIM Instances that are directly or indirectly associated to the CIM Instance declared as part of the declaration of supported registered profiles. These CIM Instances comprise the compliance test set. - All CIM Instances / CIM Classes included in the compliance test set for whom compliance rules are defined in SMI-S or for superclasses thereof shall be themselves be compliant to the rules defined in SMI-S. - Compliance tests on a superclass of a given CIM Instance are limited to the attributes and behaviors defined for the superclass. # **B.4** The Server Profile and Compliance Compliance is declared by the implementation of the Server Profile. All profiles require the Server Profile. The Server Profile defines the means by which a SMI-S Client determines the profiles and subprofiles supported and the ComputerSystems associated. (see *Storage Management Technical Specification, Part 2 Common Profiles, 1.6.0 Rev 4* Clause 40: "Server Profile" for more details.) ### B.4.1 Example A CIM Agent for Vendor X declares compliance to the Array Profile and the Pool Manipulation Capabilities, and Setting Subprofile through the Server Profile. Once the association (via the ElementConformsToProfile association) is made to from the Array Profile declaration to the ComputerSystem that realizes the Array Profile, then compliance tests begin testing compliance. Vendor X decided to extend the StorageVolume class with additional properties. StorageVolume is associated to the ComputerSystem via SystemDevice association. ComputerSystem, StorageVolume, and SystemDevice are defined in SMI-S as required CIM elements (see Storage Management Technical Specification, Part 3 Block Devices, 1.6.0 Rev 4 Table 2, "CIM Elements for Array"). In implementing FCPort, Vendor X decided to not provide ElementName but did provide the rest of the required properties. Vendor X decided to not use to WWN and instead used a vendor specific value for the PermanentAddress (see Clause 7: Correlatable and Durable Names) Additionally, Vendor X added FRUStatus to their subclass of FCPort. Vendor X also decided to model the back-end fibre channel, but not use an SMI-S model to do so. These back-end FCPorts are associated to the ComputerSystem via the ConsumedSystemDevice association, a subclass of SystemDevice without properties overridden. These back-end fibre channel ports where modeled using a Vendor X specific class, BackendFCPorts, that is not derived from FCPort. This BackendFCPorts were associated to the ComputerSystem with the ConsumedSystemDevice.PartComponent role. The compliance test includes FCPort because compliance declaration identified a particular ComputerSystem the entry point into compliant CIM instantiation of the Array Profile. the compliance test includes FCPorts as part of the test set because the SystemDevice association, also defined as part of the profile, includes the FCPort realized in that implementation. The compliance test also includes BackendFCPorts because the ConsumedSystemDevice association to the ComputerSystem for these instances is a SystemDevice association. The compliance test locates the StorageConfigurationService, StoragePools including a Primordial StoragePool, and StorageCapabilities associated to the ComputerSystem. Vendor X's implementation supports the creation of a StoragePool. The test attempts to create a StoragePool given one of the sizes reported by the Primordial StoragePool.getSupportedSizes() method using the Primordial StoragePool reference and a StorageSetting generated from one of the StorageCapabilities. The compliance test for Vendor X's Array Profile implementation fails because: - FCPort.PermanentName property has a noncompliance value. Specifically, the FCPort.PermanentAddress is required to be WWN, 16 unseperated uppercase hex digits; - ElementName property was not provided (i.e., was null); - the SystemDevice associations contained references to BackendFCPort in the PartComponent property. CIM defined that the PartComponent is a LogicalDevice. Since BackendFCPort is not a LogicalDevice, then the test failed; - The "Size not supported" return code was returned from CreateOrModifyStoragePool even though one of the supported sizes was used verbatim. The compliance test for Vendor X's Array Profile implementation did not fail because: - StorageVolume was extended; - · SystemDevice was extended. ## **B.5** Backward Compatibility Backward compatibility between versions of SMI-S profiles is a requirement with very few exceptions. The goals of backwards compatibility include: - a) New profile implementations that are deployed in a customer environment work with existing SMI-S Clients. This includes: - 1) SMI-S operations, including recipes and CTP, continue to work against the new profile implementation: - 2) SMI-S Clients can support a given profile version and above (later minor version numbers); - b) No guarantee of backwards compatibility is implied between major version numbers (i.e., 1.x to 2.x); - c) If a profile in a newer version of SMI-S cannot maintain backward compatibility, it shall be renamed (and the old profile deprecated). Otherwise the client may assume that the newer profile is backwards compatible and that all operations in the earlier version will continue to work in this newer version. - d) It shall be possible for SMI-S provider and client implementations to support older versions of an incompatible profile. - e) Content marked experimental is not standard in this version of the specification. Future versions of the specification may not be backwards compatible to content marked experimental in this version. Content marked experimental in this version of the specification may be removed in a future version. See Figure 1. ### B.5.1 Overview SMI-S backward compatibility is necessary to ensure that customer environments are minimally disrupted by newer implementations of SMI-S. Deployment of
several concurrent implementations of multiple minor versions of SMI-S shall be possible in a customer environment. Compatibility is required from both the Client side and from the provider side. Compatibility also has aspects both in the specification of newer functionality via SMI-S and in the implementation of both providers and clients. Figure B.1 shows the interaction between a Client coded to an older minor version of SMI-S (M.m) acting against a later minor version (M.n) provider implementation Figure B.1 - Provider Migration As shown in Figure B.1, the newer implementation shall support all of the old operations from the previous minor version of SMI-S in order to maintain compatibility. The Client will not be able to take advantage of any newer features that have been added in the later version of the specification, but will still be able to accomplish all of the functions it was coded for in the previous version. This allows minimum disruption to the customer environment. Clients shall be written to take advantage of the functionality of implementations that are currently shipping and that are or will soon be deployed in customer environments. This client functionality needs to be careful in how it makes use of each SMI-S version's new features. Any client code that uses a specific version's features shall also include a version check against the profile or subprofile version in the RegisteredProfile (Subprofile) instance for that functionality. This version check shall verify that the functionality is at a specific minor version and above (up to the next major release). If a client were only to check for a specific version, it would not be able to use newer implementations of that functionality. A client will, over time, contain multiple such code blocks as newer versions are supported. Each piece of code will be written to the functionality introduced in a specific version and continue to work against that functionality in later minor releases. ### **B.5.2** Requirements In order to maintain backwards compatibility with older minor versions of the specification, profile authors have followed specific rules in developing the specification. The requirements that were followed in profile versioning and shall be followed by subsequent implementations include: - **Support for required classes:** A newer minor version of an SMI-S profile shall support all required classes of the previous minor version of the profile and shall continue to require them. - Support for conditional classes: A newer minor version of an SMI-S profile shall support all conditional classes of the previous minor version of the profile and shall continue to require them as specified in the conditions of the previous minor version. But the newer minor version may add other conditions under which the class will be required. In addition, conditional classes in a previous minor version may be promoted to required in a newer minor version. - **Support for optional classes:** A newer minor version of an SMI-S profile may promote a class to Conditional or Mandatory any class that was optional in the previous minor version. - **Deprecation of classes:** A newer minor version of an SMI-S profile may deprecate or include deprecated (via the CIM schema) classes introduced in previous minor version(s), but shall continue to require their implementation. - **Support for required properties:** A newer minor version of an SMI-S profile shall support all required properties of classes in the previous minor version(s) of the profile and shall continue to require them. - Support for conditional properties: A newer minor version of an SMI-S profile shall support all conditional properties of classes in the previous minor version(s) of the profile and shall continue to require them as specified by the conditions of the previous minor version. But the newer minor version may add other conditions under which the property will be required. In addition, conditional properties in a previous minor version may be promoted to required in a newer minor version. - **Support for optional classes:** A newer minor version of an SMI-S profile may promote a class to Conditional or Mandatory any class that was optional in the previous minor version. - **Deprecation of properties:** A newer minor version of an SMI-S profile may deprecate or include deprecated (via the CIM schema) properties of classes introduced in previous minor version(s), but shall continue to require their implementation. - Support for subprofiles: A newer minor version of an SMI-S profile shall support the functionality of all subprofiles of the previous minor version(s) of the profile and shall continue to require them if they were required in the previous version. A newer minor version of an SMI-S profile may require a subprofile that was optional or conditional in the previous minor version, but shall not make optional or conditional a subprofile that was required in a previous minor version. If a newer minor version of an SMI-S profile does not have subprofiles by the same name as previous minor version(s), it shall still require implementation of the Registered (Sub)Profile with the previous version information such that the client will be able to find and use the subsumed functionality. - A newer minor version of an SMI-S profile shall support all conditional subprofiles of the previous minor version of the profile and shall continue to require them as specified in the conditions of the previous minor version. But the newer minor version may add other conditions under which the subprofile will be required. - **Profile renaming:** A newer minor version of an SMI-S profile that cannot remain backwards compatible shall either become a major revision of the profile or shall be renamed to a different profile name such that a client will not find newer, incompatible, versions of that functionality. ### **B.5.3** Implementation Considerations Even in the case of a newer minor version of an SMI-S profile that was unable to retain backward compatibility, an implementation may support clients with a separate implementation of the previous minor version's functionality. Implementations shall not implement these earlier versions in such a way that a client of the previous minor version would become confused or break when accessing this functionality. This may happen if the previous version's functionality is implemented in the same namespace as the later version, but a careful evaluation needs to be done by the implementer to determine this. Particular attention should be paid to the recipes from the earlier version, but since recipes are not exhaustive, a fuller evaluation is necessary. # **B.6** Rules for Combining (Autonomous) Profiles #### B.6.1 General SMI-S specifies the behavior of (autonomous) profiles. The rules for compliance and backward compatibility are defined in the context of a profile (an Autonomous Profile). This subclause defines the rules that shall be applied when a device (or program) wishes to support the behavior of multiple (autonomous) profiles. The guiding principles in such support are: - Maintain Compliance (see B.1 through B.4) - Combining (autonomous) profiles shall not break compliance rules for any of the combined individual profiles. - Maintain Backward Compatibility (see B.5) Combining (autonomous) profiles shall not break backward compatibility for any of the combined individual profiles. ## **B.6.2** Backward Compatibility Rules for combining profiles The backward compatibility rules apply to combined profiles in that combined profile implementations that are deployed in a customer environment shall work with SMIS clients of any one of the profiles that were combined: - Support for required classes: A combination of SMI-S profiles shall support all required classes of the individual profiles that have been combined and shall continue to require them. If a class is required in one individual profile, it shall be required in the combination profile. - Support for conditional classes: A combination of SMI-S profiles shall support all conditional classes of the individual profiles that have been combined and shall continue to require them as specified in the conditions of individual profiles that have been combined. If a class is conditional in one or more of the individual profiles (and not required in any other individual profile) then it shall be conditional in the combination profile. If a class is conditional in multiple individual profiles, but with different conditions, then all conditions shall yield the existence of the class. - Deprecation of classes: A combination of SMI-S profiles shall include any deprecated (via the CIM schema) classes introduced by any one of the individual profiles that are combined, and shall continue to require their implementation. Similarly, conditions for deprecated conditional classes shall apply (as stated in the support for conditional classes). - Support for required properties: A combination of SMI-S profiles shall support all required properties of classes in any one of the individual profiles that are combined and shall continue to require them. If a property is required in any of the individual profiles, then the property will be required in the combined profile. - Support for conditional properties: A combination of SMI-S profiles shall support all conditional properties of classes in the individual profiles that are combined and shall continue to require them as specified by the conditions of the individual profiles that are combined. If a property is conditional in one or more of the individual profiles (and not required in any other individual profile) then it shall be conditional in the combination profile. If a property is conditional in multiple individual profiles, but with different conditions, then all conditions shall yield the existence of the class. - Deprecation of properties: A combination of SMI-S profiles
may include deprecated (via the CIM schema) properties of classes introduced in any one of the individual profiles that are combined, and shall continue to require their implementation. Similarly, conditions for deprecated conditional properties shall apply (as stated in the support for conditional properties). - Support for subprofiles: A combination of SMI-S profiles shall support the functionality of all subprofiles of all of the individual profiles that are combined and shall continue to require them if they were required in any one of the individual profiles that are combined. If a combination of SMI-S profiles results in two references to a subprofile by the same name from multiple individual profiles that were combined, the combined profile may require multiple implementations if the subprofiles in question have different major version numbers. And if the subprofiles have different minor version numbers, then the higher version number shall be implemented (since it provides backward compatibility to the earlier subprofile). If a subprofile is required in any one of the individual profiles then it will be required in the combined profile. If a subprofile is not required in any of the individual profiles, but is conditional in at least one of the individual profiles, then it will be conditional in the combined profile. If a subprofile is conditional in multiple individual profiles (that are being combined) then all conditions shall yield existence of the subprofile. #### B.6.3 Conditions for a New Profile If any of the conditions outlined in section B.5.1 cannot be satisfied, then a new profile shall be defined that represents the desired semantic of the device (or program) in question. #### **EXPERIMENTAL** ### B.7 Rules for Vendor Extensions SMI-S is intended to be extended by vendor implementations to cover vendor function that is not covered by SMI-S. Such extensions allow clients to exploit vendor functions that are not covered by SMI-S, when the client has awareness of the specific functions of the implementation. However, the extensions need to be done in such a way that they do not cause clients that support the functions in SMI-S to fail. This section describes the rules for doing vendor unique extensions to SMI-S. ### **B.7.1** Objectives for Vendor Extension Rules The basic objectives for the rules associated with vendor extensions are: - Vendor extensions shall follow the compliance rules (as defined in B.3). - Vendor extensions shall follow the backward compatibility rules (as defined in B.5). - Vendor extensions shall avoid extensions that nullify the existing SMI-S. - Vendor extensions shall avoid extensions that would confuse clients. #### **B.7.2** Vendor Extensions and Compliance Rules When implementing a vendor extension, the following rules shall be followed: • When an implementation claims compliance to an SMI-S profile (RegisteredOrganization="SNIA") the implementation shall honor the behavior for CIM Elements and methods as outlined in the Profile. - All CIM Elements (Classes, properties and methods) defined by the SNIA profile shall be honored, including mandatory and conditional elements. - For example, if an SMI-S Profile defines a StorageVolume class with mandatory properties, a vendor extension to the profile may not define a StorageVolume that has fewer mandatory properties. - Similarly, if the StorageVolume class is mandatory, a vendor extension may not render the use of the class as conditional (or optional). - Instances of CIM associations between CIM Instances shall exist as defined by the profile. - A vendor extension may add associations, but the mandatory and conditional associations between instances of a class specified by the profile shall exist. - For example, if an SMI-S profile defines a mandatory DeviceSAPImplementation association between a ProtocolEndpoint and a LogicalPort, a vendor extension that adds a new ProtocolEndpoint shall also have the DeviceSAPImplementation association. - If this is not reasonable for the extension, for whatever reason, the vendor extension should consider using different classes. - When a vendor extension uses a superclass of a given CIM class used in the SMI-S profile, the extension shall honor the attributes and behaviors defined for the superclass. - If a vendor extension uses "System" in an SMI-S Profile that defines "ComputerSystem" classes, the extension shall honor properties and associations of the inherited from System defined in the SMI-S profile. ## **B.7.3** Vendor Extensions and Backward Compatibility Rules When the backward compatibility rules are applied to vendor extended SMI-S profiles, the following rules shall apply: Vendor extensions that are deployed in a customer environment shall work with existing SMI-S Clients and SMI-S Clients that are not aware of the extensions. This includes: - SMI-S operations, including recipes, continue to work against the extended profile implementation. - SMI-S Clients can support a given profile version or extended versions of a given profile. - A vendor extended implementation of an SMI-S Profile shall be backward compatible to the SMI-S profile. - If an extended version of an SMI-S profile cannot maintain backward compatibility to the SMI-S profile, it shall be defined as a different profile (e.g., RegisteredOrganization="VendorID"). Otherwise the client may assume that the extended profile is backwards compatible and that all operations on the SMI-S profile will continue to work in the extended version of the profile. #### B.7.4 Vendor Extensions and SMI-S Nullification Vendor extensions shall avoid extensions that nullify an existing SMI-S profile. This includes, but is not limited to: - Adding Classes that the implementation considers mandatory such that a client will fail if it does not establish instances of the class - This does not mean that such classes cannot be provided by the provider implementation. But it cannot expect an SMI-S client to overtly create such class instances. - Adding class properties that an implementation considers mandatory such that a client will fail if it does not set values for such properties For example, if a SettingData is used as a parameter of an SMI-S extrinsic method, a vendor extension cannot extend the SettingData with a mandatory property such that it will fail the client if it does not set the extended property. - An implementation may extend a SettingData class that is used in an SMI-S extrinsic method if the implementation supports a default value for the property. - A vendor extension shall not extend the method signature of any SMI-S extrinsic method. - If a vendor wants to define an extended version of an SMI-S method, it should define a new method with the extended parameter list. - Ideally, the vendor extension should support the SMI-S method, however, this is not required if the profile has a capabilities class that identifies whether or not the method in question is supported. - A vendor extension should not extend the definition of a property unless the SMI-S profile makes provisions for "vendor extensions" to the property. - For example, properties that are enumerations with a "vendor extension" range that is formally recognized in the SMI-S specification may be extended (vendor extension enumerations added). - However, if a property that is an enumeration, but SMI-S does not formally recognize that a "vendor extension" range of the enumeration, then the vendor extension should not use the property for this. ## **B.7.5** Vendor Extensions that Avoid Client Confusion Vendor extensions shall avoid extensions that would confuse clients. This includes, but is not limited to: - Reuse of Classes used by SMI-S profiles should be avoided (e.g., vendor extended usages). - For example, if an SMI-S autonomous profile defines four uses of StorageExtent, it would be unfortunate if a vendor extension defined a fifth usage of StorageExtent. The general SMI-S client will be looking for four different uses of StorageExtent and will likely get confused by the fifth usage. - To avoid this, the vendor extension should define a new class (with all the StorageExtent properties that apply). - Use of CIM properties not specified by SMI-S - There are several properties "not specified" by SMI-S, but are included in CIM MOFs. An example might be Caption on ManagedElement. Vendor extensions should avoid using CIM properties for a specific purpose defined by the vendor extension. - Future versions of SMI-S may, in fact, define a specific use of the CIM property and the chances that it matches the use in every vendor extension is somewhat unlikely. - It is safer if the vendor extension defines its own unique properties rather than attempt to re-use CIM properties. ### **EXPERIMENTAL** # **Annex C (normative) Indication Filter Strings** ## C.1 Introduction to Indication Filter Strings WBEM indications are defined using filter strings. The filter strings are expressed in a query language that includes the type of indication and related CIM elements. For versions of this standard starting with 1.3.0, new indication filters shall be defined using CQL (see DMTF DSP0202). Prior to version 1.3.0, indication filters were defined using two query languages: CQL was recommended but experimental since the DMTF specification was not a final standard. WQL was a proposed query language partially described in white papers and later withdrawn in favor of CQL The subset of WQL used in this standard is also referred to as the SMI-S 1.0.x query language. This set of filters defined in this annex defines the full set of WQL functionality used in SMI-S. Although CQL and WQL support complex filter strings, the filters used in SMI-S are very simple and may be expressed as a few patterns – literal text containing a limited number of variables representing CIM elements. The patterns are defined in the following simple grammar: - literal text does not include curly brackets
("{" and "}") - variables are surrounded by curly brackets; the usage of variables is explained in the "Semantic" sub-section following each filter stringS #### C.2 Instance Creation ### C.2.1 Filter String The same filter string applies to CQL and WQL. ``` SELECT * FROM CIM_InstCreation WHERE SourceInstance ISA {class-name} ``` ## C.2.2 Semantic An instance of a class is instantiated. {class-name} is the name of a class (or one of its subclasses) of the instance created. ### C.3 Instance Deletion ### C.3.1 Filter String The same filter string applies to CQL and WQL. ``` SELECT * FROM CIM_InstDeletion WHERE SourceInstance ISA {class-name} ``` ## C.3.2 Semantic An instance of a class is deleted. {class-name} is the name of a class (or one of its subclasses) of the instance deleted. # C.4 Modification of any value in an array property ## C.4.1 WQL string ``` SELECT * FROM CIM_InstModification WHERE SourceInstance ISA {class-name} AND SourceInstance.{property-name} <> PreviousInstance.{property-name} ``` ## C.4.2 CQL string ``` SELECT * FROM CIM_InstModification WHERE SourceInstance ISA {class-name} AND SourceInstance.{class-name}::{property-name} <> PreviousInstance.{class-name}::{property-name} ``` #### C.4.3 Semantic One of the values of the array property {property-name} in class {class-name} (or one of its subclasses) has been modified, or an additional value is added to {property-name} or a value is removed from {property-name}. # C.5 Modification to either of Two Specific values in an Array Property ## C.5.1 WQL string ``` SELECT * FROM CIM_InstModification WHERE SourceInstance ISA {class-name} AND SourceInstance.{property-name} = {value} AND SourceInstance.{property-name} = {value} ``` ## C.5.2 CQL string ``` SELECT * FROM CIM_InstModification WHERE SourceInstance ISA {class-name} AND ANY SourceInstance.{class-name}::{property-name}[*] = {value1} AND ANY SourceInstance.{class-name}::{property-name}[*] = {value2} ``` ### C.5.3 Semantic The array property {property-name} in class {class-name} (or one of its subclasses) has been modified resulting in one of the entries in the array having a value of {value1} and another of the entries having a value of {value2}. Either {value1} or {value2} shall be a new value for an existing entry or is the value of a newly added entry. ### C.6 Alert ### C.6.1 Filter String The same filter string applies to CQL and WQL. ``` SELECT * FROM CIM_AlertIndication WHERE OwningEntity='SNIA' AND MessageID='{message-id}' ``` Note that WQL does not require the quotes around the value of OwningEntity. Legacy profiles may use a filter string including OwningEntity=SNIA (without quoting SNIA) as WQL filter, but CQL strings shall include the quotes. ### C.6.2 Semantic An alert indication referencing the standard message with message ID {message-id}. Note that the message ID is a concatenation of the name of the appropriate SNIA registry and message number. For example, the {message-id} for the first message in the FC registry is 'FC1'.