Physics 115/242
The leapfrog method and other “symplectic” algorithms for integrating

Newton’s laws of motion

Peter Young
(Dated: April 21, 2014)

I. INTRODUCTION

One frequently obtains detailed dynamical information about interacting classical systems from
“molecular dynamics” (MD) simulations, which require integrating Newton’s equations of motion
over a long period of time starting from some initial conditions. One might be interested, for
example, in following the motion of atoms in a fluid. As another example, astronomers might want
to integrate the motion of the solar system for a long period of time, or consider the evolution of
a galaxy by following the motions of its constituent stars. (In an astronomical setting, “molecular
dynamics” simulations are called “N-body” simulations.)

In this handout I will discuss an algorithm, called “leapfrog”, which is particularly suited for
these simulations because (i) it is simple, and (ii) it has a sort of “global” stability (in technical
jargon, the algorithm is “symplectic”). I will explain what this term means, and also discuss briefly

some higher order symplectic algorithms.

II. THE LEAPFROG ALGORITHM

We have already seen in our discussion of numerical differentiation and of numerical integration
(midpoint method) that the slope of a chord between two points on a function, (zg, fo) and (x1, f1),
is a much better approximation of the derivative at the midpoint, f{ /20 than at either end. We can
use the same idea in a simple, elegant method for integrating Newton’s laws of motion, which takes
advantage of the property that the equation for dz/dt does not involve x itself and the equation for
dv/dt (v is the velocity) does not involve v (assuming velocity independent forces). More precisely,

for a single degree of freedom, the equations of motion are

dx
- v (1)

% = (=-1) @)

where F'(x) is the force on the particle when it is at z, U(z) is the potential energy, and for
simplicity we set the mass equal to unity. (To put back the mass replace F' by F//m throughout.)

The Euler method would approximate Eq. (1) by
T = xo + hvo, (3)

where as usual h is the interval between time steps. A better approximation would be to replace

v by its value at the midpoint of the interval, i.e.
x| = X9+ hUl/Q- (4)

Of course, you would protest that we don’t yet know vy /5 so how can we use this. Let’s finesse this
for now and assume that we can get vy, in some way. Then we can immediately apply a similar

midpoint rule to Eq. (2) to step v forward in time, i.e.
V39 = V19 + hF(11), (5)

since we do know x1. Then we can step forward x with xo = x1 + hvg /2 and so on. Thus, once
we have started off with zo and v/ we can continue with = and v leapfrogging over each other as

shown in Fig. 1 .

X
7 A AT AT AT A A A
| 1] 1] 1] 1] 1] 1] 1] t/h
0 1 2 3 4 5 6 7
NN AN AN TN
\Y

FIG. 1: Sketch showing the structure of the leapfrog method.

The basic integration formula for the leapfrog algorithm is therefore

Tpt1 = Tn + hvgqq)0, (6a)

Upt3/2 = Upy1/2 + hE (Tny1) (leapfrog) . (6b)

How accurate is this approach? Well 1 — z¢ is of order h, and we showed earlier in the class
that the expected leading error ~ h? vanishes for the midpoint approximation, and so the error for
one interval is ~ h3. To integrate over a finite time T the number of intervals is T'//h and so the

overall error is of proportional to h3 x (1/h) = h?. Leapfrog is therefore a second order method,

like RK2, and better than FKuler, which is only first order. We shall see shortly that, in addition to
leapfrog being of higher order than Euler even though it is hardly more complicated, it has other
desirable features connected with its global properties.

The leapfrog method has a long history. I don’t know who first introduced it but there is a nice
discussion in the Feynman Lectures on Physics, Vol. I, Sec. 9.6. The leapfrog method, which is
second order, is closely related to a modification of the Euler method called Euler-Cromer. Both
Fuler and Euler-Cromer are first order approximations, but Euler-Cromer is more stable. Whereas

the Euler method is

Tpal = Tn + hoy, (7a)

Unt1 = Up + hF (xy) (Euler) , (7b)

the Euler-Cromer method uses the (already computed) new value of # when computing the force

in Eq. (7b), i.e.

Tptl = Tn + hoy, (8a)

Unt1 = Up + hF(Tp41) (Euler-Cromer) . (8b)

The Euler-Cromer method, Eqs. (8), is seen to be the same as the leapfrog method, Egs. (6),
except that the velocity is computed at the same times as the position rather than intermediate
times. Thus, Euler-Cromer becomes leapfrog simply by updating the velocity by an extra half-step
at the beginning, and using the resulting value of v as the starting value in Eq. (8a). By this
simple change, a first order method (Euler-Cromer) becomes a second order method (leapfrog). I
therefore recommend always using leapfrog rather than Euler-Cromer. More discussion on how to

start the leapfrog algorithm is given in the next section.

III. THE VELOCITY VERLET AND POSITION VERLET ALGORITHMS

To make leapfrog useful, however, two questions have to be addressed.
The first, which we have already mentioned, is how to we start since we need vy /5, but we only
have the initial velocity vy (as well as the initial position xg). The simplest approximation is just

to do a single half step of Euler, i.e.
’U1/2 =9 + %hF(l’O) (9)

Although this is not a midpoint method, and so has an error of h? we only do this once so it does

not lower the order of the method, which remains second order.

The second question to be addressed is how can we get the velocity at the same time as the
position, which is needed, for example, to produce “phase space” plots (see below) and to to
compute the energy and angular momentum. The simplest approach is to consider Eq. (6b) to be
made up of two equal half steps, which successively relate vy, 1 to v,41/2 and v, 3/9 to vy 41. The
leapfrog algorithm with a means of starting the algorithm and determining x and v at the same

times in the way just mentioned, is called velocity Verlet. A single time step can be written as

Vpt1/2 = Un + 1hF(xy), (10a)
Tl = Tn + hvp 10 (velocity Verlet), (10Db)
Unt1 = Vpp1j2 + 3hF (Tny1), (10c)
where n = 0,1,2,---. Equation (10) is equivalent to Eq. (6) with the addition of a prescription for

starting the algorithm off and for evaluating v and x at the same time. It looks as though we have
to do two force calculations per time step in Eq. (10) but this is not so because the force in the
third line is the same as the force in the first line of the next step, so it can be stored and reused.
Since velocity Verlet is the same as leapfrog, it is a second order method.

It is often useful to show the trajectory as a “phase space” plot i.e. the path in the p-z plane
(where p = mwv is the momentum). As an example consider the simple harmonic oscillator for
which the energy is given by E = p?/2m + kx?/2, where k is the spring constant. Here we have

set m = 1 and we will also set £ =1 so

2 2
E = % + % (= const.) (11)

Hence the phase space plot is a circle with radius equal to V2E.

Figure 2 shows a phase space plot for one period of a simple harmonic oscillator using the
velocity Verlet method with time step h = 0.027', where T' = 27 is the period. The starting values
are x = 1,0 =0, so F = 1/2. The figure shows that the leapfrog/velocity Verlet method correctly
follows the circular path in phase space (at least for one period 7).

Note that instead of starting with a half step for v followed by full step for x and another half
step for v, one could do the opposite: a half step for x followed by full step for v and another half

step for x, i.e.

Tpt1/2 = Tn + %hvm (12&)

Unt1 = Un + hE (T y1/2) (position Verlet), (12b)

Tnt1 = Tpyr/2 + 3P0, (12¢)

Simple Harmonic Oscillator, Leapfrog

p
T ‘ T 1T T 1T 17T ‘ T T T T T T 1T ‘ T
L ‘ Y ‘ | Y v | ‘ L

-1 0 1
X

FIG. 2: Phase space plot for one orbit showing the expected circular trajectory.

for n = 0,1,2,---. This is called position Verlet. Once the algorithm has been started it is the
same as velocity Verlet.
It is trivial to generalize the equations of the leapfrog/Verlet method to the case of more than

one position and velocity. For example, for the position Verlet algorithm one has

Thy1y = T+ 3o}, (i=1,---,N), (13a)

Upyr = O+ hF' ({@ng10}) (i=1,---,N), (13D)

i1 = xfz+1/2 + 5oy, (i=1,---,N), (13c)

where 2%, v® (i = 1,2,--- , N) are the positions and velocities, and F*({z}) is the force which gives
the acceleration of the coordinate ¢, i.e. F'({z}) = —0U({x})/0z", where U is the potential

energy. Each force depends, of course, on the set of all positions {z}. It is important that all
the positions are updated in Eq. (13a), then all the forces are calculated using the new positions,
then all the velocities are updated in Eq. (13b), and finally all the positions are updated again in
Eq. (13c).

IV. THE VERLET ALGORITHM
If we are not interested in the velocities, but just the trajectory of the particle, we can eliminate
the velocities from the algorithm since

Tnt2 = Tp41l + hvn+3/2

= Tn+1 + h(vpi1y2 + hF(@n41)). (14)

In velocity Verlet we have hv,, /2 = Tnt1 — T and so we get an equation entirely for z variables:

Tpao = 2Tpi1 — Tp + hQF(an) (Verlet) . (15)

This Verlet algorithm is less often used than velocity or position Verlet because: (i) having the
velocities is frequently useful, (ii) the Verlet algorithm is not self starting, and (iii) it is more
susceptible to roundoff errors because it involves adding a very small term of order h? to terms of
order unity. By contrast, the velocity or position Verlet schemes only add terms of order h (which

is larger than h? since h is small) to terms of order unity.

V. ADVANTAGES OF THE LEAPFROG/(VELOCITY OR POSITION) VERLET
ALGORITHM

In addition to combining great simplicity with second order accuracy, the leapfrog/(velocity or

position) Verlet algorithm has several other desirable features:

1. Time reversal invariant.
Newton’s equations of motion are invariant under time reversal. What this means is as
follows. Suppose we follow a trajectory from z; at some initial time ¢; (when the particle
has velocity v;) to x¢ at a later time t; (when the velocity is vf). Now consider the time
reversed trajectory which starts, at time ¢;, at position z; but with the opposite velocity
—vy. Then, at time 7, the particle will have reached the initial position x; and the velocity
will be —wv;, see Fig. 3.

original trajectory vt

time reversed trajectory Xf, fri

FIG. 3: Hllustration of a trajectory and the time reversed trajectory.

This time reversed trajectory is what you would see if you took a movie of the original
trajectory and ran it backwards. Thus both the trajectory forward in time and the one
backwards in time are possible trajectories. Since this is an exact symmetry of the equations,

it is desirable that a numerical approximation respect it.

It is a matter of simple algebra to check that Egs. (10) or (12) respect time reversal. Start
with xg = X,vg = V, say, and determine x; and v;. Then start the time reversed trajectory
with z(; = 21 and v = —v;. The three steps of Egs. (10) or (12) in the reversed trajectory
correspond precisely to the three steps in the forward trajectory (with positions the same and
velocities reversed) but in the reverse order, so one finds 2] = X (=), v] = =V (= —vp).

The time-reversed trajectory thus retraces the forward trajectory.

. Conserves Angular Momentum

In a spherically symmetric potential, angular momentum is conserved and, remarkably, the
leapfrog/(velocity or position) Verlet algorithm conserves it exactly. If the potential energy
U only depends on the magnitude of 7 and not its direction then the force is along the

direction of 7, i.e.

(16)

where 7 is a unit vector in the direction of 7. It is left as a homework exercise to show
that the leapfrog algorithm conserves angular momentum for such a force. (Unfortunately,
the other quantity conserved by Newton’s equations, energy, is not exactly conserved in the

algorithm.)

It is obviously desirable that a numerical approximation respect symmetries exactly, and I'm
not aware of any other algorithms which conserve angular momentum exactly, though they

may exist. This is obviously a “plus” for the leapfrog algorithm.

. Symplectic (area preserving)
The leapfrog/(velocity or position) Verlet algorithm is “symplectic”, i.e. area preserving. To
understand what this means consider a small rectangular region of phase space of area dA

as shown in the left part of the Fig. 4.

Let the four corners of the square, (z,p), (z + dz,p), (x,p + dp), (x + dz,p + dp) represent
four possible coordinates of a particle at time ¢. These are labeled 1, 2, 3, 4. Then, at a later
time ¢’ each of these four points will have changed, to form the corners of a parallelogram,
as shown on the right of Fig. 4. Let the area of the parallelogram be dA’. An important

theorem (Liouville’s theorem) states that the areas are equal, i.e.

dA = dA. (17)

timet timet’

N
L

X X'

FIG. 4: Illustration which shows that integrating forward Newton’s equations by a finite time can be
regarded as a map in phase space (i.e. z-p space). Each point in the left hand figure, which is for time ¢,
maps into a corresponding point in the right hand figure, which is for a later time ¢'. The area of a region
on the left, like the rectangle formed by points 1-4, is equal to the area of the corresponding region on the

right, so Newtonian dynamics gives rise to an “area-preserving” map.

I have not been able to find a simple derivation of Liouville’s theorem. For a more advanced
text which gives a proof, see Landau and Lifshitz, Classical Mechanics. Now (z, p) transforms

to (', p'), where 2’ and p’ are some (complicated non-linear) functions of =, and p, i.e.

¥ = X(x,p)

p = P(xz,p). (18)
A set of equations like (18), in which the values of one set of variables (x, p here), is trans-

formed to new values (2, p’ here), is called a map. Thus, the result of integration of Newton’s

laws by a finite amount of time can be represented as an area preserving map.

Since the area preserving property is an exact feature of the equations, it is desirable that a

numerical approximation preserve it. Such approximations are called symplectic.

What is the condition for a map to be symplectic? To see this we need to compute the area

dA” in the above figure, and set it equal to dA (= dx dp). The area dA’ is given by
dA" = |de]| x dé}), (19)

where dé] and dé} are the vectors describing the two sides of the parallelogram, 1 — 4 and

1 — 2. Now the components of de are just the changes in 2’ and p’ when z is changed by

dx but p is fixed, i.e.

. o' op .
de| = <83;:1:+ 8pxp> dz, (20)
and similarly
o' op
&, = <az‘% + 8’;;3) dp. (21)

It is well known that the vector product in Eq. (19) can be represented as a determinant,

and so we get

dA" = det J dA, (22)
where
oxr Op
J = (23)
o o
oxr Op

Now det J is the Jacobian of the transformation from (z,p’) to (z,p) which occurs when

you change variables in an integral, i.e.

// dx'dp’ = // det J dxdp. (24)

Hence a symplectic algorithm has
det J =1. (25)

To show that Eq. (25) is satisfied for leapfrog algorithm it is convenient to consider each of
the three steps in Eq. (10) separately (remember we have m = 1 here so p and v can be used
interchangeably). Consider the first step, Eq. (10a), applied to two close-by values, (zg, vp),
and (o + 0xg, vo + dvp), at the initial time, i.e.

h h
v1/2 + (5’1)1/2 = v + dvg + §F($o + 5.7}0), V1/2 = Vo + §F($0), (26)

Subtracting and letting dzg and dvg tend to zero, we can write the result in a convenient

matrix form as

ox ox
’ =A ’) (27)
(5’01/2 (S’UO

10

where

1 0
a={, . (28)
§F,(ZUQ) 1

Similarly, from the second and third steps of velocity Verlet, Eqs. (10b) and (10c), we have

ox ox ox ox
L)l _p 0 7 1 c 1 7 (29)
(5’1)1/2 5U1/2 (S?Jl 5?}1/2
where
1h 1 0
= , C= L , (30)
01 jF’(azl) 1
SO
ox ox
=g, (31)
(5’1)1 (5’1)0
where J is given by the matrix product
J=CBA. (32)

It is an important (but not sufficiently well known) theorem that the determinant of a

product of matrices is the the product of the determinants, i.e.

det J = det C det B det A. (33)

By inspection, det A = det B = det C' = 1, and so det J = 1 as required, see Eq. (25). Hence

the leapfrog/velocity Verlet algorithm is symplectic.

However, det J is not equal to unity for the other algorithms that we have considered, Euler,
RK2 and RK4. (Since RK4 is very accurate the change in area will be very small, but not

zero.)

The advantage of symplectic algorithms is that they possess global stability. Since the area
bounded by adjacent trajectories is preserved, we can never have the situation that we saw
for the Euler algorithm earlier in the class, where the coordinates (and hence the energy)
increase without bound, because this would expand the area. Even in better non-symplectic
approximations, such as RK2 and RK4, the energy will deviate substantially from its initial

value at sufficiently long times.

11

In fact one can show that the results from an approximate symplectic integrator are equal
to the ezact dynamics of a “close by” Hamiltonian, H'(h) where, for the case of a second

order method like leapfrog,

HR)=H+(.)R*+ (.)R+, (34)
in which
H = 2’2 + V(x) (35)

is the actual Hamiltonian and (...) represent the extra pieces of H'(h).

VI. NUMERICAL RESULTS

We now show some numerical data which illustrates the symplectic behavior of the leapfrog
algorithm. As usual, we take the simple harmonic oscillator, with time step h = 0.027 (where T'
is the period).

Figure 5 shows that although the energy deviates from the exact value, it never wanders far
from the exact result. By contrast, in the RK2 algorithm the energy deviates more and more from
the exact value as t increases, as shown by the thick dashed line in the figure. The energy in the
leapfrog method oscillates around the correct value because the method is symplectic. Note that
for very small times (less than about a half period), the error with leapfrog is actually rather worse
than with RK2 (though both are second order methods). Since we are considering the simple
harmonic oscillator, we can derive the results in Fig. 5 analytically, following the procedure for
Euler, RK2 and RK4 in an accompanying handout [3]. This is discussed in Appendix A.

It is in the long time behavior that leapfrog is better since it has “global stability”.

VII. HIGHER ORDER SYMPLECTIC ALGORITHMS (242 STUDENTS)

Recently there has been interest in higher order algorithms which respect time reversal invari-
ance and which are symplectic. The simplest higher order symplectic algorithm is that of E. Forest

and R.D. Ruth[1], and extensions discussed in Omelyan et al.[2], which is fourth order. If initially

FIG. 5:

Simple Harmonic Oscillator, Leapfrog

1.004

Ea
N 1.002

H\HHH‘HHWH‘H\HHH‘\HHHH‘\HHHH‘\HHHH‘\HHHH‘HHH\H‘H\HHH‘HH\HH

B] E = p?/2 + x%/2]
i) 1

F Period: T = 2m b

6 1 2 3 4 5 6 7 8 9 10

t/T

12

Variation of (twice) the energy E as a function of time for the simple harmonic oscillator using

the velocity Verlet algorithm (solid line) and second order Runge-Kutta (RK2) (dashed line). This for

m = k = 1, with initial conditions, x = 1,v = 0 and a timestep of h = 0.027, where the period T is 2.

Since velocity Verlet is symplectic, 2F never deviates much from its exact value of 1, but the energy in RK2

deviates more and more at long times.

x = z(t),v = v(t) then, in the Forest-Ruth algorithm, the following steps

with

h
r=2x+ 950
v=1v+ 0hF(x)
h
r=z+(1-60)zv
2
v=v+(1—-20)hF(x) (FR algorithm)
h
r=x+(1-60)-v
2
v=uv+60hF(x)
h
r=ux+ 951),
1
0 = ——— ~ 1.35120719195966,

22

13

yield z(t + h),v(t + h) and so generate one time step. Note that this method requires three
evaluations of the force per time step, as opposed to just one for leapfrog. Note too that the steps
are symmetric about the middle one (this ensures time reversal invariance). Since each step involves
simply moving forward either the position or the velocity, the Jacobian of the transformation can
be written, as for the leapfrog method discussed above, as a the product of determinants (7 here)
each of which trivially has determinant unity. Hence the algorithm is symplectic. The hard work
is to show that the algorithm gives an error of order h® for one interval (and hence of order h*
when integrated over n = T'/h time steps for a fixed time increment 7). This is where the strange
value for 6 comes from.

It is curious that the middle step of the Forest-Ruth algorithm, Eq. (36d), is (i) larger in
magnitude than h, since 1 —260 ~ —1.7024, and (ii), like some of the other steps, it goes “backwards
in time”. This large step turns out out to be necessary to get a 4-th order symplectic algorithm
requiring only three force evaluations per time step. If one is willing to accept more than 3 force
evaluations one can avoid having a step greater in magnitude than h, as discussed in the next
paragraph. However, to my knowledge, all higher order symplectic algorithms have some steps
which go backwards in time.

To avoid a step which goes backward in time by more than A, one could use the “Position
Extended Forest-Ruth Like” (PEFRL) algorithm of Omelyan et al.[2] Integrating forward one time

step in this algorithm involves the following steps:

z=x+Ehv (38a)
v=vt(1— 2A)§F(x) (38D)
=+ xhv (38¢)
v =+ \hF(x) (384)
2 =2+ (1—2(x +&)hv (PEFRL algorithm) (38¢)
v =+ \hF(2) (38f)
x =1+ xhv (38g)
v=v+(1- 2A)§F(x) (38h)

x=x+&hv (381)

14

with
& = +0.1786178958448091E+00 (39a)
A= —0.2123418310626054E 400 (39Db)
x = —0.6626458266981849E —01 (39¢)

This algorithm requires 4 force evaluations per time step rather than 3 for Forrest-Ruth, but it is
more accurate, as we will see below, since it avoids the large time step.

The following table shows results for the maximum error in 2E over one period (2FE = 1 for the
specified initial conditions z = 1,v = 0) for the leapfrog algorithm, Forest-Ruth (FR) algorithm,
and the PEFRL algorithm of Omelyan et al.

h/T leapfrog FR PEFRL

0.02 [3.949 x 10723]1.912 x 107°|7.206 x 10~
0.005(2.468 x 10~%|7.416 x 10~8(2.822 x 10~?

By comparing the errors for the two different values of h/T one can see, as expected, that the error
in the leapfrog algorithm varies as h? while that in the FR and PEFRL algorithms varies as h*.
Furthermore the PEFRL algorithm is about 26 times more accurate than the FR algorithm for the
same value of h.

To make a fair comparison of the efficiency of the leapfrog and PEFRL algorithms, one should
note that the PEFRL algorithm requires 4 times as many function evaluations per step. Hence we
compare PEFRL with h/T = 0.02 and leapfrog with h/T = 0.005, which require the same number

of steps; the result is that PEFRL is about still about 340 times more accurate.

VIII. CONCLUSIONS

Fourth-order symplectic algorithms have many advantages; they are are not very complicated
but have good accuracy and global stability, so they are likely to play a major role in MD simulations
in the future. However I agree with Omelyan et al. that symplectic integrators of order greater than
4 are probably not worth the extra complexity. For work in which high precision is not essential,
the very simple second order velocity or position Verlet (leapfrog) method works very well, and I
recommend it.

One caution is, however, in order. If the forces are small part of the time, so changes in velocity

are small in this region, but the forces are very large at other times, them one would like to be

15

able to change the stepsize h during the run (adaptive stepsize control). In this way one would
make big strides while not much is happening but use a fine mesh of time steps in regions where
the rate of velocity change is large. Indeed, adaptive stepsize control is routinely implemented as
part of a fourth order Runge-Kutta (RK4) package, see e.g. Numerical Recipes. However, I'm not
aware of adaptive stepsize control for symplectic algorithms and it may be difficult to implement.
Note that RK4, while accurate, is not symplectic. Nonetheless, in situations where there are large
variations in the force, it may be better to use RK4 with adaptive stepsize control, rather than a

symplectic algorithm (without it).

Appendix A: Analytical Results for the Simple Harmonic Oscillator

As discussed in an accompanying handout [3] it is convenient to describe a single time step in

matrix notation as

T €T
n+1 —A n ’ (Al)
Pn+1 Pn

where A is a 2 x 2 matrix. Here, according to Eqs. (28)—(32), A is given by

1 h/2 1 0\ (1 h/2 1—h%/2 h—h3/4
A— / / = / / : (A2)
0 1 ~h 1) \0 1 —h 1—h%/2
You can check that the determinant of A is unity, as it must be for a symplectic method. The

eigenvalues are

o R
Aézl—?ilh].—Z:'I"C y (AB)
where
1—h2/4 h3
frnd frd -1 _— frnd FR— “ e
r=1, 0 = tan (h 1—h2/2> h—|-24+ . (A4)

The (unnormalized) eigenvectors are given by

) iv/T— 124) Ny
€q) = X , € =) : (A5)

Taking the initial conditions to be x(0) = 1,p(0) = 0, the solution is shown in the handout [3] to

be given by

where U is the matrix formed by stacking the eigenvectors side by side,

T

U= (71)7 72)) = 6;1) i

D
€1 €

Putting in the above results for the eigenvalues and eigenvectors one gets

_sin[(6/h) 1]

z(t) = cos[(0/h)t] ., p(t) = N

where we note from Eq. (A4) that

2

The energy is given by

2

_ h 02
2E=1+ 17z sin [(6/h)t]

h2
=1+ vy sin? [t(1 + h?/24)] (to order h?).

16

(A8)

(A9)

(A10)

Thus we see that the energy stays close to its starting value (as it must for a symplectic algorithm)

and oscillates at twice the frequency of the particle oscillation. The error in the energy (and also

the phase of the oscillation) is of order h? as expected for a second order method.

By comparison, for RK2 we have [3]

4 3
2F = exp [ln(l—l_hhmt} ~ | exp [Z t} ,

(A11)

which increases without bound at long time. Interestingly, the error in the energy is only of order

h3 although RK2 (like leapfrog) is a second order method, so one would expect an h? error and

indeed the phase of the oscillations is only correct to order h? [3]. Thus RK2 is more stable than

one would naively expect. This is why RK2 does better than leapfrog in maintaining a constant

energy at very short times, as shown in Fig. 5. However, the energy from RK2, unlike that from

leapfrog, increases without bound eventually. Similarly RK4 turns out to be more stable than

expected (error in the energy of order h® rather than h*) [3].

[1] E. Forest and R.D. Ruth, Physica D, 43, 105 (1990)

[2] IM. Omelyan, I.M. Mryglod and R. Folk, Computer Physics Communications 146, 188 (2002),

http://arxiv.org/abs/cond-mat/0110585

[3] http://young.physics.ucsc.edu/115/0de_solve.pdf

http://arxiv.org/abs/cond-mat/0110585
http://young.physics.ucsc.edu/115/ode_solve.pdf

	Introduction
	The leapfrog algorithm
	The Velocity Verlet and Position Verlet Algorithms
	The Verlet Algorithm
	Advantages of the leapfrog/(velocity or position) Verlet algorithm
	Numerical Results
	Higher Order Symplectic Algorithms (242 students)
	Conclusions
	Analytical Results for the Simple Harmonic Oscillator
	References

